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1. INTRODUCTION

1.1. Faltings’ Theorem. This story begins with the following theorem proved by Faltings
in the 80s, which is one of the crowning achievements of 20th century arithmetic geometry.

Theorem 1.1 (Faltings). Let X be a smooth, projective curve defined over a number field K of genus
g ≥ 2. Then X(K) is finite.

Remark 1.2. When g = 0, we know that either X(K) = ∅ or X ∼= PK1 (and thus has “many”
rational points).

When g = 1, the important and deep Mordell-Weil Theorem says that X(K) is a finitely
generated abelian group. Conjecturally, X(K) is finite about half of the time and has rank one
the other half (“X(K) = ∞1”), whatever that means.

Example 1.3. A consequence of the theorem is that a typical polynomial equation in two
variables f(x,y) = 0 admits only finitely many solutions with x,y ∈ K if deg f ≥ 4. By
contrast, f(x,y) will often have infinitely many such solutions if deg f ≤ 3.

Similarly, a “typical” equation of the form y2 = f(x) will admit only finitely many solu-
tions with x,y ∈ K if deg f ≥ 5.

One of the remarkable things about this theorem is the way in which it suggests that
geometry informs arithmetic. The geometric genus g is a manifestly geometric condition,
yet it is controlling what seems to be an arithmetic property. Why should the number of
integral solutions to xn + yn = zn have anything to do with the shape of the complex
solutions?

You might argue that that the genus is essentially the same invariant as the degree in
the the cases we discussed (plane conics and hyperelliptic curves). But smoothness, an-
other morally geometric condition, is also crucial here. So both the “global” and “local”
topological properties are reflected in the arithmetic behavior.

Of course, when you see a great theorem you should ask how it can be generalized.
We are going to discuss two possible and seemingly unrelated directions of generalization.
The focus of the talk will then be the connection between the two.

1.2. Uniformity. Faltings’ Theorem is the epitome of mathematicians’ sensibilities: aes-
thetically beautiful, and practically useless. It guarantees that for all (smooth) genus g ≥ 2
curves there are only finitely many rational points, but for any given curve gives us no clue
how to find them, or “how finite” they are. Analysts might call this an “ineffective” bound:

#X(K) ≤ CX,K
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because we cannot exert any explicit control over the constant CX,K. So one way to gener-
alize it would be to try and make it effective - that is, to remove some of the dependence on
X and K.

Of course, any true bound must have some dependence on K. Indeed, for a fixed X, any
point of X defined over K (and there are infinitely many of them) is defined over some
finite extension of K. Therefore, by choosing a sufficiently large number field K we can
make #X(K) as large as we want.

Similarly, the bound must also have some dependence on X. Indeed, it is easy to see that
we can construct polynomials f(x,y) with arbitrarily many zeros over K by interpolation if
we are allowed to make d := deg f arbitrarily large. Now, the genus of the corresponding
curve is determined by

(
d−1
2

)
, so this suggests a dependence of the constant on X at least

through its genus.
So any hypothetical effective bound on #X(K) should be expressible as function of some-

thing having to do with K and g (at least). In order for such a bound to be possible, it must
be the case that #X(K) is uniformly bounded among all curves of a fixed genus g.

Conjecture 1.4 (Uniform Boundedness Conjecture). There exists a function C(g,K) such that
for any smooth projective curve X of genus g,

#X(K) ≤ C(g,K).

There are other variants of this conjecture, which we will not discuss.

Remark 1.5. Actually, in the end we will not be able to say anything effective about C(g,K).
The best lower bound on C(g,K) is due to Brumer: C(g, Q) ≥ 8 · g+ 12.

1.3. Lang’s Conjecture. Another direction of generalization of Theorem 1.1 is to higher-
dimensional varieties. For curves, we had

#X(K) <∞ if g ≥ 2.
There are then two questions: what is the generalization of (#X(K) < ∞), and what is the
generalization of (g ≥ 2)?

There is an accepted answer to the second question: the analogue of g ≥ 2 for higher-
dimensional X is “general type.”

Definition 1.6. Let X be a smooth, projective variety and KX its canonical bundle. We say
that X is of general type if

dimH0(X,K⊗nX ) ∼ ndimX.

