MATH 53 DISCUSSION SECTION PROBLEMS - 2/23/23

1. Tangent planes

(1) True/false practice:
(a) If f is a differentiable function of two variables, the vector $\left\langle f_{x}(a, b), f_{y}(a, b), 1\right\rangle$ is orthogonal to the tangent plane to the graph of $z=f(x, y)$ at the point $(a, b, f(a, b))$.
(b) Every continuous function of two variables is differentiable.
(2) (textbook 14.4.11) Why is the function $f(x, y)=1+x \ln (x y-5)$ differentiable at the point $(2,3)$? What is its linearization $L(x, y)$ at that point?
(3) (textbook 14.4.19) Given that f is a differentiable function with $f(2,5)=6, f_{x}(2,5)=1$, and $f_{y}(2,5)=-1$, estimate $f(2.2,4.9)$. Would you necessarily be able to use the same method to get a good estimate of $f(3,6)$?
(4) (textbook 14.4.35) A tin can is 8 cm in diameter, 12 cm high, and .04 cm thick. Estimate the volume of the tin in the can.
(5) (an old exam) Consider the surface $x^{4}+y^{4}+z^{4}=18$.
(a) Find an equation of the plane tangent to the surface at the point $(2,1,1)$.
(b) Give an approximation to $\sqrt[4]{18-(1.01)^{4}-(1.99)^{4}}$ and explain why it is a good approximation.
(6) $\left(^{*}\right.$, textbook 14.4.43) Show that $f(x, y)=x^{2}+y^{2}$ is differentiable by finding values $\epsilon_{1}, \epsilon_{2}$ that go to 0 as $\Delta x, \Delta y$, respectively, go to zero such that $\Delta f=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y$.
(7) (*) Prove that the tangent plane at the point $\left(x_{0}, y_{0}, z_{0}\right)$ on the sphere $x^{2}+y^{2}+z^{2}=1$ has equation $x_{0} x+y_{0} y+z_{0} z=1$ without using calculus.

2. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

