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1. Directional derivatives and the gradient vector

(1) (a) We have
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(b) We evaluate ∇f at (x, y) = (x0, y0) and dot with u:
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(c) In polar coordinates, the function is f(r, θ) = r2θ, which has fr = 2rθ and fθ = r2. Imagine we

walk along the circle given by r = r0 =
√
x20 + y20 and θ = t. Then the tangent vector to this

path at (x0, y0) is ru = 〈−y0, x0〉. But we said that the function changes at a rate of fθ = r2

while we walk along this path, so if we slow the path down by a factor of r (so that its tangent

vector is u), then the resulting directional derivative of f will be r2

r = r =
√
x20 + y20 .

(2) The gradient of f is

∇f = 〈fx, fy〉
= 〈3x2y2, 2x3y〉
= 〈3, 2〉 at (1, 1).

If u = 〈a, b〉 is a unit vector, then we have

Duf(1, 1) = 〈3, 2〉 · u = 3a+ 2b.

So we must find all vectors 〈a, b〉 such that a2 + b2 = 1 and 3a + 2b = 2. We can solve this system
of equations by writing b in terms of a and solving a quadratic equation; the answer turns out to be

u = 〈0, 1〉 or

〈
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,− 5

13

〉
.

(3) One approach would be to view the surface as a level surface of the function f(x, y, z) = x4+2x2y2+
y4 − 2x2 − 2y2 + z4, and calculate ∇f . The tangent plane to the surface would then be the plane
which passes through a given point and is orthogonal to ∇f . But a shortcut is to notice that the
function can be rewritten in cylindrical coordinates as

f = (x2 + y2)2 − 2(x2 + y2) + z4 = r4 − 2r2 + z4,

which does not depend on θ. Then the tangent plane is horizontal if and only if the tangent line of
the curve g(r, z) = r4 − 2r2 + z4 = 4 is horizontal in the (r, z)-plane. For this, we take ∇g:

∇g = 〈4r3 − 4r, 4z3〉.

In order for the tangent line to be horizontal, ∇g must be vertical, meaning that its first coordinate
is 0 and its second coordinate is nonzero. This happens when r = 0 or 1 (or −1, if we let r be
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negative). So the tangent planes to the original surface are horizontal at points where x = y = 0 or
x2 + y2 = 1.

(4) One possible issue is that we might overshoot the minimum when we take a step towards it. This
problem can be fixed by taking many shorter steps, e.g. stepping from (x0, y0) to (x1, y1) =
〈x0, y0〉 − 0.01∇f .

Another possible issue is that we might approach a local minimum that isn’t a global minimum.
Taking shorter steps will only make this problem worse (it’s harder to “escape” a local minimum
with short steps), but we can try to fix this problem by trying many different starting points, in the
hopes that at least one of them will approach the absolute minimum. (You can think of the starting
points as being like raindrops: they land in many different places and all run downhill, and some of
them will get stuck in lakes, but others will make it out to the sea.)

2. Maxima and minima of functions of two variables

(5) (a) False: this set is not closed. If “<” were replaced by “≤”, then the set would be closed and the
statement would be true.

(b) True. It’s an annulus consisting of a circle of radius 2 with a circle of radius 1 removed, but
including both the inner and outer boundaries. So it’s contained in a finite disk, and it contains
all its boundary points.

(6) We start by calculating all the first and second partial derivatives of f :

fx = 1− 2xy + y2,

fy = −1− x2 + 2xy,

fxx = −2y,

fxy = −2x+ 2y,

fyy = 2x.

A point (x, y) is a critical point of f if fx = fy = 0. If this happens, then

fx + fy = y2 − x2 = 0,

so we must have y = x or y = −x. On the line y = x, fx simplifies to 1− x2, so x = y = ±1 are the
only critical points here. On the line y = −x, fx simplifies to 1 + 3x2, which is never 0. So the only
critical points are (1, 1) and (−1,−1).

At (1, 1), we have

fxxfyy − f2xy = (−2)(2)− 02 = −4 < 0,

so the point is a saddle point. At (−1,−1), we have

fxxfyy − f2xy = (2)(−2)− 02 = −4 < 0,

so this is also a saddle point.
(7) We first calculate the partial derivatives of f , in order to find the critical points of f on the interior

of D:

fx = 2x+ 2xy = 2x(1 + y),

fy = 2y + x2.