Intuitively, X is general if it has “lots of holomorphic (top) forms.”

Example 1.7. If KX is ample, then X is general type, since the dimension of X coincides with
the degree of its Hilbert polynomial under an embedding.

Let X be a hypersurface in Pn of degree d. By the Adjunction formula,

KX ∼= KPn ⊗OPn(X)|X

= OPn(−n− 1+ d)|X.

Therefore, X has general type if and only if O(−n− 1+ d) is ample, i.e. d > n+ 1.

Example 1.8. Rational varieties, which has no holomorphic one forms at all (the canoni-
cal bundles of projective space are anti-ample), are in some sense the “opposite” of being
general type.
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Example 1.9. Let X be a curve. Then degKX = 2g− 2, and by Riemann-Roch we see that X
is of general type if and only if g ≥ 2.

Since this is a birational invariant of smooth projective varieties, we can and do extend
it to singular varieties by birationality. In particular, “general type” is on the opposite end
of the spectrum from “rational” since (as we used above) the canonical bundle of Pn is
anti-ample.

Now what’s the analogue #X(K) < ∞? This is way too strong to demand literally, be-
cause even if X is of general it may contain rational subvarieties (for instance, if X is a
hypersurface of high degree in projective space it could still contain lines). There are many
possible salvages, but we adopt the following.

Conjecture 1.10 (Weak Lang Conjecture). If X is of general type, then X(K) is not Zariski-dense
in X.

Example 1.11. If X is a curve, then “not Zariski-dense” is the same as “finite” for X(K) (for
a set of closed points).

The focus of this talk is the following (surprising!) implication:

Theorem 1.12 (Caporaso-Harris-Mazur). Lang’s Conjecture 1.10 implies the Uniform Bound-
edness Conjecture 1.4.

By the way, the truth of either of these conjectures is by no means intuitive. Rumor has
it that Caporaso-Harris-Mazur originally viewed this theorem as evidence against Lang’s
conjecture, because they didn’t believe the Uniform Boundedness Conjecture.

2. OUTLINE OF THE PROOF

2.1. Motivation. The key idea is to consider the geometry of a family f : X→ B of smooth,
projective curves of genus g. (Technically, f should be a proper, flat morphism of integral
varieties with generic fiber a smooth curve of genus g.) Imagine for a moment that we
could prove that any such X were of general type. (Intuitively, X is fiberwise of general
type.) Then Lang’s conjecture would assure us that the rational points of X lie in some
Zariski closed subset, so there is a large open subset of B such that the fibers have no
rational points.

Applying this to some family whose fibers exhaust the isomorphism classes of genus g
curves (e.g. an appropriate Hilbert scheme) we would deduce that “most” of them have
no rational points. By an inductive argument, we could hope to prove a uniform bound.

2.2. The Correlation Theorem. Unfortunately, one cannot hope that such a “fiberwise
general type” family is of general type (as we’ll see in the examples later). We need a
salvage.

Definition 2.1. For a proper morphism f : X→ B of integral varieties whose generic fiber is
of general type, we denote by XnB the nth fiber product of X over B. ♠♠♠ TONY: [may be
skirting some technical issues of reducibility here?]

We say that the family f : X→ B has correlation if there exists an n such that XnB admits a
dominant morphism to a variety of general type.

Here is an explanation of the terminology. For motivation, imagine that f : X → B has
generic fiber a smooth projective curve of genus g ≥ 2. For b ∈ B, let Xb := f−1(b) denote
the fiber of f over b. By Faltings’ theorem, we know that the rational points of Xb are
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finite. However, we don’t know anything a priori about their distribution in X - they could
be dense, for instance. If the rational points conspired to lie in a proper Zariski-closed
subset of X, then the algebraic equations defining that closed subset could be interpeted as
relations describing a “correlation” between the rational points of different fibers. Lang’s
theorem predicts this to be the case if X is of general type.

