
MATH 53 DISCUSSION SECTION ANSWERS – 3/23/23

JAMES ROWAN

1. Triple integrals in polar coordinates

(1) Sketch the solid described by the inequalities 2 ≤ ρ ≤ 4, 0 ≤ φ ≤ π
3 , 0 ≤ θ ≤ π.

The bounds for θ tell us that our region is only on the side of the xz-plane with positive y. The
bounds for φ tell us that our region lies within the cone with angle π

3 , represented by the red dashed
lines in the figure below. The bounds for ρ tell us that our region lies between distances of 2 and 4
from the origin. The blue region below is a rough sketch of the region:

(2) Evaluate the integral
∫ 1

0

∫√1−x2

0

∫√2−x2−y2√
x2+y2

xydzdydx.

The presence of bounds for z of the form z =
√
x2 + y2 (a cone with tip at the origin) and

sz =
√

2− x2 − y2 (the top half of a spher of radius
√

2 centered at the origin indicate that spherical
coordinates are a good choice for evaluating this triple integral.

The bound z =
√
x2 + y2 corresponds to the surface ρ cosφ = ρ sinφ (and z ≥ 0) in spherical

coordinates; this means that this surface is the surface φ = π
4 . Seeing that our region contains points

on the positive z-axis from (0, 0, 0) to (0, 0,
√

2), we see that our lower bound for φ should be φ = 0.

The bound z =
√

2− x2 − y2 corresponds to the top half of the surface ρ =
√

2 in spherical
coordinates; since our region contains the origin and all points between it and the surface of this
sphere, we see that our lower bound for ρ should be ρ = 0.

The bounds in x and y correspond to the quarter of the circle of radius 1 centered at the origin
located in the first quadrant. At φ = π

4 and ρ =
√

2, which gives the furthest distance from the
1
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positive z-axis of our region, we see that
√
x2 + y2 = ρ sinφ = 1, so the radius of 1 gives no new

information. The fact that we only wiork with the portion over the first quadrant in the xy-plane,
however, tell us that our bounds for θ will be from θ = 0 to θ = π

2 . We set up our triple integral,
then, since the bounds are constants and the integrand factors as a product of functions of θ, φ, and
ρ, can split the triple integral into a product of three single integrals:

∫ 1

0

∫ √1−x2

0

∫ √2−x2−y2

√
x2+y2

xydzdydx =

∫ π/2

0

∫ π/4

0

∫ √2

0

ρ sinφ cos θ · ρ sinφ sin θ · ρ2 sinφdρdφdθ

=

∫ π/4

0

cos θ sin θdθ ·
∫ π/4

0

sin3 φdφ ·
∫ √2

0

ρ4dρ.

We make the (single-variable) substitutions u = sin θ, du = cos θdθ, v = cosφ, dv = − sinφdφ, so
that sin3 φdφ = (1− cos2 φ) sinφdφ = −(1− v2)dv, and continue computing:

∫ 1

0

∫ √1−x2

0

∫ √2−x2−y2

√
x2+y2

xydzdydx =

∫ 1

0

udu ·
∫ √2/2

1

−(1− v2)dv ·
(
ρ5

5

∣∣∣√2

0

)
=

(
u2

2

∣∣∣1
0

)
·
(
v − v3

3

∣∣∣1√
2/2

)
· 4
√

2

5

=
1

2
·
(

2

3
− 1√

2

(
1− 1

6

))
· 4
√

2

5

=
4
√

2− 5

15
.

(3) Evaluate
∫∫∫

B
(x2 + y2 + z2)2dV , where B is the ball with center the origin and radius 5.

Since we are integrating over a ball centered at the origin, spherical coordinates are a good
choice for evaluating this triple integral. Converting the integrand into spherical coordinates, we are
integrating ρ4, so the integrand is also simple in spherical coordinates. We set up our triple integral,
then, since the bounds are constants and the integrand factors as a product of functions of θ, φ, and
ρ, can split the triple integral into a product of three single integrals:∫∫∫

B

(x2 + y2 + z2)dV =

∫ 2π

0

∫ π

0

∫ 5

0

ρ4 · ρ2 sinφdρdφdθ

=

∫ 2π

0

dθ

∫ π

0

sinφdφ

∫ 5

0

ρ6dρ

= 2π ·
(
−− cosφ

∣∣∣π
0

)
·
(
ρ7

7

∣∣∣5
0

)
= 2π · 2 · 57

7
=

4π · 57

7
.

(4) Consider the solid region E bounded by the xy-plane and the paraboloid z = 16− x2 − y2. What is
the average height of a point in E above the xy-plane?