In order for fx to equal 0, we must have either x = 0 or y = −1—but y = −1 can’t happen in the
interior of D (only on the boundary). So in order to find a critical point inside of D, we need x = 0,
and also y = 0 because fy = 2y + 0 = 0. Thus the only critical point inside of D is (0, 0), where
f(0, 0) = 4. We can check that this point is a local minimum from the second derivative test,1 but
this isn’t actually necessary for the problem—we just need to know that (0, 0) is the only interior
point which has a chance of being a (local or global) minimum or maximum.

1It’s either a local minimum or a local maximum because fxxfyy − f2
xy = 2 · 2− 02 = 4 > 0, and we can distinguish between

local minima and maxima by looking at either fxx or fyy individually.
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Next, we look at the boundary of D, which consists of the four line segments given by

x = ±1,−1 ≤ y ≤ 1,

y = ±1,−1 ≤ x ≤ 1.

On the lines x = 1 and x = −1, the function is given by

f(±1, y) = y2 + y + 5 = (y + 1/2)2 +
19

4
,

which has minimum value 19
4 = 4.75 at y = −1/2, and which has maximum value 7 at the endpoint

y = 1. On the line y = 1, the function is given by

f(x, 1) = 2x2 + 5,

which has minimum value 5 at x = 0 and maximum value 7 at the endpoints x = ±1. Finally, on the
line y = −1, the function is constant, given by f(x,−1) = 5. So in summary, the smallest value we
found was f(0, 0) = 4 and the largest was f(1, 1) = f(−1, 1) = 7, so these are the absolute minimum
and maximum values of f on D.

(8) The simplest way to write the second derivatives test is to say that f has a local minimum or maxi-
mum at a given point if det(∇2f) > 0 and a saddle point if det(∇2f) < 0. (The test is inconclusive
if det(∇2f) = 0.) But this doesn’t generalize well to higher dimensions. A better description, which
follows pretty much directly from the given formula for the second directional derivative, is this: f
has a local minimum if the matrix ∇2f is positive-definite (meaning that u(∇2f)uT is positive for
all vectors u 6= 0), a local maximum if it is negative-definite (u(∇2f)uT is negative for u 6= 0), and
a saddle point if it is indefinite (u(∇2f)uT is sometimes positive and sometimes negative). (The
test is inconclusive if the matrix is semidefinite, meaning that the expression is sometimes zero but
never positive or never negative.)

How this generalizes to higher dimensions: in any number of dimensions, the matrix ∇2f of second
partial derivatives is a symmetric matrix by Clairaut’s theorem. Then the spectral theorem tells us
that ∇2f can be diagonalized. Diagonalizing this matrix corresponds to changing coordinates in Rn
to force ∇2f to be a diagonal matrix; that is, to force all mixed partial derivatives of f to be zero.
In this coordinate system, f may be concave up or down in each coordinate direction, but there will
be no special second-order effects involving interactions between two different coordinate directions.
Then it’s easy to tell whether the given point is a local maximum or local minimum. For example, if

fxx, fyy, fzz > 0,

then the point is a local minimum, because f increases in both directions as we change any of the
coordinates. Similarly, if

fxx, fyy, fzz < 0,

then the point is a local maximum. If some of the second partial derivatives are positive and others
are negative, then the point is some kind of higher-dimensional analogue of a saddle point.

How this relates to the determinant in the two-variable case: when we diagonalized the matrix
∇2f , its determinant didn’t change. In the modified coordinate system, this determinant is just

det

(
fxx 0
0 fyy

)
= fxxfyy,

since we forced fxy to be 0. Thus the determinant tells whether fxx and fyy (the eigenvalues of the
matrix!) have the same sign or opposite signs. But what we really care about is whether they’re
both positive or both negative (or neither). In higher dimensions, the determinant isn’t enough to
detect this, because for example the determinant offxx 0 0

0 fyy 0
0 0 fzz


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is positive if either none or exactly two of fxx, fyy, fzz are negative, and negative if one or all of them
are negative. (Assuming that none of them are zero.)


