MATH 53 DISCUSSION SECTION PROBLEMS - 1/19/23

1. Parametric equations

(1) (a) True: you can trace the curve out at any (constant or varying) speed you like.
(b) False: The second is a parabola, and the first is only part of a parabola (because $-1 \leq \sin t \leq 1$ for all t).
(2) We can solve for x as a function of y by noticing that $t=y-2$, so

$$
x=(y-2)^{2}-3=\left(y^{2}-4 y+4\right)-3=y^{2}-4 y+1 .
$$

The inequality $-3 \leq t \leq 3$ is equivalent to $-1 \leq y \leq 5$, so we plot the function above for these values of y.
Picture to be added later.
(3) Since $\csc t=\frac{1}{\sin t}$, this is (part of) the hyperbola $y=1 / x$. Which part is it? Since $0<t<\pi / 2$, we have $0<\sin t<1$, so it's the part between $x=0$ and $x=1$, traced from the vertical asymptote at $x=0, y \rightarrow+\infty$ to the point $(1,1)$.
(4) Some (not the only) possible answers:
(a) $x=2 \cos t, y=1-2 \sin t, 0 \leq t \leq 2 \pi$
(b) $x=2 \cos t, y=1+2 \sin t, 0 \leq t \leq 6 \pi$
(c) $x=2 \cos t, y=1+2 \sin t, \pi / 2 \leq t \leq 3 \pi / 2$
(5) (a) V: it's the only one where x and y are always nonnegative.
(b) I: y starts at 0 and only gets positive; x is briefly negative and then positive
(c) $x=\sin (2 t), y=\sin (t+\sin (2 t)$

II: both x and y oscillate between -1 and 1 , but not as regularly as in VI.
(d) VI: this is one of the Lissajous figures described in the textbook; both x and y oscillate between -1 and 1.
(e) IV: it roughly follows the parabola $x=t, y=t^{2}$, but with squiggles around it created by the sine and cosine.
(f) III: when $t \approx 0$ it looks like the circle $\left(\frac{\sin 2 t}{4}, \frac{\cos 2 t}{4}\right)$, but as t becomes large, the denominator does too, and the curve spirals inwards towards the origin.
(6) Omitted.

