THE GEOMETRIC DISTRIBUTION OF SELMER GROUPS OF
ELLIPTIC CURVES OVER FUNCTION FIELDS

TONY FENG, AARON LANDESMAN, ERIC RAINS

AssTrACcT. Fix a positive integer n and a finite field Fq. We study the joint distribution
of the rank rk(E), the n-Selmer group Sel, (F), and the n-torsion in the Tate-Shafarevich
group II(E)[n] as E varies over elliptic curves of fixed height d > 2 over Fq(t). We
compute this joint distribution in the large ¢ limit. We also show that the “large g, then
large height” limit of this distribution agrees with the one predicted by Bhargava-Kane-
Lenstra-Poonen-Rains.
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1. INTRODUCTION

1.1. Arithmetic statistics of Selmer groups. The statistical behavior of Selmer groups
has recently been the focus of much study. In [BKLT 15|, remarkable probability distribu-
tions are introduced to model the distribution of the n-Selmer group Sel,,(E), for E varying
through isomorphism classes of elliptic curves over a fixed global field. We refer to the these
distributions, and the models which generate them, as the “BKLPR heuristic.” The BKLPR
heuristic is consistent with all known results on the statistics of Selmer groups.

One can also consider the analogous question for elliptic curves over a global function
field. The heuristics make sense in that case as well, and it is generally believed that
in the “large height, then large ¢” limit, limg o limg, the statistics of Selmer groups
over global function fields should behave the same as in the case of number fields. For
example, [dJ02] computes the average size of 3-Selmer groups in this limit, and
computes the average size of 2-Selmer groups in this limit; the answers agree with the
averages computed in the number field case in the breakthrough work of Bhargava-Shankar
[BS15al BS15b] BS13al, [BS13Dh], which are as predicted by the BKLPR, heuristic. The proofs
of these results all rely on special features of small n, and only work to compute the average
size (as opposed to the distribution, or even any higher moments).

In this paper, we study the limiting process in the reversed order, limgy_, o limg_,o for
elliptic curves over a rational function field Fy(¢). For this order of limits, which is easier to
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understand, we obtain complete results. Informally speaking, we show that in the “large ¢,
then large height” limit, the distribution of Sel,, (E) is exactly as predicted in [BKLT15].

We note that, unlike the works mentioned above, this is a structural rather than numerical
result: it cannot be proved simply by computing and comparing the moments of the two
distributions, because these distributions are not determined by their moments. This is
intriguing because the algebraic model which gives rise to the BKLPR heuristic doesn’t
seem to appear naturally in the context of Selmer groupsﬂ

1.2. Statement of results.

1.2.1. Some notation. We now introduce notation in order to state our main results pre-
cisely. Let p = char(F,). For p > 2, an elliptic curve E over F,(¢) has a minimal Weierstrass
model of the form
y? =23 + as(t)2® + as(t)z + ag(t),

where a;(t) is a polynomial of degree 2id for i € {1,2,3} (cf. [dJO2, §4.2-4.8] or [Lanl8|
§2.1]). This value of d is uniquely determined by F, and we define d =: h(FE) to be the
height of E. Let (rk, Seln)féq denote the probability distribution assigning to a pair (r, G),
for r € Z and G a finite abelian group, the proportion of isomorphism classes of height d
elliptic curves over Fy(t) with algebraic rank r and n-Selmer group isomorphic to G (see

Definition 1.3)).

1.2.2. The BKLPR heuristic. We summarize the BKLPR heuristic in Briefly put, it
models the distribution of the ¢>°-Selmer group in terms of the intersection in (Q,/Z,)™
induced by two maximal isotropic subspaces of Z;* (with the standard split quadratic form)
as m — oo. Conditioned on the rank, the /-primary parts of the Selmer group are pre-
dicted to behave independently. This gives, in particular, a conjectural joint distribution
(rkBKLPR, SelSKLPR) for the rank and n-Selmer group of elliptic curves, described in

1.2.3. Main result. We consider the distribution (rk, Seln)ﬁ-q as a function on pairs (r, G),
where r € Z and G is an isomorphism class of finite abelian groups. Then we form

limsup (rk,Sel,)¢ and liminf (rk, Sel,)d
g—oo q q—00 a
ged(g,2n)=1 ged(g,2n)=1

as functions on {(r, G)}E| (Note that this may no longer be a probability distribution, i.e.
its sum over all {(r, G)} may not be 1.) Our main result is the following, which we deduce
as a consequence of [Theorem 6.1 and [Theorem 6.4}

Theorem 1.1. For fized integers d > 2 and n > 1, and q ranging over prime powers, the
limits
Jim li(IIIl}s;ép (rk, Sel, )¢ and Jim - liminf - (xk, Seln)f,
ged(q,2n)=1 ged(g,2n)=1
exist, are equal to each other, and coincide with the distribution predicted by the BKLPR
heuristic.

IThe issue is that in the BKLPR heuristic, n-Selmer groups are modeled as an intersection of two random
maximal isotropic subspaces in a free Z/nZ-quadratic space, but the relevant quadratic space coming from
the arithmetic of elliptic curves is almost never free [BKL 15, Proposition 6.13].

2To spell this out: the liminf (resp. limsup) of a distribution is, by definition, the measure assigning to
an outcome the liminf (resp. limsup) of the probability of that outcome.
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We believe the precise alignment between our results and the heuristics of |[BKLT15|
provides some of the first substantial evidence for the validity of their complete conjectures.
In particular, our results give the first direct connection between the heuristics of [BKL™ 15|
and the arithmetic of elliptic curves. Further, our results suggest a potential approach to
proving the conjectures of [BKL™15| in the function field setting via homological stability
techniques as used in [EVWI16|] to prove a version of the Cohen-Lenstra heuristics over
function fields.

Remark 1.2. One can deduce a more precise version of with estimates on the
error terms in the above limits directly from [Theorem 6.1] and [Theorem 6.4, One may also
deduce the same result holds with algebraic rank replaced by analytic rank. Further, one
may include the joint distribution of Tate-Shafarevich groups — see |[Remark 1.8

1.2.4. Summary of the main difficulties. Experts will recognize that the distribution in this
“large ¢ limit” is completely determined by certain monodromy representations. Let us talk
through some of the difficulties in order to orient the reader where the content of the paper
lies. First, it is important that we determine the image of monodromy precisely. If we had
just wanted to compute the moments of Sel,, then it would have been enough to know
that the image of monodromy is “large enough.” However, the behavior of the distribution
depends more subtly on the monodromy representation. For example, it turns out that
sometimes the Selmer distribution does not have a limit as ¢ — oo, and this can happen
even when ¢ is taken only over powers of a fixed odd prime p. Nevertheless, both the
“limsup,_,.,.” and the “liminf, " exist, and tend towards each other as the height tends
to co. This occurs when the arithmetic monodromy group contains an element of non-trivial
spinor norm (see but the geometric monodromy group does not; the fluctuation of this
property over field extensions creates the discrepancy between limsup,_, ., and liminf, .

A second substantial issue is that even after having determined the monodromy repre-
sentations that control the Selmer groups, it is not straightforward to identify the resulting
distribution with the BKLPR heuristic. (To be clear, this is a purely combinatorial question,
although it turns out to require techniques from algebraic geometry, number theory, etc.
to address.) The reason for this difficulty is that the BKLPR heuristic is not described in
terms of explicit closed formulas, but in terms of a random algebraic model. For example,
it is not determined by its moments, see In order to compare the BKLPR
distribution to the distribution coming from a monodromy representation, we introduce a
“random kernel model” that mediates between the two distributions. We observe that both
the BKLPR heuristic and the random kernel model enjoy Markov properties which reduce
their comparison to simpler cases that can be computed explicitly, by matching enough
moments. (Even this is a little oversimplified: what we need is to establish enough control
on the moments already at a “finite height” level- see [§ 4])

1.2.5. Defining the random wvariables. In order to state the next results, we will need to
introduce some more notation.

Let Ab,, denote the set of finite Z/nZ modules up to isomorphism. We will next define
several distributions on Zx> x Ab,, modeling the joint distribution of the rank and n-Selmer
group of an elliptic curves. For E an elliptic curve, we use rk(E) to denote the algebraic
rank of E and rk*"(E) to denote the analytic rank of E. In what follows, we use E to denote
an isomorphism class of elliptic curves.



Definition 1.3. For n,d € Z>; and k a finite field, let (rk, Sel,)¢ and (rk™, Sel,,)¢ be the
distributions on Z>q x Ab,, given by

H{E/k(): h(E) = d,7k(E) =, Sel, (E) ~ G}
#{E/k( ): h(E) = d}
#{E/k(t): h(E) = d,rk*(E) = r,Sel,(E) ~ G}
{E/k( ): h(E) = d} '
where E varies over isomorphism classes of elliptic curves over k(t). Also, define the distri-
bution Sel? /k(t) on Ab,, by

Prob((rk, Sel,)¢ = (r,G)) =

Prob((rk™*, Sel,)¢ = (r,G)) =

Q) = #{E/k(t): h(E) = d,Sel,(E) ~ G}
H#E/k(): h(E) = d}
and define the distributions rk¢ JE(), rk2d /k(t) on Zsq by

LB /k(t): h(E) = d,tk(E) = r}
#{E/k(t): h(E) = d}

#{E/k(t): h(E) = d,tk™(E) = r}

#{E/k(t): h(E) = d} '

For a random variable X, we let E[X] be denote the expected value of X (if it exists).

Remark 1.4. In for the purposes of computing these distributions in the
limit ¢ — oo, we could equally well replace the condition h(E) = d by the condition
h(E) < d. The reason for this is that isomorphism classes of curves with h(E) < d are
parameterized by k points of the stack %}c (defined below in for i < d, which is a
finite type global quotient stack of strictly smaller dimension than %Z. Hence, Uigd%i will
only contributes at most On,d(qfl/Q) to the probability distributions in question, as can be
deduced from the Lang-Weil estimate and [Lanl8 Lemma 5.3].

