MATH 53 DISCUSSION SECTION PROBLEMS - 2/9/23

1. Vector-valued functions: geometric aspects
(1) (textbook 13.1.29) Find three different surfaces that contain the curve $\mathbf{r}(t)=2 t \mathbf{i}+e^{t} \mathbf{j}+e^{2 t} \mathbf{k}$. Sketch this curve.
(2) (textbook 13.1.43) Find a vector function representing the curve of intersection of the cone $z=$ $\sqrt{x^{2}+y^{2}}$ and the plane $z=1+y$.

2. Arc length and curvature

(3) True/False practice:
(a) If $\mathbf{r}(s)$ is a smooth vector function parametrized by arc length, then we know $\left|\mathbf{r}^{\prime}(s)\right|$ at any value of s even without knowing anything else about $\mathbf{r}(s)$.
(b) We defined curvature as $\frac{d \mathbf{T}}{d s}$, where s is arc length, purely for our convenience with computations and for no other reason.
(4) (textbook 13.3.5) Find the length of the curve $\mathbf{r}(t)=\left\langle 1, t^{2}, t^{3}\right\rangle$ between $(1,0,0)$ and $(1,1,1)$.
(5) Reparametrize the curve $\mathbf{r}(t)=\langle 3 t, 4 t, 12 t\rangle$ in terms of arc length from the point $(0,0,0)$.
(6) (textbook 13.3.17) Find the unit tangent vector to $\mathbf{r}(t)=\langle t, 3 \cos t, 3 \sin t\rangle$ and use the formula $\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}$ to find the curvature of the curve.

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left(^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

