MATH 53 DISCUSSION SECTION PROBLEMS - 2/2/23

1. The cross product; geometry with vectors

(1) True/false practice:
(a) The magnitude of the dot product of two vectors is equal to the magnitude of the cross product of those two vectors.
(b) If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors in \mathbb{R}^{3}, the expression

$$
(\mathbf{u} \bullet \mathbf{v}) \times \mathbf{w}
$$

makes sense.
(2) (textbook 12.4.7) Find the cross product of $\left\langle t, 1, \frac{1}{t}\right\rangle$ and $\left\langle t^{2}, t^{2}, 1\right\rangle$. Verify that it is orthogonal to both vectors.
(3) (textbook 12.4.10) Find $\mathbf{k} \times(\mathbf{i}-2 \mathbf{j})$.
(4) (similar to textbook 12.4.44) Find all vectors \mathbf{v} such that $\langle 1,0,1\rangle \times \mathbf{v}=\langle-2,4,2\rangle$. Why are there no vectors \mathbf{v} such that $\langle 1,0,1\rangle \times \mathbf{v}=\langle 2,4,2\rangle$?
(5) (textbook 12.4.36) Find the volume of a parallelepiped with adjacent edges $P Q, P R$, and $P S$, where

$$
P=(3,0,1), \quad Q=(-1,2,5), \quad R=(5,1,-1), \quad S=(0,4,2) .
$$

(6) (textbook 12.4.37) Use the scalar triple product to verify that the vectors $\mathbf{u}=\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}, \mathbf{v}=3 \mathbf{i}-\mathbf{j}$, and $\mathbf{w}=5 \mathbf{i}+9 \mathbf{j}-4 \mathbf{k}$ are coplanar. Why does this method work?
(7) (textbook 12.4.43) If $\mathbf{a} \cdot \mathbf{b}=\sqrt{3}$ and $\mathbf{a} \times \mathbf{b}=\langle 1,2,2\rangle$, find the angle between \mathbf{a} and \mathbf{b}.
(8) (from an old practice exam) Consider the following points in 3-dimensional space:

$$
O=(0,0,0) \quad A=(0,1,1) \quad B=(-2,2,-2) \quad P=(-1,0,1)
$$

Find a point X such that both of the following statements are true
(a) $\overrightarrow{O X}$ is perpendicular to both $\overrightarrow{O A}$ and $\overrightarrow{O B}$, and
(b) The area of a parallelogram with adjacent edges given by $\overrightarrow{O X}$ and $\overrightarrow{O P}$ is 12 .
(9) $\left(^{*}\right)$ Rather than choosing to write the cross product of $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ as

$$
\left|\begin{array}{l}
a_{2} a_{3} \\
b_{2} \\
b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{l}
a_{1} a_{3} \\
b_{1} \\
b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{c}
a_{1} \\
a_{2} \\
b_{1} \\
b_{2}
\end{array}\right| \mathbf{k},
$$

we could write it as

$$
\left|\begin{array}{l}
a_{2} a_{3} \\
b_{2} \\
b_{3}
\end{array}\right| \mathbf{j} \times \mathbf{k}+\left|\begin{array}{c}
a_{1} a_{3} \\
b_{1} \\
b_{3}
\end{array}\right| \mathbf{i} \times \mathbf{k}+\left|\begin{array}{c}
a_{1} a_{2} \\
b_{1} \\
b_{2}
\end{array}\right| \mathbf{i} \times \mathbf{j} .
$$

Let's replace the symbol \times with the symbol \wedge. We now have

$$
\left\langle a_{1}, a_{2}, a_{3}\right\rangle \wedge\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left|\begin{array}{c}
a_{2} a_{3} \\
b_{2} b_{3}
\end{array}\right| \mathbf{j} \wedge \mathbf{k}+\left|\begin{array}{l}
a_{1} a_{3} \\
b_{1} b_{3}
\end{array}\right| \mathbf{i} \wedge \mathbf{k}+\left|\begin{array}{c}
a_{1} a_{2} \\
b_{1} b_{2}
\end{array}\right| \mathbf{i} \wedge \mathbf{j} .
$$

What should $\left\langle a_{1}, a_{2}\right\rangle \wedge\left\langle b_{1}, b_{2}\right\rangle$ be? What about $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle \wedge\left\langle b_{1}, b_{2}, b_{3}, b_{4}\right\rangle$? What about for n-dimensional vectors? How is this new operation \wedge like the cross product? How is it different? (Spoiler alert: this operation might become relevant in a future challenge problem in chapter 16; it appears in a more general framework describing vector-field-like derivatives like the curl.)

2. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left(^{*}\right)$ are challenge problems, with problems marked $\left(^{* *}\right)$ especially challenging problems.

