MATH 53 DISCUSSION SECTION PROBLEMS - 2/21/23

1. Partial derivatives

(1) True/False practice:
(a) If $f_{x y z}$ for $f(x, y, z)=g(x, y)+h(y, z)+k(x, z)$ for some sufficiently nice functions g, h, and k of two variables, we can easily see that $f_{x y z}=0$.
(b) If $u(x, y)$ is a solution of the partial differential equation $u_{x x}+u_{y y}=0$, then for any four real numbers (a, b, c, d), the function $v(x, y)=u(x, y)+a x+b y+c x y+d$ is also a solution of $u_{x x}+u_{y y}=0$.
(2) (textbook 14.3.17) Find the first partial derivatives of $f(x, t)=t^{2} e^{-x}$.
(3) (textbook 14.3.53) Find all the second partial derivatives of $f(x, y)=x^{4} y-2 x^{3} y^{2}$.
(4) (textbook 14.3.71) If $f(x, y, z)=x y^{2} z^{3}+\arcsin (x \sqrt{z})$, find $f_{x y z}$. Hint: there's a way to make this less painful calculation-wise.
(5) (textbook 14.3.79) If f and g are twice-differentiable functions of a single variable, show that the function

$$
u(x, t)=f(x+a t)+g(x-a t)
$$

is a solution of the wave equation $u_{t t}=a^{2} u_{x x}$.
(6) Write down three functions of two variables satisfying Laplace's equation $u_{x x}+u_{y y}=0$ and show that they are solutions.

2. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

