MATH 53 DISCUSSION SECTION PROBLEMS – 2/21/23

1. PARTIAL DERIVATIVES

- (1) True/False practice:
 - (a) If f_{xyz} for f(x, y, z) = g(x, y) + h(y, z) + k(x, z) for some sufficiently nice functions g, h, and k of two variables, we can easily see that $f_{xyz} = 0$.
 - (b) If u(x, y) is a solution of the partial differential equation $u_{xx} + u_{yy} = 0$, then for any four real numbers (a, b, c, d), the function v(x, y) = u(x, y) + ax + by + cxy + d is also a solution of $u_{xx} + u_{yy} = 0$.
- (2) (textbook 14.3.17) Find the first partial derivatives of $f(x,t) = t^2 e^{-x}$.
- (3) (textbook 14.3.53) Find all the second partial derivatives of $f(x, y) = x^4y 2x^3y^2$.
- (4) (textbook 14.3.71) If $f(x, y, z) = xy^2 z^3 + \arcsin(x\sqrt{z})$, find f_{xyz} . Hint: there's a way to make this less painful calculation-wise.
- (5) (textbook 14.3.79) If f and g are twice-differentiable functions of a single variable, show that the function

$$u(x,t) = f(x+at) + g(x-at)$$

is a solution of the wave equation $u_{tt} = a^2 u_{xx}$.

(6) Write down three functions of two variables satisfying Laplace's equation $u_{xx} + u_{yy} = 0$ and show that they are solutions.

2. Notes

Original author: James Rowan.

All problems labeled "textbook" come from Stewart, James, *Multivariable Calculus: Math 53 at UC Berkeley*, 8th Edition, Cengage Learning, 2016.

Problems marked (*) are challenge problems, with problems marked (**) especially challenging problems.