MATH 53 DISCUSSION SECTION ANSWERS - 1/31/23

1. Vectors and the geometry of space

(1) (a) False (to the extent that it's even a meaningful statement): by convention, we draw the x, y, and z-axes according to the right-hand rule.
(b) False: $-\mathbf{v}$ is the vector obtained by negating all the coordinates of \mathbf{v}; for example, $-\langle a, b, c\rangle$ is the vector $\langle-a,-b,-c\rangle$.
(2) The distance between these two points is $\sqrt{(4-3)^{2}+(3-8)^{2}+(-1-1)^{2}}=\sqrt{30}$, so the sphere consists of all points whose distance from $(3,8,1)$ is $\sqrt{30}$. This is defined by the equation

$$
\sqrt{(x-3)^{2}+(y-8)^{2}+(z-1)^{2}}=\sqrt{30}
$$

or equivalently

$$
(x-3)^{2}+(y-8)^{2}+(z-1)^{2}=30
$$

(3) The sum is $\langle 5,2\rangle$; this can be illustrated by the parallelogram with vertices at $(0,0),(-1,4),(6,-2)$, and (5,2).
(4) The horizontal component is $50 \cos \left(38^{\circ}\right) \approx 39.4 \mathrm{~N}$ in the direction that the child is walking, and the vertical component is $50 \sin \left(38^{\circ}\right) \approx 30.8 \mathrm{~N}$ upwards.
(5) Treat every continuous function $f:[0,1] \rightarrow \mathbb{R}$ as a vector. Define addition and scalar multiplication of these vectors by the formulas

$$
(f+g)(x)=f(x)+g(x)
$$

and

$$
(c f)(x)=c f(x)
$$

which are both continuous functions (given that f and g are). Then you can check that all of the properties on page 802 of your textbook hold true, where the zero vector is the constant function $f(x)=0$ and $-f$ is the function $(-f)(x)=-f(x)$.

2. The dot product

(6) (a) True: in the equation $\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}$, the left-hand side is positive if and only if the angle is acute, and the right-hand side is positive if and only if the dot product is positive.
(7) We have

$$
\begin{aligned}
|\mathbf{a}||\mathbf{b}| \cos \theta & =\mathbf{a} \cdot \mathbf{b}=7 \cdot 4 \cdot \cos \left(30^{\circ}\right) \\
& =7 \cdot 4 \cdot \frac{\sqrt{3}}{2}=14 \sqrt{3} .
\end{aligned}
$$

(8) If \mathbf{w} is a unit vector which makes an angle of 60° with \mathbf{v}, then this means that

$$
\mathbf{w} \cdot \mathbf{w}=|\mathbf{w}|^{2}=1
$$

and

$$
\mathbf{v} \cdot \mathbf{w}=|\mathbf{v} \| \mathbf{w}| \cos \theta=5 \cos \left(60^{\circ}\right)=\frac{5}{2}
$$

Writing \mathbf{w} in coordinates as $\left\langle w_{1}, w_{2}\right\rangle$, this means that

$$
w_{1}^{2}+w_{2}^{2}=1
$$

and

$$
3 w_{1}+4 w_{2}=\frac{5}{2}
$$

The second equation implies $w_{2}=\frac{5 / 2-3 w_{1}}{4}$. Plugging this into the first equation gives

$$
w_{1}^{2}+\frac{\left(5 / 2-3 w_{1}\right)^{2}}{16}=1
$$

Solving the quadratic equation gives

$$
w_{1}=\frac{3}{10} \pm \frac{2 \sqrt{3}}{5}
$$

and the corresponding values of w_{2} are

$$
w_{2}=\frac{2}{5} \mp \frac{3 \sqrt{3}}{10}
$$

(9) The first line is parallel to the line $2 x-y=0$, which passes through the origin and the point $(1,2)$, so it is parallel to the vector $\langle 1,2\rangle$. The second line is parallel to the line $3 x+y=0$, which passes through the origin and the point $(-1,3)$, so it is parallel to the vector $\langle-1,3\rangle$. Thus the angle between the given lines is equal to the angle θ between the vectors $\langle 1,2\rangle$ and $\langle-1,3\rangle$. We have

$$
\begin{aligned}
\cos \theta & =\frac{\langle 1,2\rangle \cdot\langle-1,3\rangle}{|\langle 1,2\rangle||\langle-1,3\rangle|} \\
& =\frac{-1+6}{\sqrt{5} \sqrt{10}}=\frac{5}{5 \sqrt{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

so $\theta=\cos ^{-1}(1 / \sqrt{2})=\pi / 4$. (Note that if we had flipped the sign on one of our two vectors, the dot product would have been negative, so we would have gotten $\theta=\cos ^{-1}(-1 / \sqrt{2})=3 \pi / 4$. This is the other angle formed by the two given lines; the acute angle is obtained by subtracting it from π.)
(10) Let's call the two vectors $\mathbf{v}=\langle 2,4,-1\rangle$ and $\mathbf{w}=\langle 3,-3,1\rangle$ respectively. The scalar projection of \mathbf{v} onto \mathbf{w} is

$$
\frac{\mathbf{w} \cdot \mathbf{v}}{|\mathbf{w}|}=\frac{-7}{\sqrt{19}}
$$

and the vector projection is

$$
\frac{\mathbf{w} \cdot \mathbf{v}}{|\mathbf{w}|^{2}} \mathbf{w}=\frac{-7}{19}\langle 3,-3,1\rangle .
$$

(11) It is commutative because

$$
f \bullet g=\int_{0}^{1} f(x) g(x) d x=\int_{0}^{1} g(x) f(x) d x=g \bullet f
$$

Our dot product is distributive over addition because

$$
f \cdot(g+h)=\int_{0}^{1} f(x)(g(x)+h(x)) d x=\int_{0}^{1} f(x) g(x) d x+\int_{0}^{1} f(x) h(x) d x=f \cdot g+f \cdot h
$$

Scalar multiplication is associative because

$$
(c f) \bullet g=\int_{0}^{1}(c f(x)) g(x) d x=c \int_{0}^{1} f(x) g(x) d x=c(f \bullet g)
$$

and similarly

$$
f \bullet(c g)=\int_{0}^{1} f(x)(c g(x)) d x=c \int_{0}^{1} f(x) g(x) d x=c(f \bullet g)
$$

The dot product of a function with itself, $f \bullet f$, is always nonnegative because it's the integral of the nonnegative function $f(x)^{2}$; it equals zero if and only if this nonnegative function is identically zero. (Technically this uses the fact that f is continuous.)

Consequently, we can define the length of a vector by

$$
|f|=\sqrt{f \bullet f}
$$

and the angle between two vectors by

$$
\theta=\cos ^{-1}\left(\frac{f \bullet g}{|f||g|}\right)
$$

This is closely related to Fourier coefficients: taking the Fourier series of a function can be thought of as writing it in terms of an orthogonal basis consisting of sine and cosine functions; the Fourier coefficients are the scalar projections onto the individual basis functions.