For analogous reasons, one can equally well weight the above counts by automorphisms
(which would be the correct “stacky way” to count points) and the distribution in the
q — oo limit will remain the same. Note that after excising the locus of elliptic curves with

more than 2 automorphisms, there will be a factor of one half in both the numerator and
denominator in the definition of the distributions in which cancel out.

Prob(Sel? /k(t) =

Prob(rk? /k(t) = r) =

Prob(rk™? /k(t) = r) =

1.2.6. Some consequences. The following corollary is a variant of the Katz-Sarnak minimal-
ist conjecture, stating that for fixed height, in the large ¢ limit, the average rank is 1/2.
Moreover, in the large ¢ limit, the rank takes value 1 and 0 with probability 1/2, and takes
value > 2 with probability 0. The following corollary follows from It can
also be deduced from [Kat05, Theorem 13.3.3], though the more precise error terms given
in do not directly follow from [Kat05, Theorem 13.3.3].

Corollary 1.5 (Large ¢ analog of [PR12, Conjecture 1.2]). For fized integers d > 2 and
n > 1, we have

1/2 ifr <1
Jim  Prob(rk! /F,(t) = 1) = {o/ ifr =, (1.1)
ged(q,2n)=1 ifr=2
(1.2)

Furthermore,
lim  E[rk? /F,(t)] = 1/2

q—00
ged(q,2n)=1
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The following calculation of the geometric moments of Selmer groups is a consequence of

eorem 6.6, which includes more precise error terms.

Theorem 1.6 (Large g analog of Conjecture 1.4]). Let n be a squarefree positive
integer, d > 2, and w(n) be the number of prime factors of n.

(1) Fiz c¢; € Z>q for each prime £ | n. Then

d—oo q—00 — 00
ged(g,2n)=1 fn ged(q,2n)=1 Ln

lim limsup Prob (ser’ JFy(t) = H(Z/ZZ)“) = Jim liminf Prob (sclz /Fq(t):H(Z/ZZ)”)
(1.3)

_ {QW(n)—l o ((szo (1- f—j)_l) (Hje e 1)) if all ¢¢ have the same parity,

0 otherwise.
(2) We have
qlLr{}o E[# Sele /T, (1)] Z s.
ged(g,2n)=1 s|n

(8) For m < 6d — 3, we have

lim  E[(#Sel} /F,t)" = ] J]+1).

q—o0
ged(g,2n)=1 prime £|n i=1

The following corollary is the more familiar case of when n is taken to be a
prime £. One can also deduce a version with explicit error terms in ¢, as in

Corollary 1.7 (Large q analogue of [PR12, Conjecture 1.1]). Let £ be a prime, and d > 2.
(1) We have

lim limsup Prob (Sel? JFq(t) = (Z/tZ)° > = hm hm inf Prob <Sell JFq(t) = (Z/ZZ)C)
d—o0 q—00 d—00
ged(g,20)=1 gcd(q 215) 1

o))

(2) We have
Jim  E[# Seld /T, ()] = o(£) :== £ + 1.
ged(q,20)=1
(8) For m < 6d — 3 the mth moment of Sel§ /F,(t) is

Jim  E[(# Seld / =[[@+1).
ged(g,2n)=1 i=1

Remark 1.8 (Distributions of Tate-Shafarevich groups). Throughout this paper, we mostly
work with the joint distribution of ranks and n-Selmer groups of elliptic curves, while
[BKLF15| also makes predictions for Tate-Shafarevich groups of elliptic curves. Indeed,
as an easy consequence of our results, we obtain analogous predictions for Tate-Shafarevich
groups, as we now explain. For E a torsion free elliptic curve over F,(¢), we have an exact
sequence

0 — (Z/nZ)™ " —— Sel,(E) — II(E)[n] — 0. (1.4)

Note that the torsion freeness condition is satisfied 100% of the time [BKLT15, Lemma

5.7). Therefore, the algebraic rank and n-Selmer group of E determines II(FE)[n]|, and

hence the joint distribution of algebraic ranks, and n-Selmer groups determines the joint
5



distribution of algebraic ranks, n-Selmer groups, and n-torsion in Tate-Shafarevich groups.
Let (rkPKEPR QeBELPR q17[p)BKLPR) denote the conjectural joint distribution for ranks,
n-Selmer groups, and n-torsion in Tate-Shafarevich groups described in §5.7] and
let (rk, Sel,,, I_H[n])]‘f-q) denote the joint distribution of algebraic ranks, n-Selmer groups, and

n-torsion in Tate-Shafarevich groups of height d elliptic curves over F,. Then, it follows
from [Theorem 1.1] and the above remarks that

(rkBEEPR QeI BELPR T17[p) BKLPR) dango li;ri)sogp (rk, Sel,,, H_I[n])%q
ged(q,2n)=1

= lim [ liminf (rk, Sel,, I[n])§,
ged(q,2n)=1

One can also bound the error in these limits using [Theorem 6.1] and [Theorem 6.4, We
note that for fixed height d > 2, the proportion of elliptic curves of height up to d over F,
with analytic rank equal to algebraic rank tends to 1 as ¢ — oo over prime powers ¢ with
ged(g,2) = 1. This follows from [Theorem 1.1|and [Proposition 6.3] Therefore, the Birch and
Swinnerton-Dyer Conjecture holds for all such curves, implying the Tate-Shafarevich group
is finite for all such curves.

Remark 1.9 (Families of quadratic twists). Adapting our argument yields similar results
for families of elliptic curves, such as quadratic twist families, whenever the geometric mon-
odromy group is large enough. However, the precise distribution that results depends rather
delicately on the image of monodromy.

For example, in forthcoming work [PW]|, Park and Wang carry out an analog of the
results of [Lanl8| for quadratic twist families of elliptic curves, at least in the case of n-
Selmer groups for n prime. We note this should often be extendable to composite n, see
[Lan18, Remark 1.7]. Suppose one chooses a quadratic twist family such that the associated
middle extension sheaf has geometric monodromy containing the commutator of the relevant
orthogonal group, but with nontrivial Dickson invariant (see[§3.2.4). Given such a family,
via similar arguments to those in this paper, if one first takes lim inf, o or limsup,_, ., and
then a large height limit, the joint distribution of the rank and n-Selmer group will agree
with (rkBKLPR7 SelSKLPR). We note that triviality or nontriviality of the Dickson invariant
can often be verified for explicit examples, as in the proof of Theorem 4.1].

On the other hand, it is possible for the Dickson invariant to be trivial in quadratic twist
families; explicit such examples are constructed in §5 and §6]. In these cases, the
distribution of ranks and Selmer groups in the quadratic twist family will differ from those
predicted in m E.g., the minimalist conjecture will fail as 100% of elliptic curves
in such families will have rank 0. Nevertheless, for sufficiently high degree twists, the large
¢ limit mth moments in these quadratic twist families will agree with those predicted in
[BKL*15|. Additionally, it is possible to choose quadratic twist families where the relevant
geometric monodromy does not contain the commutator of the relevant orthogonal group,
in which case the large ¢ limit statistics of ranks and Selmer groups may differ drastically

from those predicted in [BKLT15].

Remark 1.10 (The inverse Galois problem). For ¢ a prime, let Qg denote the quadratic

form defined in which we note has discriminant 1 and hence is equivalent to

the standard quadratic form z1ze+2z3x4+- - -+2124-52124—4- In order to prove[Theorem 1.1}

we perform a certain monodromy computation in which shows that for even
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d>2,and £1d—1, O(Q¢) occurs as a Galois group over Q(t1, . .., t104+2), and hence also as
a Galois group over Q by Hilbert irreducibility ([Ser97, §9.2, Proposition 2] in conjunction
with [Ser97, §13.1, Theorem 3]). To our knowledge, it was not previously known that these
groups all appear as Galois groups over Q.

Closely related constructions to ours are given in Theorem 1.1], and the tech-
niques of can likely be adapted to construct the Galois groups O(Q¢) when ¢ > 5.
However, our results also apply in the cases £ = 2 and ¢ = 3, to which the techniques of

|Zyw14] seem not to apply.

Remark 1.11. An interesting byproduct of the proof of is that the analytic
rank of an elliptic curve over Fy(t) with smooth minimal proper regular model is realized as
the dimension of the generalized 1-eigenspace of a certain matrix associated to an action of
Frobenius (see [Lemma 3.18) while the />*°-Selmer rank is the dimension of the 1-eigenspace
of that same matrix (see|Lemma 6.2). These dimensions agree for 100% of elliptic curves of
fixed height d over F,(¢) in the large ¢ limit and also agree with the rank of the elliptic curve
(see . Hence, at least in the function field setting, this gives an answer to
the question raised in Remark 1.1.4] as to whether there exists a natural matrix
coming from the arithmetic of elliptic curves giving rise to the rank and Selmer group of an
elliptic curve.

Example 1.12 (A distribution not determined by its moments). Consider the three distri-
butions
(tkBKLPR goBKLPR)

9

((I‘kBKLPR, SGISKLPR)l I‘kBKLPR = 0 mod 2)’

((I‘kBKLPR, SGISKLPR)l I‘kBKLPR =1 mod 2)7

with the latter two the distributions conditioning upon whether the rank is even or odd.
These give examples of three distinct distributions which we claim have the same mth
moments for all m > 0.

We now justify why the moments of these three distributions agree. For simplicity, we
assume n is prime, though the same claim holds true for general composite n, as can be
deduced from the Markov properties verified in By [Theorem 6.4] the above three
distributions agree with the three distributions

lim lim inf(Rrk, RSel )

d—oo g

lim lim 1nf((Rrk RSel )]F |tk = 0 mod 2),

d—oo 4—00

lim lim 1nf((Rrk RSel )]F |tk =1 mod 2)

d—oo 49—

respectively. By [Definition 4.2} these distributions are all given by the limit as d — oo of the
the dimension of the kernel of a random matrix drawn from certain cosets of the orthogonal
group of rank 12d — 4. The distribution conditioned on even rank corresponds to the cosets
with Dickson invariant 0 while that conditioned on odd rank corresponds to cosets with
Dickson invariant 1. Therefore, by the moments of these distributions all
stabilize in d (in fact once 6d — 3 > m), and are equal to [T}, (¢! 4+ 1).

