MATH 53 DISCUSSION SECTION ANSWERS - 2/9/23

1. Vector-valued functions: geometric aspects

(1) Many solutions are possible. For example, the curve lies on the surfaces defined by $y=e^{x / 2}, z=e^{x}$, and $z=y^{2}$. This should help sketch the curve (which I won't do here): the curve's projections onto the $x y$-, $x z$-, and $y z$-planes look respectively like two exponential functions and a parabola.
(2) Given that $z=\sqrt{x^{2}+y^{2}}=1+y$, we have

$$
z^{2}=x^{2}+y^{2}=(1+y)^{2}=1+2 y+y^{2}
$$

so $x^{2}=1+2 y$ and therefore $y=\frac{x^{2}-1}{2}$. Thus we can parametrize the curve by taking $x=t, y=\frac{t^{2}-1}{2}$, and $z=1+y=\frac{t^{2}+1}{2}$. In other words, the curve is given by the vector function

$$
\mathrm{r}(t)=\left\langle t, \frac{t^{2}-1}{2}, \frac{t^{2}+1}{2}\right\rangle
$$

2. Arc length and curvature

(3) (a) True: parametrizing a curve by arc length means that $\left|\mathbf{r}^{\prime}(s)\right|=1$.
(b) False: curvature has geometric meaning (i.e. how quickly a curve changes direction) only when it's defined in terms of arc length. If we gave the same definition but with $d t$ in the denominator (for some non-arc length parametrization), then the curvature would depend on our choice of parametrization.
(4) Since this is arc length from $t=0$ to $t=1$, this is given by the integral:

$$
\begin{aligned}
\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t & =\int_{0}^{1}\left|\left\langle 0,2 t, 3 t^{2}\right\rangle\right| d t \\
& =\int_{0}^{1} \sqrt{4 t^{2}+9 t^{4}} d t \\
& =\int_{0}^{1} t \sqrt{4+9 t^{2}} d t
\end{aligned}
$$

To integrate this, we use the substitution $u=4+9 t^{2}, d u=18 t d t$:

$$
\begin{aligned}
& =\int_{4}^{13} \sqrt{u} \frac{d u}{18} \\
& =\frac{1}{18}\left[\frac{2 u^{3 / 2}}{3}\right]_{4}^{13} \\
& =\frac{1}{18} \cdot \frac{2}{3}\left(13^{3 / 2}-4^{3 / 2}\right) \\
& =\frac{13 \sqrt{13}-8}{27} \approx 1.44
\end{aligned}
$$

As a sanity check, the straight-line distance between the points $(1,0,0)$ and $(1,1,1)$ is $\sqrt{2} \approx 1.414$, and it makes sense for the distance along the curve to be slightly larger than this.
(5) The derivative of $\mathbf{r}(t)$ is $\langle 3,4,12\rangle$ at all t, and this has magnitude $\sqrt{3^{2}+4^{2}+12^{2}}=13$. So the arc length function (starting at the origin) is $s(t)=\int_{0}^{t} 13 d t=13 t$, and the curve will be parametrized by arc length if we replace t by $s / 13$:

$$
\mathbf{r}(s)=\left\langle\frac{3 s}{13}, \frac{4 s}{13}, \frac{12 s}{13}\right\rangle
$$

(6) We first calculate the derivative and its magnitude:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle 1,-3 \sin t, 3 \cos t\rangle, \text { so } \\
\left|\mathbf{r}^{\prime}(t)\right| & =\sqrt{1^{2}+(-3 \sin t)^{2}+(3 \cos t)^{2}} \\
& =\sqrt{1+9\left(\sin ^{2} t+\cos ^{2} t\right)}=\sqrt{10}
\end{aligned}
$$

Therefore the unit tangent vector is

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\sqrt{10}}=\left\langle\frac{1}{\sqrt{10}}, \frac{-3 \sin t}{\sqrt{10}}, \frac{3 \cos t}{\sqrt{10}}\right\rangle
$$

and the curvature is

$$
\begin{aligned}
\kappa(t) & =\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|} \\
& =\frac{\left|\left\langle 0, \frac{-3 \cos t}{\sqrt{10}}, \frac{-3 \sin t}{\sqrt{10}}\right\rangle\right|}{\sqrt{10}} \\
& =\frac{|\langle 0,-3 \cos t,-3 \sin t\rangle|}{\sqrt{10} \cdot \sqrt{10}} \\
& =\frac{3}{10} .
\end{aligned}
$$

