MATH 53 DISCUSSION SECTION PROBLEMS - 1/31/23

1. Vectors and the geometry of space

(1) True/False practice:
(a) It doesn't matter at all how you draw your coordinate axes in 3D.
(b) If \mathbf{v} is a vector, there is no such thing as $-\mathbf{v}$.
(2) (textbook 12.1.15) Find an equation of the sphere that passes through the point $(4,3,-1)$ and has center $(3,8,1)$.
(3) (textbook 12.2.15) Find the sum of the vectors $\langle-1,4\rangle$ and $\langle 6,-2\rangle$ and illustrate geometrically.
(4) (textbook 12.2.30) If a child pulls a sled through the snow on a level path with a force of 50 N exerted at an angle of 38 degrees above the horizontal, find the horizontal and vertical components of the force.
(5) $\left(\left(^{*}\right)\right.$, classical) How could we interpret the space of continuous functions on $[0,1]$ as a vector space?

2. The dot product

(6) True/False practice:
(a) If $\mathbf{v} \cdot \mathbf{w}>0$, then the angle between \mathbf{v} and \mathbf{w} is acute.
(7) (textbook 12.3.9) Find $\mathbf{a} \cdot \mathbf{b}$ if $|\mathbf{a}|=7,|\mathbf{b}|=4$, and the angle between the two vectors is 30 degrees.
(8) (textbook 12.3.28) Find two unit vectors that make an angle of 60 degrees with $\mathbf{v}=\langle 3,4\rangle$.
(9) (textbook 12.3.29) Find the acute angle between the lines $2 x-y=3$ and $3 x+y=7$. Hint: can you find a vector parallel to each of these lines?
(10) (textbook 12.3 .43) Find the scalar and vector projections of $2 \vec{i}+4 \vec{j}-\vec{k}$ onto $3 \vec{i}-3 \vec{j}+\vec{k}$.
(11) $\left(^{* *}\right)$ Consider the set $C([0,1])$ of continuous real-valued functions defined on the unit interval $[0,1]$. Show that the map taking two functions in $C([0,1])$ to real numbers given by $f \bullet g=\int_{0}^{1} f(x) g(x) d x$ satisfies the commutativity, distributivity over addition, and associativity with scalar multiplication properties from class, and that $f \bullet f \geq 0$ for all $f \in C([0,1])$, with $f \bullet f=0$ if and only if f is the constant function equal to 0 . Now use it to define notions of "length" and "angle between" for continuous functions on $[0,1]$. If you've seen Fourier series, is there a connection between this dot product and Fourier coefficients?

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