More generally, as long as X2B admits a dominant rational map to a variety of general
type, then Lang’s theorem implies that X2B(K) lands in a proper Zariski-closed subset. In
particular, X2B(K) lies in a proper Zariski-closed subset of X2B, which suggests that there
are algebraic relations governing the distribution of pairs of rational points in the fibers.
We can interpret this as an algebraic “correlation.” Similarly, if XnB dominates a variety of
general type, then there is an “n-point correlation.”

The technical heart of Theorem 1.12 is:

Theorem 2.2 (Correlation). Let f : X → B be a proper morphism of integral varieties whose

general fiber is a smooth curve of genus at least 2. Then X f−→ B has correlation. Moreover if X is
defined over K then we can take the correlation morphism (and in particular the target) to be so as
well.

We will not prove this in our talk, but we will give some illustrative examples. First,
however, we will show why Theorem 1.12 follows from this.

Proposition 2.3. Let f : X→ B be as above. Then there existsN and an open subset U0 ⊂ B such
that every b ∈ U0(k) has #Xb(K) < N.

Proof. By localizing on the target, as may assume that f is flat, henced fibered in (arithmetic)
genus g curves everywhere.

By assumption, some XnB admits a dominant map to a positive-dimensional variety of
general type, sayW:

ϕ : XnB →W.

By Lang’s conjecture, there is a Zariski-dense open subset U ⊂ W with no rational points,
so ϕ−1(U) =: Un ⊂ XnB has no rational points.

Let πj : X
j
B → X

j−1
B denote the projection to the last factor. We then inductively construct

Uj−1 = πj(Uj) and Zj−1 to be the complement of Uj. By our flatness assumption Uj−1 is
open, so Zj−1 is closed. Noting that πj is fibered in curves

X
j
B

πj

��

// X

f

��
X
j−1
B

// B

we see that Zj ∩ π−1j (Uj−1) → Uj−1 is finite. Therefore, there exists some dj such that for
u ∈ Uj−1 has at most dj pre-images in Zj. (We can take dj to be the sum of the degrees
from the irreducible components of Zj, for example.)

Letting d = maxj dj, we see that any u ∈ Uj−1 has at most d pre-images in Zj for all j.
This is the key property of d, and we claim that we can take N = d.

For b ∈ U0, either π−11 (b) has a rational point in U1 or it does not. In the latter case, all
the rational points lie in Z2 ∩ π−11 (U1), and there at most d such points by construction, so
a fortiori at most d rational points. In the former case, let b1 be such a rational point. Then
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π−12 (b1) ∼= Xb:

π−12 (b1) //

��

X2B

π1

��

// X

f

��
b1 // XB // B

If π−12 (b1) has does not have a rational point inU2, then it has at most d rational points, by
the same reasoning. If it does, let b2 be such a rational point, and continue the argument.
We know that Un has no rational points, so we will win eventually. �

To finish the proof, we basically want a family of curves where every smooth, projective,
genus g curve appears as a fiber. Fortunately, such families are supplied by the theory of
Hilbert schemes, which provide a fine moduli space for the subvarieties of projective space
with a given Hilbert polynomial. Since every smooth, projective curve X of genus g ≥
2 is embedded by K⊗2X (by an easy exercise with Riemann-Roch), the Hilbert scheme of
curves with Hilbert polynomial 2(2g− 2)n+ 1− g in P3g−g features all the curves we are
interested in.

It is a fact that the locus of pluricanonical smooth curves corresopnds to a locally closed,
irreducible, smooth subscheme of the Hilbert scheme. We take B to be the closure of this
locus, and X to be the restriction of the universal family to B.

By the proposition, there is a dense subset U0 ⊂ B and N0 such that all fibers of the
family have at mostN0 rational points. Let B1 be the closure of the irreducible components
of B \U0 whose generic fiber is smooth. Applying Proposition 2.3 to each component, we
obtain a dense open subsetU1 ⊂ B1 and upper boundN1 on the number of rational points
lying on any rational fiber over U1. Since dimBi < dimBi−1, this process ends at a finite
step. (Note that all smooth fibers will be exhausted, since smoothness is open.)

Remark 2.4. In order to produce an effective uniform bound from this argument, we would
need to have very detailed knowledge about the Hilbert schemes in questions, which seems
impossible to achieve.

