MATH 53 DISCUSSION SECTION PROBLEMS - 2/28/23

1. The multivariable chain rule

(1) True/false practice:
(a) For a function $f(x, y)$ sufficiently nice to satisfy the hypotheses of Clairaut's theorem and differentiable functions $x(t), y(t)$, we can write $\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$ or as $\frac{\partial f}{\partial y} \frac{d x}{d t}+\frac{\partial f}{\partial x} \frac{d y}{d t}$ since we can interchange the order of differentiation as much as we like.
(2) (textbook 14.5.9 If $z=\ln (3 x+2 y), x=s \sin t, y=t \cos s$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
(3) (textbook 14.5.17) Write the chain rule for the situation where $u=f(x, y), x=x(r, s, t), y=$ $y(r, s, t)$, with f, x, y all differentiable functions.
(4) (textbook 14.5.33) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the surface $e^{z}=x y z$.
(5) $\left(\left(^{*}\right)\right.$, textbook 14.5.53) If $z=f(x, y)$, where $x=r \cos \theta$ and $y=r \sin \theta$, show that

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial z}{\partial r} .
$$

(6) $\left(\left(^{* *}\right)\right.$; day 2 of Math 222A) Using the problem above, find a solution to Laplace's equation $u_{x x}+u_{y y}=0$ for u a function from $\mathbb{R}^{2} \backslash\{(0,0)\}$ to \mathbb{R} that is radially symmetric (i.e. depends only on the distance from the origin, not the angle from the positive x-axis).

2. Directional Derivatives and the gradient vector

(7) True/false practice:
(a) Suppose f is a differentiable function of two or more variables. The minimum value of the directional derivative $D_{\mathbf{u}} f(\mathbf{x})$ occurs when \mathbf{u} has the opposite direction as the gradient vector $\nabla f(\mathbf{x})$.
(b) If you look at a contour map of a differentiable function $f(x, y)$ of two variables and take a point $P=(a, b)$ on some level curve $f(x, y)=k$, then $\nabla f(a, b)$ will be parallel to the level curve.
(8) (textbook 14.6.13) Find the directional derivative of $g(s, t)=s \sqrt{t}$ at the point $(2,4)$ in the direction of $2 \mathbf{i}-\mathbf{j}$.
(9) (based on an old quiz question) Find the directional derivative of $f(x, y, z)=x^{2}+y^{3}+z^{4}$ in the direction along the curve $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ at the point $(1,1,1)$.
(10) (textbook 14.6.23) Find the maximum rate of change of $f(x, y)=\sin (x y)$ at the point $(1,0)$ and the direction in which it occurs.
(11) (textbook 14.6.43) Find the equation of the tangent plane to the surface $x y^{2} z^{3}=8$ at the point $(2,2,1)$.
(12) (a bit more abstract) Let $\mathbf{u}=\langle a, b\rangle$, and let $f(x, y)$ be a twice-differentiable function of two variables. What is $D_{\mathbf{u}}\left(D_{\mathbf{u}} f(x, y)\right)$, the second directional derivative of f in the direction of \mathbf{u} ?

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