We note that the average value of a function f(x, y, z) over a region E is given by 1
Vol(E)

∫∫∫
E
f(x, y, z)dV ,

where Vol(E) denotes the volume of E. The height above the xy-plane of a point (x, y, z) is given
by the function f(x, z, y) = z, and we can find the volume of E by doing

∫∫∫
E

1dV .
We compute these integrals by switching to cylindrical coordinates, which work nicely for this

surface since there’s rotational symmetry in x and y but not z. We note that the region in the
xy-plane lying below the region E is the disk x2 + y2 ≤ 16, and that 16 − x2 − y2 = 16 − r2. We
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have ∫∫∫
E

1dV =

∫ 2π

0

∫ 4

0

∫ 16−r2

0

rdzdrdθ

=

∫ 2π

0

dθ

∫ 4

0

r

∫ 16−r2

0

dzdr

= 2π

∫ 4

0

r(16− r2)dr

= 2π

(
8r2 − r4

4

)∣∣4
0

= 128π

and ∫∫∫
E

zdV =

∫ 2π

0

∫ 4

0

∫ 16−r2

0

zrdzdrdθ

=

∫ 2π

0

dθ

∫ 4

0

r

∫ 16−r2

0

zdzdr

= 2π

∫ 4

0

r

(
z2

2

)∣∣16−r2
0

dr

= π

∫ 4

0

(16− r2)2rdr

= −π
∫ 0

16

u2

2
du setting u = 16− r2, du = −2rdr

= π
1

2

1

3
u3
∣∣16
0

=
2048π

3
.

Dividing this by the volume of E calculated above, we see that the average height is
16

3
.

(5) Using a triple integral, find the volume of the portion of the sphere of radius 2 centered at the origin

lying between the cones z =
√
x2 + y2 and z =

√
3x2 + 3y2 and above the xy-plane.

The cone z =
√

3x2 + 3y2 makes an angle of φ = π
6 with the positive z-axis; one could see

this either by drawing a cross-section of the situation or by noting that in spherical coordinates,

z =
√

3x2 + 3y2 is the surface ρ cosφ =
√

3ρ sinφ, so that along this cone φ = tan−1
(

1√
3

)
= π

6 .

The cone z =
√
x2 + y2 makes an angle of φ = π

4 with the positive z-axis, as we’ve seen before (and
could verify either geometrically or with a purely trigonometric argument as above). The volume
of a region E in three dimensional space is given by

∫∫∫
E
dV , so switching to spherical coordinates

(noting that the angle θ is free to range from 0 to 2π and the fact that we’re working in the sphere
of radius 2 centered at the origin tells us that 0 ≤ ρ ≤ 2 are our bounds on ρ), we have a volume of∫ 2π

0

∫ π/4

π/6

∫ 2

0

ρ2 sinφdρdφdθ =

∫ 2π

0

dθ

∫ π/4

π/6

sinφdφ

∫ 2

0

ρ2dρ

= 2π
(
− cosφ

∣∣π/4
π/6

)(ρ3
3

)2

0

=
8

3
π(
√

3−
√

2) .
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(6) Using a triple integral, find the volume of the region lying above the cone z =
√
x2 + y2 and below

the surface z =
√

4− x2 − y2.

The volume of a region E in three dimensional space is given by
∫∫∫

E
dV . The presence of the

surface z =
√

4− x2 − y2, which is the top hemisphere of the sphere x2 + y2 + z2 = 4, and the
cone z = x2 + y2, suggests that spherical polar coordinates might be the easiest approach to this

problem. The region above the cone z =
√
x2 + y2 corresponds to the region 0 ≤ φ ≤ π

4 , the region

underneath the hemisphere z =
√

4− x2 − y2 corresponds to 0 ≤ ρ ≤ 2, and the situation we are in
is rotationally symmetric about the z-axis, so θ is ranging from 0 to 2π. Our volume is thus∫ 2π

0

∫ π/4

0

∫ 2

0

ρ2 sinφdρdφdθ =

∫ 2π

0

dθ

∫ π/4

0

sinφdφ

∫ 2

0

ρ2dρ

= 2π
(
− cosφ

∣∣π/4
0

)(ρ3
3

∣∣2
0

)
=

8

3
π(2−

√
2) .

(7) What would an analogue of spherical polar coordinates for four-dimensional space look like? What
would be the “hypervolume element” (i.e. the dV = dxdydzdw) be for spherical polar coordinates
in four dimensions?

We would want three angle variables and one length variable ρ, with ρ being the distance from
the origin still. Let’s call our three angle variables θ, φ, and ψ, with the new angle variable ψ
representing the angle from the positive w-axis. We can approach defining these “hyperspherical
polar coordinates” by building off of spherical polar coordinates for 3D much as we built spherical
polar coordinates for 3D off of our 2D polar coordinate system.

At each point (x, y, z, w), ρ cosψ will give the length of the “shadow” of the segment from the
origin to (x, y, z, w) into the xyz-space; i.e. it will give x2 + y2 + z2. Once we’re in xyz-space, we
can use the usual spherical polar coordinates. In this new system, we have

x = ρ sinψ sinφ cos θ

y = ρ sinψ sinφ sin θ

z = ρ sinψ cosφ

w − ρ cosψ.

Drawing the small 4D spherical shells this coordinate system divides space into, we see that the
lengths of the sides are dρ, ρdψ, ρ sinψdφ, and ρ sinψ sinφdθ, so that dV = ρ3 sin2 ψ sinφ.


