MATH 53 DISCUSSION SECTION PROBLEMS - 3/21/23

1. Triple integrals

(1) True/false practice:
(a) There is no way to interpret any triple integral using only three-dimensional geometry.
(2) (textbook 15.6.9) Evaluate the triple integral $\iiint_{E} y d V$, where $E=\{(x, y, z) \mid 0 \leq x \leq 3,0 \leq y \leq$ $x, x-y \leq z \leq x+y\}$.
(3) (textbook 15.6.21) Use a triple integral to find the volume of the solid enclosed by the cylinder $y=x^{2}$ and the planes $z=0$ and $y+z=1$.
(4) (textbook 15.6.36) Write five other iterated integrals equal to $\int_{0}^{1} \int_{y}^{1} \int_{0}^{z} f(x, y, z) d x d z d y$.
(5) (textbook 15.6.53) Find the average value of the function $f(x, y, z)=x y z$ over the cube with side length $L>0$ lying in the first octant with one vertex at the origin and three edges along the positive $x-, y-$, and z-axes.

2. Triple integrals in cylindrical coordinates

(6) True/false practice:
(a) When we defined cylindrical coordinates, the choice of the $x y$-plane as the plane we expressed in polar coordinates was arbitrary; we could also have set up a polar coordinate system (r, θ, y), with (r, θ) describing the $x z$-plane in polar coordinates.
(7) (textbook 15.7.29) Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} x z d z d x d y$ by changing to cylindrical coordinates.
(8) (textbook 15.7.21) Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=$ 1 , above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
(9) (textbook 15.7.27) Find the mass and center of mass of the solid S bounded by the paraboloid $z=4 x^{2}+4 y^{2}$ and the plane $z=a, a>0$ if S has a constant density K.

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