3. EXAMPLES OF CORRELATION

3.1. Pencils of plane curves. Let f(x,y) and g(x,y) be general polynomials of d. Then the
pencil

f(x,y) + tg(x,y) = 0

has total space X ⊂ P2 × P1. (We view this as a family over B = P1, of course.) Note
that X is smooth as long as the base points of the pencil are distinct, which they will be for
a general choice. The second projection map X → P1 =: B is fibered in curves of genus
g =

(
d−1
2

)
, so g ≥ 2 if d ≥ 4. The first projection map X→ P2 presents X as the blowup of

P2 along the d2 points of intersection of f and g.
(Intuitively, as t varies f(x0,y0) + tg(x0,y0) vanishes for a unique value of t, unless

g(x0,y0) = f(x0,y0) = 0. Moreover, this locus is Cartier in the blowup, cut out by g(x,y) =
0. More conceptually, X is the blowup of the linear system generated by f and g in OP2(4)

at the basepoints, which resolves the morphism P2 → P1).
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In particular, X is birational to P2, and thus is certainly not of general type. We also
could have just calculated using the adjunction formula:

KX ∼= OP2×P1(−3,−2)⊗OP2×P1(d, 1)|X
∼= OX(d− 3,−1)

none of whose powers have sections. We remark that it is the negativity of KB that is
problematic here, and we can overcome this by taking the fiber square: Y = X×B X is cut
out in P2 ×P2 ×P1 by the equations

f(x,y) + tg(x,y) = 0

f(u, v) + tg(u, v) = 0

In particular, it is a complete intersection of two hypersurfaces of type (d,d, 1), hence
Cohen-Macaulay (so there is a dualizing sheaf). By the adjunction formula, the dualizing
sheaf is

ωY ∼= OP2×P2×P1(−3,−3,−2)⊗OP2×P2×P1(d,d, 2)|Y
∼= OY(d− 3,d− 3, 0).

The space of sections now grows like a cubic if d ≥ 4, i.e. g ≥ 2, as can be witnessed from
the fact that this is basically projection away from the t coordinate.
♠♠♠ TONY: [can one see this directly using the Hilbert polynomial?]
You can see that this fails precisely when d ≤ 3.
Actually, we are not quite done! The problem is that Y may be singular. So we have to

show that there is a desingularization Ỹ → Y such that Ỹ is of general type.
In this case, we are lucky because the singularities of Y are very mild. First note that

the singular points of Y “come from” the singular fibers of X→ B. Indeed, if the fibers are
smooth near some x ∈ X then (as the family is flat) X→ B is smooth near x, hence XB → X
is smooth (being the pullback of a smooth morphism).

In a general pencil, the singular fibers will have nodes at worst, and hence the singular-
ities look étale locally (or “analytically locally,” if you prefer) like xy− t. The base change
then looks étale locally like

k[x,y,u, v, t]/(xy− t,uv− t) ∼= k[x,y,u, v]/(xy− uv).

Therefore, the singularities of Y = X2B are double points in a smooth fourfold Z, which can
resolved after blowing up Z and then taking the proper transform of Y.

We have K
Z̃

= π∗(KZ)(3E) since we blew up a smooth fourfold - in local coordinates
(x,y, z,w) 7→ (x ′,y ′x ′, z ′x ′,w ′x ′) so

dx∧ dy∧ dz∧ dw 7→ (x ′)3dx ′ ∧ dy ′ ∧ dz ′ ∧ dw ′.

The divisor of Ỹ in Z̃ is the pullback of the divisor of Y minus twice the exceptional divisor,
since Y had a double point:

O
Z̃
(Ỹ) ∼= π∗OZ(Y)(−2E).

Therefore, by the adjunction formula we have

K
Ỹ

∼= π∗(KY)(E).

This shows that holomorphic differentials pull back to holomorphic differentials, so the
space of sections of the pluricanonical bundles of K

Ỹ
still grow cubically.
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3.2. Isotrivial families. We now consider an isotrivial family which in some sense is oppo-
site to the example we have just considered. Let f(x) be a polynomial of degree 2g+ 2with
no repeated roots. Consider the pencil of smooth genus g curves

ty2 = f(x).