1.3. Overview of the proof. We next indicate the idea of the proof of[Theorem 1.1} There
is a moduli stack %]‘Pi-q parameterizing Weierstrass equations for elliptic curves over F,(¢) of

height d. There is a moduli stack Miﬁq which approximately parameterizes pairs (F, )
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Thm. mlﬁ Thm. £4]

Thm. E131«+— Lem. 58] +— Lem. E19]
Thm. [LT]+— Thm. 64 +— Thm. 5Tl +— Thm.[54] Lem. BI6 & [Lani8] Thm. 4.4|

Prop. <— Thm. BI4]l+— Lem.B23]+—— Prop.
\/ \
—

Thm. [61]+— Cor. €3] Prop. 3:22] Lem. BI91+—— Prop.[39]

FIGURE 1. A schematic diagram depicting the structure of the proof of [Theorem 1.1}

for [E] € %%q an elliptic curve and a € Sel,,(E) (see . The basic point here is that
there is a dense open set of points of %{éq whose corresponding minimal Weierstrass models

are smooth over F,. For elliptic curves E corresponding to points in this open set, if £ is
the identity component of the Néron model of E over Py , Sel,(E) = H'(Pg_,&[n]). In

other words, &Z . is the stack classifying E along with &°[n]-torsors over PL .
g q
There is an natural quasi-finite map 7: Eﬁapq — %ﬁﬁq, and over an open dense substack
oL c #L the restriction
q q

d d od
m: Sel® 5, = Sely 5. |Zogq — W, (1.5)

is finite étale. The n-Selmer group of [E] € %qu (F,) is then identified with F,-points

of 771(E). The cover 7 is associated to a monodromy representation pZ)Fq: m (%qu) —

0(QY), where (V,¢,Q%) is a particular rank 12d—4 quadratic space over Z/nZ, and 7~ (E)(F,)
identifies with ker(pz,Fq (Frobg) —id) c V4.

After determining the monodromy group, this reduces to a combinatorial problem: com-
pute the distribution of dim ker(g —id) for a g drawn randomly from the monodromy group.
For V¢ over Z/{Z, (i.e., the case that n = £ is prime,) and g drawn from the full O(Q%), this
computation was done in unpublished work of Rudvalis and Shinoda, as we learned from
[FS16]. We give an alternative proof which generalizes to the case where g is drawn from
certain proper subgroups of O(Q?) related to the monodromy group (which is needed for
our results).

After handling the case where n = ¢ is prime, we move on to the case of Selye. In this
case, we prove that there is a characterization of ker(g — id) in terms of a Markov property,
and that the BKLPR heuristic is also characterized by this same Markov property. The case
of general Sel,, for n composite follows from the prime power case by the Chinese remainder
theorem.

1.4. Outline of Paper. We next give a brief outline of the content of the various sections

in this paper. In[§ 2| we recall the construction of Selmer spaces, which parameterize Selmer

elements of elliptic curves. The Selmer spaces mentioned above are generically finite étale

covers of the moduli space of height d elliptic surfaces. In we compute the monodromy
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associated to these covers. Next, in [§4] we establish that the geometric distribution of prime
order Selmer groups agree with that predicted by the BKLPR heuristic. In we show
that both the BKLPR heuristic distribution and our geometric distribution agree for prime
powers, by relating the two distributions for #7-Selmer groups to the two distributions for
¢7+1_Selmer groups via separate Markov processes. Finally, in @We put the pieces together
to the prove our main results.
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2. SUMMARY OF SELMER SPACES

2.1. Reviewing the definition of the Selmer space. Here, we briefly recall the con-
struction of the Selmer space and related spaces introduced in [Lan18| §3]. The new content
in this section occurs in where we introduce an sheaf is isomorphic to the Selmer sheaf
for the definition) on a dense open. This sheaf is closely related to the L-function
of elliptic curves, and hence gives us a way to access the analytic ranks of elliptic curves in
terms of the Selmer sheaf.

2.1.1. The space of Weierstrass equations. Throughout this section, we work relatively
over a scheme B on which 2 is invertible. As in [Lani8, Definition 3.1], define P} :=
Projp Op[s,t]. Form the affine space,

12d+3 ._
AB := Specg Op [a2,07 a1 ...,022d,a4,05---,04,4d,36,0 - - - » a6,6d]~

For i € {1,2,3}, define ag;(s,t) := Z?i:do ag; ;72477 Let #¢ C A3 denote the open
subscheme parameterizing those points such that the Weierstrass equation
Y’z = 2® + as(s, )z + ay(s, t)x2? + ag(s,t)2*

is a minimal Weierstrass equation.
2.1.2. The universal Weierstrass equation. As in [Lanl18), Definition 3.1], one can construct
a family of minimal Weierstrass models 2#/¢ over P* x #;¢ as the subscheme of

PI"OjIP’}3 xpWg Sym*® (ﬁ]}”}3 XpWg & ﬁ]P’}B XpWg (—2d) ® ﬁlP’lB XpWg (_3d)>
cut out by the equation

Y2z = 2° + as(s, £)2°2 + aa(s, t)w2® + ag(s, t)2°.

2.1.3. An open subset. As in [Lanl8, Definition 3.9], let 7/"% C #2 denote the open sub-
scheme over which 2/ — W is smooth. Let 2W°} = UWE Xopd W%, We also

. d .. o .
introduce #'% B C Wg as the open subscheme parameterizing elliptic surfaces with square-

P d d .
free discriminant and let 2#/'Yy := UV g Xopa #%'5. These are fiberwise open and dense

over B by [Lanl8 Lemma 3.11].
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2.1.4. The Selmer space. As in |[Lanl8 Definition 3.3|, denote by f and g the projection
maps

awd L Pl xp wd & g,
Assuming further that 2n is invertible on B. Define the n-Selmer sheaf over B of height d
as Sef‘fL’B = R'g. (R fij1,,). Define the n-Selmer space over B of height d, denoted Selfll,B
as the algebraic space representing the sheaf of Z/nZ modules Seﬁth. Let

od d d d d d
Sel*y, p 1= Sell g Xya #°p, Sel”,, p = Selt g xya WP,

2.1.5. A moduli stack of elliptic curves. Note that G2¢*! x G,, acts on #} and ¥4
compatibly. Loosely speaking, (rg,...,724) € G291 acts by sending = + z + 79s2% +
rts?dl 4o 4 rgat?d and A € G, acts by sending as;(s,t) — A\%ag(s,t), see [Lanl8)
Definition 3.4] for a more precise formulation in terms of Weierstrass equations. By [Sil09,
I11.3.1(b)], any two points in #}¢ corresponding to isomorphic elliptic curves lie in the same
orbit of this action. As in [Lani8 Definition 3.4], we define the moduli stack of height d
minimal Weierstrass models over B as the quotient stack

W= (MGG 1G]

2.1.6. The Selmer stack. As in [Lanl8, Definition 3.4], we define the n-Selmer stack over B
of height d as the quotient stack

Sel? ;= [selth /G2 5 Gm] .

. . . . d
Since the action of G24+! x G, restricts to an action on 2#°%, #°%, and Sel®;, 5, we

similarly define
od . [agrod j2d+1 pB  _ 29 ) ~2d+1
Vi .7[WB/GG x@m}, w2 = (WP )G % G,
and

Sel’ jy i= [Sel’f /G2 % G| el = {Selmi,B [G2 % Gy

Remark 2.1. For z € #Z or x € %dB, we use F, denote the corresponding elliptic curve.
Specifically, for x € W3, if f : wW G — P* x #3, then E, = f~1(n x x), for n the generic
point of P!. We often notate this by [E,] = z € #4. Similarly, for z € %0%, we notate
[E;] = « where E, is the elliptic curve corresponding to z.

2.2. The relation between Selmer spaces and Selmer groups. We have now defined
the Selmer space, but have not yet explained the connection to Selmer groups of elliptic
curves. The following lemma provides the relation.

Lemma 2.2 ([Lanl8 Corollary 3.21 and Corollary 3.24]). Let n > 1,d > 0,m > 0. Let B
be a noetherian scheme with 2n invertible, and let 7 : Selth — WE denote the projection
map.

(1) For [E,) =z € #°%(F,), we have

#Sel, (Ey) = # (7 '(2) (Fy)) . (2.1)
(2) For |[E.| =z € #&(F,) , we have
# Sel, (Ey) <n? - # (7 '(2) (Fy)) . (2.2)
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2.3. The sheaf governing rank. In this section we introduce a sheaf Sd g closely related

to the Selmer sheaf Sefd > often called a “middle convolution sheaf,” see L which
governs the rank of the elhptlc curve. Our goal will be to show the two sheaves are 1somorph1c
on the fiberwise over B dense open of %} parameterizing elliptic surfaces with squarefree
discriminant. We now define 8¢ .

Notation 2.3. Let B be a scheme with 2n invertible on B. Let j : U C PL x5 #/¢ denote
the open subscheme over which the projection f : Z#§ — PL xp #¢ is smooth. Let
g:PL xp WG — W2 denote the projection. Then, if ag : S — #¢ is a map of schemes, set
up the following commutative diagram, where both squares are fiber squares.

WG xpa S

US—>U
]Pl

Define E[n]s := (j°)*R'fZu, (we note that &[n|s is a slight abuse of notation since it
depends on the map ag and not just the scheme S). This sheaf represents the relative n
torsion of f9. Define the sheaf 8¢ ; := R'g, (7+€[n] ), with the implicit map a,yq : 7§ —
#¢ taken to be the identity.

Remark 2.4. Sheaves defined analogously to Sfll, p appeared in the context of quadratic

twist families of elliptic curves in [Hal08| §6.2] and [Zyw14) §3.2]. In fact, 8¢ B s itself a

reasonable candidate for the Selmer sheaf, but we will instead work with Seﬁfl) p» Which has
the advantage that it commutes with base change. On the other hand, we are not sure

. . . . d .
if 8¢ , commutes with base change in general, though it does over WYy, as we show in

Having defined 8¢ 5, we next wish to show it agrees with 8el , at least when both

are restricted to V/Z‘dB. To verify this isomorphism, we will construct a map between them
and check it is an isomorphism by checking it on fibers. The verification on fibers is fairly
immediate once we know that the formation of 8¢ ; commutes with base change, as we
now verify. A variant of the following [Cemma 2.5 is explained in [Kat02, Construction-
Proposition 5.2.1(3)].

