
MATH 53 DISCUSSION SECTION ANSWERS – 1/26/23

1. Areas and lengths in polar coordinates

(1) Since we want only the area in the right half of the plane, we integrate from θ = −π/2 to π/2:
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(2) The curve passes through the origin whenever θ is a multiple of π/4, so one loop goes from θ = 0 to
θ = π/4. We use the integral:
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(3) If we graph the two regions, we see that they are two cloverleaf shapes with four lobes each, offset
from each other by a 45-degree rotation. By symmetry, we can find the area between θ = 0 and
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θ = π/8 (where r = sin 2θ is the inner curve), and multiply the area by 16:
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(4) Since dr
dθ = −2 sin θ, the arclength is:∫ π
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Alternatively, this can be done (with more work) by converting the curve into the parametric form
x = 2 cos2 θ, y = 2 sin θ cos θ. We have:
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