
MATH 53 DISCUSSION SECTION ANSWERS – 2/2/23

1. The cross product; geometry with vectors

(1) (a) False: the magnitude of the dot product involves a cosine, and the magnitude of the cross
product involves a sine.

(b) False: u • v is a scalar, so it can’t be crossed with anything.
(2) The cross product is:∣∣∣∣ i j k

t 1 1/t

t2 t2 1

∣∣∣∣ = (1 · 1− 1/t · t2)i− (t · 1− 1/t · t2)j + (t · t2 − 1 · t2)k

= (1− t)i + (t3 − t2)k.

The dot products of this with the original vectors are:

t · (1− t) + 1 · 0 + 1/t · (t3 − t2) = (t− t2) + (t2 − t) = 0 and

t2 · (1− t) + t2 · 0 + 1 · (t3 − t2) = (t2 − t3) + (t3 − t2) = 0.

(3) Instead of using the general formula, let’s just expand what we know about cross products of the
standard basis vectors:

k× (i− 2j) = k× i− 2k× j

= j− 2(−i) = 2i + j.

(4) For the first part, let’s calculate 〈1, 0, 1〉 × 〈v1, v2, v3〉:∣∣∣ i j k
1 0 1
v1 v2 v3

∣∣∣ = (0v3 − 1v2)i− (1v3 − 1v1)j + (1v2 − 0v1)k

= −v2i + (v1 − v3)j + v2k.

This equals 〈−2, 4, 2〉 if and only if v2 = 2 and v1−v3 = 4. So any vector of the form 〈c+4, 2, c〉 works.

On the other hand, there is no vector v such that 〈1, 0, 1〉 × v = 〈2, 4, 2〉 because 〈2, 4, 2〉 is not
orthogonal to 〈1, 0, 1〉. (Remember that the cross product of two vectors is always orthogonal to
both of them.) This can also be seen from the equation above, since we can’t simultaneously have
−v2 = 2 and v2 = 2.

(5) This volume is the absolute value of the scalar triple product of the vectors Q−P,R−P, and S−P :∣∣∣−4 2 4
2 1 −2
−3 4 1

∣∣∣ = −4(1 · 1− (−2) · 4)− 2(2 · 1− (−2) · (−3)) + 4(2 · 4− 1 · (−3))

= −4 · 9− 2 · (−4) + 4 · 11

= 16.

(6) The scalar triple product is∣∣∣ 1 5 −2
3 −1 0
5 9 −4

∣∣∣ = 1((−1) · (−4)− 0 · 9)− 5(3 · (−4)− 0 · 5) + (−2)(3 · 9− (−1) · 5)

= 1(4)− 5(−12)− 2(32)

= 4 + 60− 64 = 0,

so the vectors are coplanar. This method works because the scalar triple product calculates the
volume of the parallelepiped spanned by the three vectors, which is 0 if and only if the three vectors
are coplanar.
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(7) We have

a · b = |a||b| cos θ =
√

3

and
|a× b| = |a||b| sin θ = |〈1, 2, 2〉| = 3,

so dividing the second equation by the first gives

tan θ =
3√
3

=
√

3

and thus θ = tan−1(
√

3) = π/3.

(8) First calculate the cross product
−→
OA×

−−→
OB:∣∣∣ i j k

0 1 1
−2 2 −2

∣∣∣ = −4i− 2j + 2k = 〈−4,−2, 2〉.

Let’s call this vector v. This is perpendicular to both
−→
OA and

−−→
OB, so the answer should be a scalar

multiple of it. Now let’s take the cross product of v with
−−→
OP :∣∣∣ i j k

−4 −2 2
−1 0 1

∣∣∣ = −2i + 2j− 2k = 〈−2, 2,−2〉.

So the area of the parallelogram spanned by v and
−−→
OP is

∣∣∣v ×−−→OP ∣∣∣ =
√

12. We want the area to be

12, so we multiply by
√

12; that is, our answer is

X =
√

12(−4,−2, 2) = 2
√

3(−4,−2, 2) = (−8
√

3,−4
√

3, 4
√

3).

(We could have also taken the negative of this.)
(9) We should define

〈a1, a2〉 ∧ 〈b1, b2〉 =
∣∣ a1 a2

b1 b2

∣∣ i ∧ j

and

〈a1, a2, a3, a4〉 ∧ 〈b1, b2, b3, b4〉 =
∣∣ a1 a2

b1 b2

∣∣ i ∧ j +
∣∣ a1 a3

b1 b3

∣∣ i ∧ k +
∣∣ a1 a4

b1 b4

∣∣ i ∧ l

+
∣∣ a2 a3

b2 b3

∣∣ j ∧ k +
∣∣ a2 a4

b2 b4

∣∣ j ∧ l +
∣∣ a3 a4

b3 b4

∣∣k ∧ l.

In general, if ei denotes the i-th standard basis vector in Rn, we define

〈a1, . . . , an〉 ∧ 〈b1, . . . , bn〉 =
∑

1≤i<j≤n

∣∣ ai aj

bi bj

∣∣ ei ∧ ej

=
∑

1≤i<j≤n

(aibj − biaj)ei ∧ ej .

If we declare that the symbol ∧ obeys the antisymmetry rule

v ∧ w = −w ∧ v

for all vectors v,w (and in particular v∧v = −v∧v = 0), then this can be written in an even simpler
form: we define

〈a1, . . . , an〉 ∧ 〈b1, . . . , bn〉 =
∑
i,j

aibj(ei ∧ ej),

where we no longer require that i < j. At this point, it’s not much of a definition at all; we’re just
saying that linear combinations like

〈a1, . . . , an〉 = a1e1 + · · ·+ anen

distribute over the symbol ∧. Of course, we’re hiding all of the real work by not saying what the
symbols v ∧ w actually are, and why ∧ is antisymmetric—that requires some multilinear algebra.

If you’re interested, the symbol ∧ is commonly known as “wedge product” or “exterior product”. It
is similar to the cross product in that they’re both bilinear (i.e. it satisfies the distributivity property
mentioned above) and antisymmetric. There are two main differences: first, the cross product only
makes sense in three dimensions, while the wedge product makes sense in any number of dimensions;
second, the cross product produces ordinary vectors as outputs, while the exterior product produces
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“bivectors” (symbols like v ∧ w) as outputs. If we’re working in Rn, bivector turn out to form a

vector space of dimension n(n−1)
2 , which is usually much larger than n. But if n = 3, then we have

n(n− 1)2 = 3 = n, and in this case we can identify the space of bivectors with the space of vectors
(namely, let i ∧ j, j ∧ k, and k ∧ i correspond to k, i, and j respectively). This can be seen as an
explanation of why the cross product only makes sense in three dimensions.


