MATH 53 DISCUSSION SECTION ANSWERS - 1/24/23

1. Calculus with parametric curves

(1) (a) This is true if $\frac{d y}{d t}=\frac{d x}{d t}$ and they are nonzero. (Reason: in this case we have $\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}=1$.) But it can be false when $\frac{d y}{d t}=\frac{d x}{d t}=0$. For example, for the curve given by $x=t^{3}, y=0$, both derivatives are 0 at $t=0$, but the curve is horizontal.
(b) True: these are just two different ways to parametrize the unit circle (with area π).
(2) The curve passes through $(0,3)$ at $t=1$. At this time we have $\frac{d x}{d t}=2 t-1=1$ and $\frac{d y}{d t}=2 t+1=3$, so $\frac{d y}{d x}=\frac{3}{1}=3$. The line with slope 3 passing through $(0,3)$ is $y=3 x+3$.
(3) We have $\frac{d x}{d t}=2 t$ and $\frac{d y}{d t}=2 t+1$, so $\frac{d y}{d x}=\frac{2 t+1}{2 t}=1+\frac{1}{2 t}$. For the second derivative, we have:

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} \\
& =\frac{-t^{-2} / 2}{2 t}=-\frac{1}{4 t^{3}}
\end{aligned}
$$

This is positive (i.e. the curve is concave up) when $t<0$.
(4) We have

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{d \sin \theta}{r-d \cos \theta}
\end{aligned}
$$

A vertical tangent line is only possible if the denominator is 0 for some value of θ, but this is impossible if $d<r$, because $r>d \geq d \cos \theta$.
(5) The curve intersects the x-axis at $t=0$ and $t=2$, at the points $(1,0)$ and $(9,0)$ respectively, so we use the integral:

$$
\begin{aligned}
\int_{0}^{2} y \frac{d x}{d t} d t & =\int_{0}^{2}\left(2 t-t^{2}\right) \cdot 3 t^{2} d t \\
& =\int_{0}^{2}\left(6 t^{3}-3 t^{4}\right) d t \\
& =\left[3 t^{4} / 2-3 t^{5} / 5\right]_{0}^{2} \\
& =24-96 / 5=24 / 5
\end{aligned}
$$

(6)

$$
\begin{aligned}
\int_{0}^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t & =\int_{0}^{2} \sqrt{\left(1-e^{-t}\right)^{2}+\left(1+e^{-t}\right)^{2}} d t \\
& =\int_{0}^{2} \sqrt{2+2 e^{-2 t}} d t
\end{aligned}
$$

(7) $\left(^{*}\right.$) This ellipse can be obtained by stretching the unit circle $x^{2}+y^{2}=1$ by a factor of a horizontally and a factor of b vertically. This multiplies the area (π) of the unit circle by a factor of $a b$.

2. Polar coordinates

(8) (a) False: $\left(2, \frac{\pi}{2}\right)$ and $\left(2, \frac{5 \pi}{2}\right)$ are the same, and $\left(-2, \frac{5 \pi}{2}\right)$ is opposite them.
(b) True: the equation $r=6 \cos \theta$ can be converted to Cartesian coordinates as $\left(6 \cos ^{2} \theta, 6 \sin \theta \cos \theta\right)$, which is equivalent by trig identities to $(3 \cos 2 \theta+3,3 \sin 2 \theta)$; that is, a circle of radius 3 centered on $(3,0)$.
(9) This point also has polar coordinates $(1,9 \pi / 4)$ and $(-1,5 \pi / 4)$; it is one unit northeast of the origin.
(10) This region is the quadrant of the plane which lies above the two diagonal lines through the origin; it's equivalent to the region defined by $y \geq|x|$.
(11) (a) In polar coordinates, this is $\theta=\pi / 6$. In Cartesian coordinates, it's $y=\tan (\pi / 6) \cdot x$, where $\tan (\pi / 6)=1 / \sqrt{3}$.
(b) In Cartesian coordinates, this is $x=3$.