Lemma 2.5. With maps f and g as in|Notation 2.5, the sheaf SiB is a constructible sheaf

of Z/nZ modules whose formation commutes with base change on "/ﬂmdB. More precisely,
for any base scheme S factoring through ”//mdB, the base change map
agng*(j*E[n]«,,/o%) - ngf(jfafg*ﬁ[n]wo%),
is an isomorphism.
Proof. Let ng,ﬁ[n]wg 2, 8%73 denote the map induced by ji€[n]ys — ji€[n]yq, using

the identification R1§!€[n]wg = Rlg, (1€[n]ya). Let S‘th LN ng*ﬁ[n]a,,,g denote the map
1



induced from the composition of functors spectral sequence for goj. We will show that SZ, B
is the image of the composition nglﬁ[n]wg 2, 8¢ 5 LN ng*ﬁ[n]wg. Once we show this, it
will immediately follow that SZ, g is constructible, being the image of a map of constructible
sheaves.

By the Leray spectral sequence, ¢ is always injective. Hence, to identify Sﬁ 5 as the

image of ¥ o ¢, we only need to show ¢ is surjective. To this end, define M as the quotient
sheaf j.€[n]ya/ji€n]ya. Note that M is supported on the complement of U which is finite

over #¢. Therefore, R'g.M = 0 and we conclude that nglﬁ[n]w,}g = ng*(jgﬁ[n],,/g) —
ng*(j*ﬁ[n]wg) = S%B is surjective. Hence, R'g. (j*E[n]Wg) is a constructible Z/nZ
module, being the image of a map of constructible Z/nZ modules.

To conclude, we show that the formation of SZ, p commutes with base change over WmdB.
Since 8¢ 5 is the image of ¥ 0 ¢ : R'G\&[n]yys — R'G.E[n]yy, it suffices to show that the
formation of both R'g,€[n]¢ and R'g,E[n],¢ commute with base change over #%%,. The
former commutes with base change by proper base change with compact supports.

To conclude, it remains to show the formation of R'g, &[n] wd commutes with base change

d . L . . . . N

over #%%;. We will do this using Poincaré duality and Deligne’s semicontinuity theorem
for Swan conductors [Lau81l Corollaire 2.1.2 and Remarque 2.1.3]. We first use Deligne’s
semicontinuity theorem to show Riglg[n}wg is locally constant constructible for all i > 0.

The semicontinuity theorem says that Rig,ﬁ[n}wg will be locally constant over any open

subscheme of #¢ for which the degree of P! x #9 — U — #4 is constant and the total
Swan conductor associated to €[n], 4 is constant.

We now verify the hypotheses of Deligne’s semicontinuity theorem by verifying P! x #/4 —
d .

U — #g has constant fiber degree over #%; and that the Swan conductor vanishes over
V/Z‘dB. Indeed, any elliptic curve corresponding to a point of 7/@% has reduced discriminant,
and hence 12d geometric fibers of type I; reduction and no other singular fibers, by Tate’s
algorithm. This shows P! x #¢ — U — #/% has constant fiber degree over V/WE. Finally,
the Swan conductor always vanishes when the reduction is multiplicative [Sil94] IV.10.2(b)].

Using that R'g,&[n] wa is locally constant constructible over WmdB we next deduce Rg, &[n] Wi
is as well via Poincare duality. Namely, Poincaré duality [Ver67] gives an isomorphism of
sheaves in the derived category

Ry, R Aom(Elnl g, pn[2]) = R A 0m(RGE[nly s ).
Note that the [2] denotes a cohomological shift by 2 while the [n] refers to the n-torsion.
We will now take (—1)st cohomology of both sides. By construction of U, E[n],,/g is lo-
cally constant on U, and therefore the ith cohomology of Rg, R# om(E[n]ya, pn[2]) is given
by R*2g, HAom(E[n]ya, pn) = R*2g,&[n] w4 the latter isomorphism induced by the Weil
pairing. Additionally, since R‘ig!él[n}wg is locally constant constructible, we get that the
ith cohomology of R #’om(Rg,&[n]ya, ua(2]) is given by %om(R_iglﬁ[n]Wg,un). There-
fore, taking (—1)st cohomology of the Poincaré duality isomorphism yields an isomorphism
Rlﬁ*ﬁ[n]wg o~ (R@,E[n]wg)v. Since the right hand side is locally constant constructible

over V/Mé, the left hand side is as well, and therefore commutes with base change. O

. . d . .
We next produce an isomorphism Sef Blyps ~ 8¢ Blyma over W%, crucially using
12



that the formation of both sheaves commute with base change.

Proposition 2.6. Retain notation from|Notation 2.8 There is canonical map R f, i, —
Jx€[nlya of sheaves on Py xp#§. This map induces an isomorphism R' g, (R f.fin)],ua ~
B

ng*(j*8[n]wmg), which commutes with base change.
Proof. Retaining notation from [Notation 2.3] define the maps j’ and f as in the fiber square

Wy —2 s g
Jf’ lf (2.3)
U —L— PL xp wg.
We have canonical maps coming from Leray spectral sequences
R fo(kn) = R fu(Gipn)
- Rl(f 0 J")ubin
=R'(jo f)en
= R fl pin.
Using the Kummer exact sequence (possible since n is invertible by [Notation 2.3) and the

assumption that the fibers of f’ are smooth connected elliptic curves so [BLR90, §9.5,
Theorem 1] applies, we obtain isomorphisms

(2.4)

G R fipn = ji Picw, juln] = j. Pic%VU/U[n] ~ j€ln]yqa. (2.5)

Composing with (2.5)), we obtain the desired map R! f, (pn,w) — Jx€ln)ya.

We show this map induces an isomorphism ng*(le*ﬂanM% — ng*(j*c‘l[n]wm%).
To verify this is an isomorphism, it suffices to do so on stalks. As the formation of both
sides commutes with base change by proper base change and we can check this
is an isomorphism in the case that the base is a geometric point.

Thus, it suffices to show that if f* : W, — Pl is a smooth minimal Weierstrass model
corresponding to a point z € #¢, j* is the restriction of j to x, and g® is the restriction of g
to x, then the map on stalks ¢, : R'g% (R f®u,) — R'g®(j®(&[n],)) is an isomorphism. It
suffices to check the map R!f%u, — j%(&[n],) inducing ¢, under R'g® is an isomorphism.
To this end, by [Lanl8, Lemma 3.7|, the étale sheaf R'fZu, is represented by the Néron
model of E,[n] on the small étale site of PL, while j¥(&[n],) is also represented by the Néron
model of E,[n] by the Neron mapping property. The Néron mapping property implies that
to check the map R f%u,, — j%(€[n],) constructed in is an isomorphism, it suffices to
check its restriction to U is an isomorphism. That is, we want to show the base change of
F R fu(tn) — j*j*E[n]Wg ~ R'f!§" u, to x is an isomorphism. If we could show this is
the natural base change map, it would indeed be an isomorphism by proper base change.

So, to conclude the proof, we only need to check the constructed map j*R!f.(u,) —
R f' 5" t1,,, coming from pulling back along j, is the base change map. Indeed, this
follows from the definitions. In more detail, recall that for .7 a sheaf on #4, the base
change map is given as the map of §-functors j* o (R*f.)F — (R*f]) o 7*% induced via
the degree 0 composition j* fu.# — j* foilj*F — 7*4fl1i*F — fli"*F, see [FK88, §6,
p. 60-61]. However, pulling back the map of along j is given by the composition
JR fuptn = R fi (32" pn) — G R (G 0 f')u(5" ) — R' (5" ). This is precisely the
resulting map on degree 1 -functors, and hence is the natural base change map. |
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3. THE PRECISE MONODROMY OF SELMER SPACES

The main result of this section is where we compute precisely the mon-
odromy group associated to the cover Sel®, 5 — #°;B. In order to state the theorem,
we first introduce some various notation relating to orthogonal groups and the monodromy
representation. Following this, we recall a general result on equidistribution of Frobenius

elements in The remainder of the section is devoted to proving whose
proof is outlined at the end of

3.1. Adelic notation. For R an integral noetherian ring with fraction field Frac(R) such
that char(Frac(R)) = p, let

Z® = lim 7Z/nZ~ Zo.
ged(n,p)=1 / ¢ };[me
r#p

We allow p = 0, in which case 720 = 7.
3.2. Notation for orthogonal groups.

3.2.1. Notation for quadratic forms. Let R be a ring. A quadratic space over R is a pair
(V,Q) where V is a free module over R and @ : V — R is a quadratic form. We say a
quadratic space (V, Q) is nondegenerate if the hypersurface defined by the vanishing of @ in
PVV is smooth over S. See [Conl4, C.1] for a characterization in terms of non-degeneracy of
the associated bilinear form on fibers. Let O(Q) the corresponding orthogonal group. Note
that we will use O(Q) to denote both the group and the group scheme. We will primarily
consider it as a group, and whenever we use it to denote the group scheme O(Q), we refer
to it as “the algebraic group O(Q).”

For ¢ : R — S a map of rings, we denote (V3,Q4) :== (V ®r S,Q ®r S). When the map
¢ is understood, we notate this as (Vs, Qg) := (V, @Q4). In the special case that S = Z/nZ,
we will also use (Vy,, Sn) := (Vz/nz, Qz/nz)-

Definition 3.1. For d > 1, define the quadratic space (V, Q%) to be the rank 12d — 4
free Z module associated to U®??=2) g (—Fg)®?, for U a hyperbolic plane and —Fg the Eg
lattice with the negative of its usual pairing. Then (V,¢, Q%) denotes the reduction of this
quadratic space modulo n.

For @ a quadratic form on a free module V over a ring R, the associated bilinear form
Bg : V xV — R is defined by

Bg(z,y) = Q(r +y) — Q(z) — Qy).

