MATH 53 DISCUSSION SECTION ANSWERS - 2/21/23

1. Partial derivatives

(1) (a) True: $f_{x y z}$ is the sum of the corresponding mixed third partial derivatives of $g(x, y), h(y, z)$, and $k(x, z)$. But since each term depends on only two of the variables, we have

$$
g(x, y)_{x y z}=\frac{d}{d x} \frac{d}{d y} \frac{d}{d z}(g(x, y))=\frac{d}{d x} \frac{d}{d y}(0)=0
$$

and similarly for the other two terms, by taking the derivatives in a different order. (This is possible by Clairaut's theorem, assuming that g, h, and k have continuous mixed partial derivatives.)
(b) True: adding $a x+b y+c x y+d$ doesn't affect the value of $u_{x x}+u_{y y}$, since the pure second partial derivatives of $a x+b y+c x y+d$ are both zero.
(2) We have

$$
f_{x}(x, t)=-t^{2} e^{-x}
$$

and

$$
f_{t}(x, t)=2 t e^{-x}
$$

(3) Since

$$
\begin{aligned}
& f_{x}=4 x^{3} y-6 x^{2} y^{2} \text { and } \\
& f_{y}=x^{4}-4 x^{3} y
\end{aligned}
$$

we have

$$
\begin{aligned}
f_{x x} & =12 x^{2} y-12 x y^{2} \\
f_{x y}=f_{y x} & =4 x^{3}-12 x^{2} y, \text { and } \\
f_{y y} & =-4 x^{3} .
\end{aligned}
$$

(4) We first differentiate with respect to y to get rid of the arcsin term:

$$
f_{y}=2 x y z^{3}
$$

Then we differentiate with respect to x and z :

$$
\begin{aligned}
f_{x y} & =2 y z^{3} \\
f_{x y z} & =6 y z^{2}
\end{aligned}
$$

(5) We calculate the pure second partial derivatives of u :

$$
\begin{aligned}
u_{x} & =f^{\prime}(x+a t)+g^{\prime}(x-a t), \text { so } \\
u_{x x} & =f^{\prime \prime}(x+a t)+g^{\prime \prime}(x-a t) ; \\
u_{t} & =a f^{\prime}(x+a t)-a g^{\prime}(x-a t), \text { so } \\
u_{t t} & =a^{2} f^{\prime \prime}(x+a t)+a^{2} g^{\prime \prime}(x-a t) \\
& =a^{2} u_{x x} .
\end{aligned}
$$

(6) Many solutions are possible. For example, if $u(x, y)$ has the form $a x+b y+c x y+d$ for some real numbers a, b, c, d (cf. problem 1b), then

$$
u_{x x}+u_{y y}=0+0=0 .
$$

Two other solutions are $e^{x} \sin (y)$ (cf. Example 9 in the textbook) and $e^{x} \cos (y)$; these functions don't change when differentiated twice with respect to x, but they are negated when we differentiate twice with respect to y.

