MATH 53 DISCUSSION SECTION PROBLEMS - 1/24/23

1. Calculus with parametric curves

(1) True/False practice:
(a) If we have a parametric curve and a time t such that $\frac{d y}{d t}=\frac{d x}{d t}$ at that time t, then at the corresponding point $(x(t), y(t))$, the tangent line to the curve is parallel to the line $y=x$.
(b) The areas inside the parametric curves $x_{1}(t)=\cos t, y_{1}(t)=\sin t, 0 \leq t \leq 2 \pi$ and $x_{2}(t)=$ $\cos (2 t), y_{2}(t)=\sin (2 t), 0 \leq t \leq \pi$ are the same.
(2) (textbook 10.2.9) Find an equation of the tangent line to the parametric curve $x=t^{2}-t$, $y=t^{2}+t+1$ at the point $(0,3)$.
(3) (textbook 10.2.11) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for the parametric curve $x=t^{2}+1, y=t^{2}+t$. For which values of t is the curve concave upward?
(4) (textbook 10.2.27) Find the slope of the tangent line to the trochoid $x=r \theta-d \sin \theta, y=r-d \cos \theta$ in terms of θ. Show that if $d<r$, then the trochoid does not have a vertical tangent.
(5) (textbook 10.2.33) Find the area enclosed by the x-axis and the curve $x=t^{3}+1, y=2 t-t^{2}$.
(6) (textbook 10.2.37) Set up, but do not evaluate, an integral that represents the length of the curve $x=t+e^{-t}, y=t-e^{-t}, 0 \leq t \leq 2$.
(7) $\left(^{*}\right)$ In the written homework we show that the area of the ellipse with Cartesian equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$ by using calculus with parametric curves. Can you derive this formula without using calculus?

2. Polar coordinates

(8) True/False practice:
(a) The points with polar coordinates (r, θ) given by $\left(2, \frac{\pi}{2}\right)$ and $\left(-2, \frac{5 \pi}{2}\right)$ are the same point.
(b) The curves $r=3$ and $r=6 \cos \theta$ are both circles with the same radius.
(9) (textbook 10.3.1a) Plot the point with polar coordinates $(1, \pi / 4)$ and find two other pairs of polar coordinates of this point, one with $r>0$ and one with $r<0$.
(10) (textbook 10.3.9) Sketch the region in the plane consisting of points whose polar coordinates satisfy $r \geq 0, \pi / 4 \leq \theta \leq 3 \pi / 4$.
(11) (textbook 10.3.27) For each of the following curves, decide whether to represent it in polar or Cartesian coordinates (pick whichever you think is easiest), and give a representation in that coordinate system:
(a) A line through the origin making an angle of $\frac{\pi}{6}$ with the positive x-axis.
(b) A vertical line through the point $(3,3)$.

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