In what follows, we assume the quadratic form @) is nondegenerate.
For v € V, with Q(v) € R* invertible, denote the reflection about v (sometimes also
called an orthogonal transvection, cf. [Wil09, 3.8.1])

ry: Vo>V
Bg(w,v)
W w— — "
Qv)
Remark 3.2. When R is a field, O(Q) is generated by these reflections so long as (R, rk V') #
(Fy,4) [Ched7, 1.5.1].
14



3.2.2. The spinor norm. For completeness, we briefly recall the formal definition of the
—1-spinor norm. We follow [Conl4l p. 349] which gives the definition in the more general
context of algebraic groups. Let (V, Q) be a quadratic space over R, and suppose that either
rk V' is even or 2 is invertible on R. The +1-spinor norm is then defined as the boundary
map on cohomology

spg, : O(Q) — H'(Spec R, pg) ~ R*/ (RX)2

induced by the sequence of algebraic groups ps — Pin(Q) — O(Q). Then the —1-spinor
norm on O(Q) is the +1-spinor norm for O(—Q) composed with the identification O(Q) —
O(—-Q) [Conld, Remark C.4.9, Remark C.5.4, and p. 348]E|

In the case Q(v) € R*, the reflection r, satisfies sp, (1) = [-Q(v)], the coset represented
by —Q(v) in R*/ (RX)Q. Note that the spinor norm is trivial in the case R = Fy. When

R = k is a field with k # Fy, then O(Q) is generated by reflections (cf. [Remark 3.2), and
spg is then characterized by spg(ry) = [-Q(v)].

Definition 3.3. For (V, Q) a nondegenerate quadratic space over a ring R, define O* (Q) :=
kersp, C O(Q) to be the kernel of the —1-spinor norm.

3.2.3. The adelic spinor map. We now spell out some notation to describe the spinor map for
a quadratic form over Z®). Let p either be a prime or p = 0. Let (V, Q) be a nondegenerate
quadratic space over Z®). Let

spQ:O(Q)—>(Z(”)>X/((Z(’))>X)2f:(Z/2Z)2>< 1 =z

odd primes {#p
2
where the first copy of (Z/2Z)? comes from (Z/27)? = 7.5 | (23 )? ~ (2,/82) ] ((Z/SZ)X>

2
and the copy of Z/2Z indexed by an odd prime ¢ comes from Z, / (ZZ)2 ~ (Z)6Z)* ) ((Z/EZ) X) .
When p # 0 and ¢ is a power of p, we let

[q] € (Z@))X / <(Z<P>)X>2 ~@zpz)?’x [ z/2z

odd primes ¢#p

denote the element induced by multiplication by ¢ on AQN

3.2.4. The Dickson invariant. Next, for (Q, V) a quadratic space over a ring R with Spec R
connected, the Dickson invariant is a map

D : O(Q) — Z/2Z,

as defined in [Conl4l (C.2.2) and Remark C.2.5]. In the case (Q,V) is a quadratic space
over a ring R such that Spec R is a disjoint union of finitely many connected components,
such as when R = Z/nZ, we define the Dickson invariant as the resulting map

Dq : O(Q) — (Z/22)#™ P )

3Although it will not be relevant to this paper, as we shall ultimately only be interested in the even
rank quadratic space of one can define the spinor norm on O(Q) in the case that R is a field
of characteristic 2 and rkV is odd. This can be done using the equality O(Q) = SO(Q) as groups since
the algebraic group SO(Q) is the underlying reduced subscheme of the algebraic group O(Q), see [Conld],
Remark C.5.12].
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obtained by restricting to a given connected component of Spec R and then applying the
Dickson invariant on that component.
In the case R = Z®), we define the Dickson invariant as the resulting composition

[Tprimes ep Py,
De:0@Q = [[ 0@, =22 22 ] z/2z

primes {#p primes {#p

In all cases above, for Dg : O(Q) — [],cgZ/2Z for an appropriate set S, we let Az oz :

7)27 — [],cg Z/27Z denote the diagonal inclusion sending 1~ (1,1,...,1).

Warning 3.4. Our definition of the Dickson invariant for a quadratic space over 7Z® may
differ from the more general scheme theoretic definition given in [Conl4l (C.2.2) and Remark
C.2.5]. There, it is defined as a map to (Z/2Z) (Spec R), the global sections of the locally
constant sheaf Z/27Z on Spec R. However, there is a natural map (Z/2Z) (SpecZ®) —
[ psimes ¢p Z/2Z, and our definition of the Dickson invariant is the composition of the
Dickson invariant as in [Conl4, (C.2.2) and Remark C.2.5] with this natural map.

Remark 3.5. In the case that 2 is invertible on R with Spec R connected, the Dickson
invariant agrees with the determinant [Conl14l, Corollary C.3.2]. However, over a field k of
characteristic 2, the determinant is trivial while the Dickson invariant is nontrivial (and it
is nontrivial on k-points when the rank of the quadratic space is even) [Conl4, Proposition
C.2.8].

Over a field of characteristic 2, the Dickson invariant is sometimes also called the pseu-
dodeterminant, and the following explicit description, which follows from the fact that
reflections always have nontrivial Dickson invariant, will be useful: For any T € O(Q),
and any expression of T as a product of reflections T = r,, - - - r,_, (which exists so long as

(k,tk V) # (IF3,4) by|Remark 3.2}) the Dickson invariant is given by the map O(Q) — Z/2Z
which sends T' — s mod 2.

3.2.5. The Joint Kernel.
Definition 3.6. Define Q(Q) C O(Q) as Q(Q) := ker Dg Nkersp,,.

Because the —1-spinor norm agrees with the +1-spinor norm when restricted to SO(Q),
it follows that Q(Q) is also the joint kernel of the Dickson map and the +1-spinor norm.

3.3. Notation for the monodromy representation. When d > 0, the map = : SeloiB —
V/OdB is finite étale, representing a locally constant constructible sheaf of rank 12d — 4 free
Z/nZ modules by [Lanl8 Corollary 3.19]. For B an integral noetherian Z[1/2n] scheme,
letting V¢ denote the rank 12d — 4 free Z/nZ module corresponding to the geometric generic
fiber of 7, we obtain a monodromy representation pg 5 : w1 (#°%) — GL(V,%) [Lan18| Def-
initions 4.1 and 4.2].

Remark 3.7. Strictly speaking, we should keep track of base points in our fundamental
groups. However, as we will ultimately be concerned with integral base schemes B, changing
basepoint only changes the map pfb by conjugation on the domain. Since we will only care
about the image of pi x> we will often omit the basepoint from our notation.

For R a ring, we use p? p to denote pf o .. p.
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3.3.1. The adelic monodromy map. For n’ | n both prime to char(k), we obtain a map
Selofh R Selofb,7 » over #°% induced by the corresponding map ¢, s : fin — fin sending
Yy — y"/"/ in the definition of SelfhR from Because ¢ n = ¢n/ n/ © ¢p ps, the mon-
odromy maps p? ; : T (#°%) — GL(V,%) fit together compatibly to define a monodromy
W R (oL — GL(Vi‘i(p)
duction modn map r, : GL(V4 ) — GL(V,4) and p%m’R is uniquely characterized by the

representation ,0% ). For n prime to p, we have a natural re-

7.(p)
: d _ d
property that for all n prime to p, r, (pi(P),R) = P R

3.4. An equidistribution result. For = € Wz‘i[l /2] let Frob, be the conjugacy class of

(geometric) Frobenius at x in Wl(V/ZdU /2}). In this section we prove an equidistribution
result for Frobenius classes in the monodromy group, in the large ¢ limit. To state the
proposition, we define the “mult” map.

Definition 3.8. Let X be a geometrically connected finite type scheme over F,, let G be
a profinite group, and let A : m(X) — G be a group homomorphism. Let Gy denote the
image of the composition 7{*”"(X) := m1 (X5 ) — m1(X) — G and let I' := G//Go. Then,
we define mult : G — T as the natural projection. Because 71 (SpecF,) = w1 (X) /757" (X),
we obtain a resulting map m (SpecF,) — I'. We let ~, denote the image in I" of geometric
Frobenius.

The following is an equidistribution result for Frobenii in a monodromy group, which is
a generalization of [Kow06bl Theorem 1].

Proposition 3.9. Let X be a smooth affine scheme of finite type over O[1/S], where O is
a ring of integers in a number field, with geometrically irreducible fibers. For q a mazximal
ideal of O[1/S] with residue field ¥, write X := X|o/q. Assume that we have a commutative
diagram

1 —— 78O(X) —— my(X) 25 7 —— 1

le l)\ llH'y;l (3.1)
1 Go G —mult 1

with Ao tamely ramified and surjective, G a finite group, and I' abelian. If C C G is a
conjugacy class, then

mult ;”
Prob{z € X (F,.): A(Froby) € () = 701G | o) (#G1 / 7‘1}?) .

#Go

where G™ Y = mult_l('y;). Here the constant in the error term Ox (#G f?) is
independent of q, the choice of G, and the choice of A, so long as \g is tamely ramified and

surjective.

Proof. By the Lang-Weil bound, we have #X(F,) = ¢ 4 O (g4 DCF‘fl/Q) and so
after multiplying both sides by #X(F,) (see also [Kow06b, Remark 2[), this statement
nearly appears in [Kow06bl, Theorem 1]|. There are two differences however: First, Kowalski
assumes that #G is prime to ¢ instead of only that \g is tamely ramified. Second, Kowalski
works over a field instead of over O[1/S]. The proof of is the same as that
given in [Kow06bl, Theorem 1], once these two differences are addressed.
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First we address the tamely ramified constraint. Indeed, a careful examination of the
proof of [Kow06b, Theorem 1], shows that the only reason for assuming #G is prime to g
appears in the reference to [Kow(6a, Proposition 4.7], which in turn only uses this assump-
tion in its reference to Proposition 4.5]|, which in turn only uses this assumption
in [Kow06al, (4.13)]. However, [Kow(6al, (4.13)] holds whenever )¢, or the associated map
labeled ¢ in [Kow06a], is tamely ramified, see [III&T], 2.6, Cor 2.8]. We note that a generic
hyperplane section of a tamely ramified cover remains tamely ramified, using Bertini’s the-
orem to ensure that the hyperplane intersects the divisor of ramification generically. Hence,
[Kow(64a, Proposition 4.6], used in the proof of [Kow(6al, Proposition 4.5], can be suitably
generalized to include the assumption that the restriction of ¢ to the hyperplane is tamely
ramified.

