MATH 53 REVIEW PROBLEMS - 2/14/23

1. Fall 2013 Auroux midterm 1A

(1) Find the area enclosed by a loop of the curve given by the polar equation $r=\sqrt{\sin 2 \theta}$.
(2) (a) Find the area of the space triangle with vertices $P_{0}=(2,1,0), P_{1}=(1,0,1)$, and $P_{2}=(2,-1,1)$.
(b) Find the equation of the plane containing the three points P_{0}, P_{1}, P_{2}.
(c) Find the intersection of this plane with the line which is parallel to the vector $\bar{V}=\langle 1,1,1\rangle$ and passes through the point $S=(-1,0,0)$.
(3) (a) Let $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ be the position vector of a path. Give a simple intrinsic formula for $d / d t(\mathbf{r} \cdot \mathbf{r})$ in vector notation (not using coordinates).
(b) Show that if \mathbf{r} has constant length, then \mathbf{r} and $\mathbf{v}=\mathbf{r}^{\prime}$ are perpendicular.
(c) Let $\mathbf{a}=\mathbf{r}^{\prime \prime}$ be the acceleration. Still assuming that \mathbf{r} has constant length, and using vector differentiation, express the quantity $\mathbf{r} \cdot \mathbf{a}$ in terms of the velocity vector only.

2. FALL 2014 Agol midterm

(2) Decide if the triangle with vertices

$$
P(0,-3,-4), Q(1,-5,-1), R(5,-6,-3)
$$

is right-angled:
(a) using angles between vectors, and
(b) using distances and the Pythagorean theorem.
(3) Find an equation for the plane that passes through the point $(-2,4,-3)$ and is perpendicular to the planes $-x+3 y-5 z=42$ and $y-2 z=-5$.
(4) Let $\mathbf{r}(t)=\langle\sin t, 2 \cos t\rangle$.
(a) Sketch the plane curve with the given vector equation.
(c) Sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}^{\prime}(t)$ for the value $t=\pi / 4$ (use the same graph as for (a).

3. Notes

Both of these exams are taken from the Files tab of bCourses.
Problem 1 on Agol's midterm is omitted because it's the same as problem 1 on Auroux's midterm.
The other problems on each of these midterms are from later chapters of the textbook, which are not covered on our midterm 1.