These curves are all isomorphic over Q (thus “isotrivial”) but not over K. Viewing this as a
pencil of curves of bidegree (2, 2g+ 2) on P1×P1, we see that the total space of the family
is a blowup of P1 ×P1 along the basepoints, and is therefore rational.

X

  {{
P1 ×P1 P1

What about the fiber square? Y := X2B is cut out in (P1 × P1) × (P1 × P1) × P1 by
the equations ty2 = f(x), tv2 = f(u), i.e. equations of bidegree (2, 2g + 2, 0, 0, 1) and
(0, 0, 2, 2g+ 2, 1). Therefore, by adjunction we have

KY ∼= OY(0, 2g, 0, 2g, 0).

This basically crushes everything except the x and u coordinates. Specifying x and u, we
see that there is still (generally) a 1-parameter family of solutions for t and y, so the Kodaira
dimension of Y is only 2. Moreover, this won’t be corrected by taking further powers over
B.

However, Y is birational to

{(x,y,u, v) : v2f(x) = y2f(u)} ⊂ A4

which admits a dominant rational map to the surface

W = {(x,u,w) : w2 = f(u)f(x)}

sending (x,u,y, v) 7→ (x,u, vf(x)/y). By the way, this surface can be viewed as a quo-
tient of C2 by the group of hyperelliptic involutions (v 7→ −v and y 7→ −y), a fact which
foreshadows the general situation!

Now, this surface is birationally a double cover of P1 × P1 (via the u, x coordinates)
ramified over the locus f(x)f(u) = 0, i.e. the union of 2g + 2 lines from each ruling.
By Riemann-Hurwitz, the canonical divisor of Y is the pullback of the canonical divisor
O(−2,−2) on P1 × P1 twisted by the divisor of w. As Div(w2) = Div f(x)Div f(u), we
have

KY = π∗(OP1×P1(−2,−2)⊗OP1×P1(g+ 1,g+ 1))

= π∗(OP1×P1(g− 1,g− 1))

Now this is ample (again notice the necessity of g ≥ 2!).
By the way, this can all be done completely explicitly. Let θ = du∧dx

w . Then you can
check that

θk,l := u
kx`θ

extend to regular differentials for 0 ≤ k, ` ≤ g− 1. (This is very similar the computation of
the holomorphic differentials on a hyperelliptic curve.) They define a finite (in fact, degree
2) map to projective space (with image the g-uple Veronese embedding of P2).
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What about the singular points? Étale locally these have the form w2 = ux, and the
double points are desingularized after blowing up once. In the local coordinates of the
blowup

w ′ = w, u ′ =
u

w
, x ′ =

x

w
we see that θ pulls back to

θ̃ =
d(u ′w ′)∧ d(x ′w ′)

w ′

= w ′(du ′ ∧ dx ′) + x ′(du ′ ∧ dw ′) + u ′(dw ′ ∧ dx ′)

which is regular.

3.3. Some words on the proof in general. The general proof of the Correlation Theorem
proceeds by separately studying the case of maximal variation of moduli - essentially, that
the corresponding map toMg (which may only after base change) is finite and the case of
isotrivial families. These are clearly opposite ends of the spectrum, and the proof works
inwards from them.

In the case where the moduli varies maximally, it turns out that XnB itself becomes gen-
eral type. Morally, think of this as follows. The canonical bundle of XnB is (morally) com-
posed of two pieces: the canonical bundle of X, and the canonical bundle of B. Now, gen-
eral type is similar to a positivity condition on the canonical bundle (it’s slightly weaker
than ampleness, but it says that it has a lot of sections). The problem is that the canonical
bundle of B may be quite “negative.” But if we amplify the positive of KX enough, then it
should overcome that.

In the case of isotrivial families, it turns out that XnB will map to Cn modulo a finite
group of automorphisms (necessary because we had to make a base change to get a trivial
family). A quotient of a curve of general type may not be general type, but a higher enough
power will have this property.

A key technical point, which we have witnessed in these examples, is that the singu-
larities of the fibers squares are canonical. Essentially, their resolution does not kills the
regularity of global canonical differentials.
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