Second, we address the issue of working over O[1/5] in place of a finite field. The proof
in [Kow06b] shows that if X comes as the reduction of a smooth X over O[1/5], then the

constant in the error term Oy (#G, / %) of |Proposition 3.9/ can be taken to be a sum of
(compactly supported) Betti numbers of X, which is uniform in g by Ehresmann’s Theorem
and proper base change for compactly supported étale cohomology. This applies in particular

to the Selmer spaces, as they are smooth over Z[1/2]. O

In computing the image of the monodromy representation associated to the Selmer space,
the following criterion for when an irreducible cover is geometrically connected will be cru-
cial.

Corollary 3.10. Let Y be a geometrically irreducible finite type F, scheme and let m: X —
Y be a finite étale connected Galois G cover corresponding to a surjective map p: m(Y) —
G. Then, X is geometrically disconnected if and only if there exist infinitely many positive
integers i such that for all y € Y (Fy:), p(Froby,) #id € G.

Proof. If X is geometrically connected, then once 7 is sufficiently large, there do exist y €
Y (F,:) with p(Frob,) = id, using the equidistribution of Frobenius elements in G resulting

from [Proposition 3.9| (using that G = Gy in that statement).
We next show the converse. By commutativity of the rightmost square in [Proposition 3.9}

if there are infinitely many ¢ so that for all y € Y (IFy:), p(Frob,) # id, then we must have
vg # id € T, for I' as in However, 7, = id € I' precisely when the
monodromy group G agrees with the geometric monodromy group Gy. Therefore, X is not
geometrically connected. O

Corollary 3.11. Retain the notation of|Definition 3.8 For anyn > 1 and C' C im pz,z[l/%]
a conjugacy class and Fy a finite field of characteristic p with ged(p,2n) = 1, we have

# {x € 51120 (Fg) : P2 211 2y (Froby) € C} _ { o+ Ona(¢7?)  if mult(C) =,

#im p"ijp
#WO%[UM] (Fq) 0 if mult(C) # .

The same statement holds true with %OZ in place of ”//oﬁ.

Proof. The first statement follows immediately from Note here that G and
C' as in the statement of are fixed, and so we may absorb their orders into

the constant in the error term O,, 4(¢~/?).
To deduce the equidistribution statement for %oi from #°¢, note that the monodromy

representation for #°¢ is induced by the cover &Oi,k — #°¢. Further Seloi,k is the
18



pullback of Sel°? , along #°{ — #°{, i.e. the diagram

od od
Sel n,k B M n,k

| l

d
A p—/

is cartesian. In other words, the monodromy representation associated to Seloiy,€ — Woz
factors through mi (#°}) — m (%"Z). This implies that if 2,5 € #°{ map to the same
point in #°} then P}k (Frob,) = pf , (Frob,). Because W = [l JG2H! % G,,], Lang’s
theorem applied to the group G2¢*+! x G,, shows that each z € Koi(ﬂ?q) (counted with
multiplicity according to automorphisms) has precisely G24+1 xG,,, (F,) points lying over it in
V/Oz(Fq), all mapping to the same conjugacy class under p‘fl’k. Therefore, the distribution of

pfhk(Frobm) for € #°¢(F,) agrees with the distribution pi,k(Frobz) for z € %Oz(]Fq). O

3.5. Determining the image of monodromy. In [Lanl8 Theorem 4.4], a partial de-
scription of im p‘i’k was given for k a field. The goal of this section is to precisely compute

im pi,k' First, we recall the description from [Lanl8 Theorem 4.4]. Keeping notation
as in for (V,Q) a quadratic space over a ring R with a map R — Z/nZ, we let
(Vi Qn) == (Vzynz, Qz/nz) and let r, : O(Q) — O(Q,) denote the induced reduction mod n

map of orthogonal groups. We will be most concerned with the case R =7 or R = 7@,

In [Lani8, Theorem 4.4] a quadratic space (V, Q%) over Z is defined. This agrees with
that defined in by [Lani8, Remark 4.5]. With these definitions, [LanlS8|
Theorem 4.4] states

P(O%(@4)) impt ¢ Cimpil, € O(@Q).

We next recall a slight generalization of the usual cyclotomic character, which we shall
need to characterize im p? .

Definition 3.12. For k a field of characteristic p, allowing p = 0, we define the cyclotomic

— ~ X
character as the map Xy : Gal(k/k) — (Z(”)) defined as follows: For v a positive integer

with (v,p) = 1 when p > 0 and v arbitrary when p = 0, let {, be a primitive vth root of
unity. For o € Gal(k/k), suppose o((,) = (,"7. Then, define Xcyc(0) := (ay,)y, considered

~ X
as an element of (Z(p)) .

Remark 3.13. Note that xcy. of [Definition 3.12]is the usual cyclotomic character when
char(k) = 0. Further, from the definition, in the case p # 0, k = F,,, and ¢ is a power of p,

~ X
we have Xcyc(Frob,) = ¢ € <Z(p))

For the statement of recall the notation for the spinor norm and Dickson
invariant from Also, let Ag)97 : Z/27 — Hprimes tp 7./27 the diagonal inclusion. For

k a field of characteristic p and d € Zx>o, let x%~! denote the composition
o d—1 N % N « . <\ 2
Gal(F/k) “ (2®) " — (29) " ((Z(P)> )
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Theorem 3.14. Let k be a field of characteristic p, allowing p =0, and let d € Z>o. With
Azyoz and %1 defined above,

-1
impi,k =D} (im AZ/QZ) N (Sinl(p)) (imxd_l).

7(p) Z
Example 3.15. Let’s explicate what says in the cases of interest to this
paper.
o If k is algebraically closed or d is odd, then
. d -1 . _
impz, - =D imA Nker (s .
pZ(p)7k. Q(ii(p) ( Z/QZ) ( pQ%p))

o If d is even and k = IF, has characteristic p > 0, using [Remark 3.13] we have
N -1 - -1
& =D A N
m pZ(P)Jg szi(p) (lm Z/QZ) (SpQ'{Zi(P)) (<[Q]>)
where ([q]) is the group generated by the class of q.
We will prove at the end of this section in [§3.10] The general outline of

the proof is as follows. First, in[§3.6] we show the image of the monodromy representation
contains Q(Q%(p)). Next, in , we explain how to compute the spinor norm and Dickson
invariant of images of Frobenius, in certain cases. Then, in and we compute the
spinor norm and Dickson invariants on im p% for k a finite field. Finally, we piece these

parts together in

3.6. Showing the monodromy is big. We next explain how to deduce Q(Q%m) C

)k’

im p%(p)% by combining [Lani8&, Theorem 4.4] with some group theory.

Lemma 3.16. For d > 2 and n > 1, we have r,(0*(Q%)) D Q(Q%). In particular, com-
bining this with Theorem 4.4] gives Q(Q%) C im piz and so Q(Q%m) C imp%(p) =

Proof. The last sentence follows from the first by [Lan18, Theorem 4.4], which says r,,(0* (Q%)) C
im p%(p)%'

We turn our attention to proving the first statement. For every v € V.4, with Q% (v) = —1,
there exists a lift ¥ € V; with Q% (v) = —1, as is shown in the proof of Lemma 4.13]
(which implicitly assumes d > 2 so that (VZ, Q%) contains summands isomorphic to the
hyperbolic plane). Let R(Q%) denote the subgroup of O(Q¢) generated by elements of the
form 7, for v € V4 and let R'(Q%) denote the subgroup of O(Q%) generated by elements of
the form r, o r,, for v,w € V¢ with Q% (v) = Q% (w) = —1. We next show R(Q%) = O(Q%)
and R'(Q) = Q(Qs).

Recall a quadratic space (V,Q) over Z is unimodular if Bg is invertible as a linear
transformation over Z or equivalently the natural map induced by Bg from V to V'V, the
dual lattice, is an isomorphism.

In the case that n is a prime power, since (VZd, Q%) is unimodular and nondegenerate of
rank more than 5 (see [Lanl8, Remark 4.5]), it follows from [Kne84l Satz 2| that R(Q%) =
0(Q%). By [Kne84, Satz 3] it follows R'(Q%) = Q(Q2). Note that [Kne84, Satz 3] is stated
for R'(Q%) generated by elements of the form r, o7, for v,w € V4 with Q% (v) = Q% (w) = 1,
instead of Q% (v) = Q%(w) = —1. However, we may arrange the latter by applying
Satz 3] to —Q% in place of Q4. Therefore, Q(Q%) = R'(Q%) C r,(0(Q%)).
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For the general case, write n = Hf , p¥ for pairwise distinct primes p;. Since Q(Q%) =
H:'=1 Q(Qz?i), it suffices to show the image of Q(Qd ) — Hz 19(Q gi), included as the

ith component, is contained in r,(0* (¢)). For thls choose v,w € Val with Q (v) =
QZ? (w) = —1 and choose lifts 7,w to V.4 so that ¥ = @ mod H1<]<nﬁé1p]' and Qd( ) =

Q?L(ﬂv}) = —1. We then ﬁl’ld that T3 Oorg agrees Wlth Ty OTw Whel’l reduced HlOdp;-h and is the
identity when reduced modp;” for any j # i. It follows that r,(O0* (¢)) D jm(Q(Q;l%) N
H:Il Q(ngi )), as desired. 0

3.7. Tools to compute the Dickson invariant and spinor norm of Frobenius. In this
section, we prove |Proposition 3.17| which allows us to compute the spinor norm and Dickson
invariants of the images of Frobenius elements under the monodromy representation. The
following result essentially appears as Proposition 2.9], where an analog is stated
over Z/¢Z in place of Z(® . The following generalization has essentially the same proof, using
that L-functions associated to elliptic curves are power series with coefficients in Z. Slight
care must be taken to deal with the fact that the determinant disagrees with the Dickson
invariant over fields of characteristic 2.

