MATH 53 DISCUSSION SECTION PROBLEMS - 2/7/23

1. Lines and planes in 3D space

(1) True/false practice:
(a) Two distinct lines in 3D space are either parallel or intersecting.
(b) Three planes may all intersect in a point or not at all, but they can't all intersect in a line.
(2) (textbook 12.5.71) Find the distance from the point $(1,-2,4)$ to the plane $3 x+2 y+6 z=5$.
(3) (textbook 12.5.9) Find parametric equations and symmetric equations for the line through the points $(-8,1,4)$ and $(3,-2,4)$.
(4) (textbook 12.5.29) Find an equation of the plane through the point $\left(1, \frac{1}{2}, \frac{1}{3}\right)$ and parallel to the plane $x+y+z=0$.
(5) (textbook 12.5.33) Find an equation of the plane through the points $(2,1,2),(3,-8,6)$, and $(-2,-3,1)$.
(6) (textbook 12.5.46) Find the point of intersection of the line $x=t-1, y=1+2 t, z=3-t$ and the plane $3 x-y+2 z=5$.
(7) (textbook 12.5.29) Are the planes $x+4 y-3 z=1$ and $-3 x+6 y+7 z=0$ parallel, perpendicular, or neither? If they are neither, find the angle between them.
(8) $\left(\left(^{*}\right)\right.$, compare to math 54) How might we define the equation of a two-dimensional plane in 4-dimensional space with a vector equation? With symmetric equations? A line in 4D space? A general m-dimensional flat object in n dimensional space? How many symmetric equations do we need?

2. Vector-valued functions and space curves

(9) True/False practice:
(a) Given a vector function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, its domain is the union of the domains of its three coordinate functions f, g, h.
(b) If we have two curves $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ which intersect at a point $\left(x_{0}, y_{0}, z_{0}\right)$ where neither $\mathbf{r}_{1}^{\prime}(t)$ nor $\mathbf{r}_{2}^{\prime}(t)$ are the zero vector, we can meaningfully define a notion of "the angle these two curves intersect at."
(c) When we think about vector-valued functions as representing particle motion, it's important to remember the parametrization we're using.
(10) (textbook 13.2.9) Find the derivative of $\mathbf{r}(t)=\left\langle\sqrt{t-2}, 3, \frac{1}{t^{2}}\right\rangle$.
(11) (textbook 13.2.17) Find the unit tangent vector $\mathbf{T}(t)$ to $\mathbf{r}(t)=\left\langle t^{2}-2 t, 1+3 t, \frac{1}{3} t^{3}+\frac{1}{2} t^{2}\right\rangle$ at $t=2$.
(12) (textbook 13.2.37) Evaluate

$$
\int_{0}^{1}\left(\frac{1}{t+1} \mathbf{i}+\frac{1}{t^{2}+1} \mathbf{j}+\frac{t}{t^{2}+1} \mathbf{k}\right) d t
$$

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

