MATH 53 DISCUSSION SECTION ANSWERS - 2/23/23

1. TANGENT PLANES

(1) (a) False: either the first two coordinates or the last coordinate of the given vector should have minus signs.
(b) False: just as in the single-variable case, there are plenty of functions that are continuous but not differentiable at a given point, like $f(x, y)=|x|$ at the origin. There are even functions (which are much harder to write down) which are continuous everywhere but differentiable nowhere.
(2) We calculate that $f_{x}(x, y)=\ln (x y-5)+\frac{x y}{x y-5}$ and $f_{y}(x, y)=\frac{x^{2}}{x y-5}$. These functions are both continuous at $(2,3)$ (since $x y-5 \neq 0$ there), so f is differentiable at $(2,3)$. The linearization is given by

$$
\begin{aligned}
L(x, y) & =f(2,3)+f_{x}(2,3)(x-2)+f_{y}(2,3)(y-3) \\
& =(1+2 \ln 1)+\left(\ln 1+\frac{6}{1}\right)(x-2)+\left(\frac{4}{1}\right)(y-3) \\
& =1+6(x-2)+4(y-3) .
\end{aligned}
$$

(3) We approximate the function with its linearization:

$$
\begin{aligned}
f(2.2,4.9) & \approx L(2.2,4.9)=6+1(2.2-2)-1(4.9-5) \\
& =6+0.2+0.1=6.3
\end{aligned}
$$

We could make a similar approximation at the point $f(3,6)$, but it would be a less reliable approximation since $(3,6)$ is farther away from $(2,5)$.
(4) The volume of a cylinder with diameter x and height y is $f(x, y)=\pi(x / 2)^{2} y$. The tin in the can consists of a cylinder with a smaller inner cylinder removed from it, so its volume is $f(8,12)-$ $f(7.92,11.92)$. To approximate $f(7.92,11.92)$, we note that $f_{x}=\frac{\pi x y}{2}$ and $f_{y}=\pi(x / 2)^{2}$, so the linear approximation gives

$$
\begin{aligned}
f(7.92,11.92) \approx L(7.92,11.92) & =f(8,12)+f_{x}(8,12)(7.92-8)+f_{y}(8,12)(11.92-12) \\
& =f(8,12)+48 \pi(-0.08)+16 \pi(-0.08) \\
& =f(8,12)-5.12 \pi
\end{aligned}
$$

So the volume of the tin is approximately 5.12π cubic centimeters.
(5) (a) Rather than taking partial derivatives of the function $z=\sqrt[4]{18-x^{4}-y^{4}}$, let's use a shortcut. From the equation $x^{4}+y^{4}+z^{4}=18$, take differentials of both sides:

$$
\begin{aligned}
d\left(x^{4}+y^{4}+z^{4}\right) & =d(18) \\
4 x^{3} d x+4 y^{3} d y+4 z^{3} d z & =0 \\
d z & =-\frac{4 x^{3} d x+4 y^{3} d y}{4 z^{3}}
\end{aligned}
$$

At the point $(2,1,1)$, this says

$$
d z=-\frac{32 d x+4 d y}{4}=-8 d x-d y
$$

So the tangent plane is given by

$$
\begin{aligned}
z-1 & =-8(x-2)-(y-1), \text { or } \\
z & =-8 x-y+18
\end{aligned}
$$

(b) Plugging in $x=1.99$ and $y=1.01$, the linear approximation says that

$$
z \approx-8(1.99)-1.01+18=1.07
$$

We expect this to be a good approximation because $(1.99,1.01)$ is very close to $(2,1)$.
(6) Expand the function $x^{2}+y^{2}$ to separate out terms involving $\Delta x=(x-a)$ and $\Delta y=(y-b)$:

$$
\begin{aligned}
x^{2}+y^{2} & =((x-a)+a))^{2}+((y-b)+b)^{2} \\
& =a^{2}+b^{2}+2 a(x-a)+2 b(y-b)+(x-a)^{2}+(y-b)^{2}
\end{aligned}
$$

Then $\Delta f=\left(x^{2}+y^{2}\right)-\left(a^{2}+b^{2}\right)$ has the form

$$
\Delta f=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

where $f_{x}(a, b)=2 a, f_{y}(a, b)=2 b, \epsilon_{1}=\Delta x=x-a$, and $\epsilon_{2}=\Delta y=y-b$. Note that ϵ_{1} goes to 0 as $x \rightarrow a$ and ϵ_{2} goes to 0 as $y \rightarrow b$.
(7) We know from geometry that the tangent plane to any point on a sphere is perpendicular to the axis passing through that point. For the point $\left(x_{0}, y_{0}, z_{0}\right)$, any plane perpendicular to this has the form $x_{0} x+y_{0} y+z+0 z=d$. The only plane of this form passing through (x_{0}, y_{0}, z_{0}) is the one with $d=\left\langle x_{0}, y_{0}, z_{0}\right\rangle \cdot\left\langle x_{0}, y_{0}, z_{0}\right\rangle=1$.