For E an elliptic curve over Fy(t), we let L(T, E) denote the L function associated to E
and let e € {£1} denote root number associated to E, see [Zyw14] §2.3] and [Zyw14], §2.2]
respectively for a definitions. The only property of root numbers we will use is that they
appear in the functional equation of the L function associated to E. Recall our notation
[E.] = 2 € #¢ where E, is the elliptic curve corresponding to  as in

Proposition 3.17 (Mild generalization of [Zyw14, Proposition 2.9]). Let d > 1.
(1) For [E,) =z € ¥, (Fy), Do (0%, k(Frobm» = Agsoz((1 —€E,)/2).
(2) For [Ey)=x € V/M;p (Fy), whenever det(id —p%( ) k(Frobx)) =0, we have

g0 (py, (Froby)) = ¢
72(p) ’

)

~ X —~ X 2
where [q] is the class of the integer q in (Z(p)) / ((Z(p)) ) .

In order to prove [Proposition 3.17| we will need the following Lemma, which is essentially

shown in [Zyw14] p. 10].

Lemma 3.18. Let d > 1, p an odd prime, { a prime with £ # p, and [E;] =z € Wz';p (Fy).
Then, letting L(T, E,) be the L-function associated to E,, we have
det(id —pf, g, (Frob,)T|Vy,) = L(T/q, Ez),

viewed as an equality of polynomials with coefficients in Zy. In particular, the analytic rank
of E,. is equal to the Zy-rank of the generalized 1-eigenspace of p%z,le (Frob,) on VZ'

Proof. Let L(T, E,) denote the L-function of E,, which is in fact a polynomial of degree
12d — 4 with integral coefficients Theorem 2.2]. Define g, := p%e’Fp (Frob,). It
suffices to show that
det(id —g, T|V4. ®z, Q) = L(T/q, E.)
viewed as an equality with coefficients in Q,. As explained in p. 10], we have
L(T/q, E;) = det(id — Frob, T|H" (P ,j.T¢(Ez)) ®z, Q)
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where j,.T¢(Fz) is defined as follows. Let U denote the open subscheme of IP’% over which
the minimal proper regular model of FE, is smooth. Let j : U — IP% denote the inclu-

sion morphism. Let Ez[¢*] denote the rank 2 locally free sheaf of Z/¢*Z modules param-
eterizing the ¢* torsion of the smooth minimal proper regular model of Ez over U with
J«Ex[¢] the pushforward sheaf on P} . Define j,T}(Ez) = lim, j, E5[¢*] with transition

maps j. E,[(*T1] — j.F,[(¥] given by multiplication by £.

We next identify H'(P% , j.T;(Ez)) with Vi so as to compare this representation with
q

pd & . By|[Proposition 2.6} there is a natural identification between the geometric fiber of the
€T p

Wl SpecF, ~ Hl(P%q,j*Ef[ﬁk]). Further, these are both

free Z/¢*Z modules of rank 12d — 4 by [Lani8, Corollary 3.19]. By compatibility of these
isomorphisms with the maps E[¢(**!] — E[(*] we obtain the equality det(id —g,  T'|V ®z,
Q) = L(T/q, E.), viewed as an equality of polynomials with coefficients in Qp.

To conclude the proof, it remains to explain why the final statement regarding analytic
rank follows from the equality det(id —g, ¢T') = L(T/q, E;). The analytic rank is the largest
power of T'— 1 dividing L(T/q, E;) = det(id —g, (T). This agrees with the largest power

d
Selmer space over z, Sel” o+ F, X

of T'— 1 dividing det (g; 1, — T), which is the characteristic polynomial of gx_%. Hence, the

analytic rank agrees with the dimension of the generalized 1-eigenspace of g;é, which is the
same as the dimension of the generalized 1-eigenspace of g, ¢. O

Proof of [Proposition 3.17 Define g, := p%epr (Frob,). First, we verify (1) regarding the

Dickson invariant. From the definition of the Dickson invariant from to compute

the Dga  (pd (Frob,)), it is equivalent to compute Da (p¢ r (Frob,)) for each prime
7(p) Z(P),[Fp QZI{ 0L p

¢ # p separately and show this is equal to (1 —ep,)/2.

Next, observe that det(T'— g, ¢) = det(ng;j). Indeed, for any nondegenerate quadratic
space (V,Q) and M € O(Q), and for M" the transpose of M, we have M'BoM = By —
Mt = BélelBQ. Hence, the characteristic polynomial of M agrees with that of M?®
which agrees with that of M ~!. Therefore, the characteristic polynomial of g, , agrees with
that of g;% using g, ¢ € O(Q4,) by the easier containment of Theorem 4.4].

Therefore, we have

T2~ det(id —gu  T7') = det(T — ger) = det(T — g, ;) = det(—g, ;) det(id =g, T)
= (—1)"29"* det(g, ¢) det(id —g,¢T) = det(g,.¢) det(id —g,. ¢ T).

By [Zyw14, Theorem 2.2] in conjunction with [Lemma 3.18} we also have
T4 det(id —g, /T 1) = ep, det(id —g, (T,

implying det(g,¢) = €g,. Note that in the case ¢ = 2, we are using crucially that we are
working over Zo which does not have characteristic 2. The relation between the Dickson
invariant and the determinant for matrices over Zsy given in Corollary C.3.2] implies
(1).

We next verify (2). It suffices to verify spézﬁ (p‘Zlbk(Frobw)) = [¢¢1], for every prime ¢ # p.
As in the previous part, let g, ¢ := p%b]Fp(Frobi). First, observe that as det(id —g, ¢) # 0, it
follows that g, has trivial 1-eigenspace. Because the Dickson invariant for an orthogonal
group over a nondegenerate free module of even rank is congruent to the rank of the 1-

eigenspace mod2 by [Tay92, p. 160], we find g, € SO(Q%Z). Therefore, SP (9z0) =
Zy
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spz)%lZ (9z.0). By [Zas62, §2, Cor.| (see also [Conldl Theorem C.5.7]), and Spé%l(—l) =

disc(Q%z) [Conidl Lemma C.5.8], one can compute the spinor norm of g, ¢ as

Spéze (Qm,é) = Spg%z (91,2) = Spgge (* id)spg%l (*gz,é)

= dis(Qf,) - det (£ ) (2 = 2%V (1 - .0) - (2
= det(id —g.¢) - (Z))*.

Then, using the identification det(id —g, (T|Vy ) = L(T'/q, E,) of [Lemma 3.18}
D¢ (90d) = det(id —gu) - (2 = L(1/0, ) - (2

To conclude the proof, we only need check L(1/q, E) € ¢*~*(Z))?. In fact, considering
L(T, E) as a polynomial with integer coefficients, we will verify L(1/q, E) € ¢?~'(Q*)?, and
the fact that both L(1/¢, E) and ¢?~' lie in Z; will imply they agree up to a square in
Z; . Since det(id —g,¢) = L(1/q, E;) and det(id —g, ¢) # 0, we find that the L function of
E, has analytic rank 0, meaning that ordy—,/q L(T, E;) = 0 or equivalently L(1/q, E,) #
0. It follows from [Zyw1d4] Corollary 2.6] (as is deduced from the Birch and Swinnerton
Dyer conjecture, applicable because the analytic rank and algebraic rank are both 0) that
L(1/q,E,) = ¢ g, - (Q%)°, for cp, the Tamagawa number of E,. Observing that
cp,=lasx € V/Oi, we find L(1/q, E,) = ¢~ 17¢- ((@X)Q, as desired. |

3.8. Controlling the Dickson invariant. Using [Proposition 3.17] we next compute the
image of im p% under the Dickson invariant map.

() |k

Lemma 3.19. For any field k of characteristic p # 2 (allowing p = 0) and any height
d > 2, the image of the map
od
Das, | 0 PGy i (W) = I zrz

Z
primes {#p

18 im(Az/Qz).

Proof. First, because r,(0* (Q%)) C piE by [Lanl8, Theorem 4.4], the Dickson invariant
must be nontrivial on im pfl 7o as it is nontrivial on O* (Q%). Therefore, it is similarly

nontrivial on im p%(m e Therefore, to conclude the proof, it suffices to show im DQg( L °
) z\p

p%(m, e im Ay /57. Further, from the definition of profinite groups as a limit of finite groups,
it suffices to show that for any integer n of the form n = ¢; - - - ¢, for primes ¢1,...,¢; with
no ¢; = p, imDga o p‘fhk is contained in im Az o7,

By base change, it suffices to establish the containment im DQ% o pi,k C im Az/97 when
k is either Q or a finite field of odd characteristic. If the composition Dga o pf“k defines a
surjective map 7r1(7/°i) — @, we obtain a resulting finite étale Galois G-cover Ug n q.x —
#°¢. By Chebotarev density, for example as in [Eke90, Lemma 1.2], it suffices to establish
that Ugn,qa,0 is geometrically connected and to establish the claim for all finite fields %
of odd characteristic. Further, geometric irreducibility for Ug .4, follows from geometric
irreducibility of Ug,n,qr, for all but finitely many primes p, because Ug pn,ar — Wl —
Speck is in fact the base change of a map Ug . 4,721/2] — V/O%[l/Q] — SpecZ[1/2], and the
set of fibers on which a map is geometrically connected is constructible [Gro66, Corollaire
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9.7.9]. Hence, it suffices to demonstrate that for each finite field k& of odd characteristic,
imDga o pd i 1s contained in im Az/s7 and Ug n,d,k i8 geometrically connected.

For all finite fields k of odd characteristic and all zz € #°{(k), by [Proposition 3.17|we have
Dqa o pn, i (Frob,) C im Az 9z. For all sufficiently large ﬁnlte ﬁelds of odd characteristic, it
follows from applied to the G-cover Ug . a5 — Wog constructed above that
ImDga o pd , Cim Agz/97- Since the reverse containment also holds, we have equality for
all sufﬁmently large (in the sense of divisibility of cardinality) finite fields. It follows from
[Corollary 3.10] that over any finite field &, the resulting G-cover is geometrically connected,
and so the containment Dga o pmk(Frob ) C im Agz/97 in fact holds for all finite fields of
odd characteristic. O

3.9. Controlling the spinor norm. We next use|Proposition 3.17|2) to analyze the spinor
norm applied to im p%(p) . For this proof, we will need to know there are many elliptic curves

[E.] € #°{ with trivial 1-eigenspace. This will follow from the group theoretic statement
soon established in [Proposition 3.22| In order to state this precisely, we recall a relevant
distribution ¢-adic points of a finite type scheme from [BKLT15|. All but the last statement
appears in [BKLT15, Lemma 2.1(b)], while the last statement appears in [Ser81], Corollaire,
p. 146].

Lemma 3.20. Let X be a finite type Z, scheme of dimension d and equip X (Z,) with the £-
adic topology. There exists a unique bounded R>¢-valued measure px on the Borel o-algebra
of X(Zy) such that for any open and closed subset S of X(Z,), we have

px(S) = lim # (image Of(i )ZZ X (z/tz))
If Y C X is a subscheme of dimension < d, ux (Y (Z¢)) =0 and
# (im (Y (Z/°Z) — X(ZJI°Z))) = Oy (1514~ 1),

Remark 3.21. [Lemma 3.20|is correct as stated, but the proof in [BKL™15, Proposition
2.1(b)] has a minor error. There, it is stated that #Y (Z/¢°Z) = O ((£¢)*~'), which is not

in general true. The correct statement is that im (Y (Z;) — Y (Z/t°Z)) = O ((¢#)*71). A
counterexample to the incorrect statement is provided by the subscheme Y = Spec Z[z]/(z?)
and X = A%l. In this case, we easily see that #Y (Z;) = 1 because Z, is reduced, but
#Y (Z/0°7) = £1¢/2) as such points are in bijection with elements of Z/¢°Z which square to
0.

In the following proposition only, we use O(Q) and SO(Q) to denote the algebraic groups
associated to a quadratic form @, and O(Q)(R) to denote its Spec R points, for R a ring.

Proposition 3.22. Let (V,Q) be a nondegenerate quadratic space of even rank at least 4
over Zy. There is a Zariski closed pure codimension 1 subscheme Z C O(Q), such that
g € Z if and only if g has a generalized 1-eigenspace of dimension at least 2.

Further, any g € (O(Q) — Z)(Z¢) has a zero dimensional generalized 1-eigenspace and
zero dimensional 1-eigenspace when g € SO(Q)(Z¢) and a one dimensional generalized 1-
eigenspace and one dimensional 1-eigenspace when g ¢ SO(Q)(Zy).

In particular, Z(Z¢) has measure 0 with respect to the distribution of.

Proof. For V;, an even dimensional free module over a field L and g : V, — Vg, let

VL":A denote the A-eigenspace and VL[g:/\] denote the generalized A-eigenspace. Let Qp
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be a nondegenerate quadratic form on V7. Recall that the Dickson invariant agrees with
dim szl mod 2, using that dim V7, is even and [Tay92, p. 160]. (In [Tay92, p. 160] the
notation [V, f] is used for im(1 — f), whose rank taken mod2 agrees with dim V=" mod 2
since dim V7, is even.)

In particular, every element in (O(Qr) — SO(Q))(L) has odd dimensional 1-eigenspace
while every element of SO(Q1)(L) has even dimensional 1-eigenspace. Now, let (V, Q) be a
nondegenerate even rank quadratic space over Z, as in the statement of the proposition. We
may apply the above discussion to the base change (Vgp,, Qg,) to deduce that any element
g € SO(Q)(Z¢) has tk V=" = 0 mod 2 and any element of g € (O(Q) — SO(Q))(Z¢) has
rk V&Zl = 1 mod 2.

Further, the condition that an element g € SO(Q)(Z¢) has rk V([ﬁ:l] > 0 is Zariski
closed and nonempty in the algebraic group SO(Q) over Zg; it is Zariski closed because this
condition can be expressed as 7" — 1 dividing the characteristic polynomial of g and it is
nonempty because there are elements in a maximal torus with dim Véjl = 0. Similarly,

the condition that an element g € (O(Q) — SO(Q))(Z,) has rk Vé‘i:l] > 1 is Zariski closed
and nonempty. Therefore, to establish the statement regarding generalized 1-eigenspaces,
it suffices to show that a proper Zariski closed subscheme of an integral scheme over Z,
parameterizes a measure 0 subset, which is the content of

The statement for generalized 1-eigenspaces established above implies the corresponding
statement for 1-eigenspaces because when the generalized 1-eigenspace is at most 1 dimen-

sional, it is equal to the 1-eigenspace. The final statement that Z(Z,) has measure 0 follows
from [Lemma.3.20) O

Let n > 1,d > 2, and let k be an integral domain (not necessarily a field) on which 2n is

invertible. By [Lemma 3.19] the Dickson invariant defines a surjective map w1 (#°%) — Z/2Z
and hence corresponds to a finite étale Z/27Z cover 2 — #°¢. This yields a map 7 (Z) —

SO(Q¢) which is identified with the restriction of p¢ ; to the kernel of the Dickson invariant.
In the case k is a field, by abuse of notation, we have a map Xcy. : 71(Speck) — (Z/nZ)™

~ X
induced by the cyclotomic character yeye to (Z® )  from [Definition 3.12). In the general
Xey g

case where k is just an integral domain, we also obtain a map Xcy. : 71 (Speck) — (Z/nZ)*
which can be defined as the unique map making the diagram below commute:

1 (Frac(k)) m1(Spec k)
(Z/nZ)*
We have a diagram
T (Z) SO(Q7)
™ (/%) Pag (3:3)

|

1 (Speck) 25 (Z/nZ)* —— (Z/nZ)* ) ((Z/nZ)X>2
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Lemma 3.23. The square (3.3) commutes when k is a field of characteristic prime to 2n.

Proof. Because commutativity of is compatible with base change on the integral do-
main k, it suffices to verify it in the cases that kK = Q and that k is a finite field of charac-
teristic prime to 2n.

First, we verify the claim when k is a finite field of characteristic prime to 2n. It suffices
to establish the claim for all sufficiently divisible n. Hence, to simplify matters latter, we

2
make the further harmless assumption that 8 | n. Using that (Z/nZ)” / ((Z/nZ)X) has

even order, it suffices to verify commutativity of (3.3)) for all sufficiently large finite fields of
characteristic p with ged(p,2n) =1, and odd degree over F),.

Now, for such sufficiently large finite fields, we only need verify that that for varying
x € Z(k), SDQa (p ,(Frob,)) is always equal to [¢*~']. By [Proposition 3.9, Frobenius
elements are equidistributed in a coset of the geometric monodromy group and so it suffices
to establish Spéipik(]?‘robm) = [q%1] for a subset of € #°{ (k) with density in #°{(k)
tending to 1 as #k — oo. Further, we note that the spinor norm is unchanged upon
replacing n with n’ for any j > 1. Note that here we are using the assumption 8 | n, as,
for example, spéd maps to the trivial group while spéd maps to a nontrivial group. By

2 4

replacing n with a sufficiently large power we can ensure that the density of ¢ € im Pi,k

with a 0-dimensional 1 eigenspace is arbitrarily close to 1 by [Proposition 3.22| Further,
. . . d . . .

by the Lang-Weil estimates, since #) (k) has density 1 in #°%(k), and so it suffices to

verify the above when x € WMZ(]C). Hence, we want to verify commutativity of (3.3) for all

x € V/Mi(k:) with a 0-dimensional 1 eigenspace, which is the content of|Pr0positi0n 3.17k2).

So, to finish the proof, it only remains to deal with the case k = Q. Since is in
fact defined over the integral domain k = Z[1/2], and is compatible with base change along
Spec@Q — SpecZ[1/2n], it suffices to verify commutativity when k& = SpecZ[1/2n]. Via
the bijection between maps Wl(ﬁz"l[l/%]) — G and G-covers of szd[l/zn], call X and Y the

2
two induced (Z/nZ)™ / ((Z/nZ)X) -covers of szd[l/%] obtained by traversing the diagram
(3.3) in the two different paths. We wish to show X and Y are isomorphic. We obtain a

2
(Z/nZ)™ ] ((Z/nZ)X) -cover T — szd[l/h} induced by the “difference” of X and Y’; that

is, if X and Y correspond to maps f,g : “1(3{;2(1[1/2n]) — (Z/nZ)* ] ((Z/nZ)X)2 then T'
corresponds to the homomorphism ¢(a) = f(a)g(a~1). To conclude the proof, it suffices to
show T is trivial.

We first verify T'xXgpec 7)1 /2n)SPeC Q — Qf[g’ is the pullback of a cover S — Spec Q along the
structure map Q‘”g — Spec Q. By the established case of finite fields and compatibility with
base change, we know T becomes trivial after base change of T — ffz‘i[l/%] — Spec Z[1/2n]

along any closed point SpecF,, — SpecZ[1/2n]. We now apply [Gro66, Proposition 9.7.8],
which states that the number of geometric components of a morphism is constant on some
open set, to the map T' — SpecZ[1/2n]. It follows that the cover T' — szd[l/m} is trivial

when restricted to SpecQ — SpecZ[1/2n]. This implies that the composite morphism
2

wl(&%f) — m(Zg) — (Z/nZ)* | ((Z/nZ)x> is trivial. From the exact sequence [Gro71}

Exposé IX, Théoréme 6.1]

0 —— wl(c@%l) — m(2y) —— m(SpecQ) —— 0 (3.4)
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we obtain that the cover T' Xgpec 7[1/2n] SPECQ — Qf{f is the pullback of a cover S — Spec Q
along the structure map 27 — Spec Q.

To conclude, we wish to show S is a trivial cover of Spec Q. By Chebotarev density, it
suffices to show that the normalization of SpecZ in S is the trivial cover over a density 1
subset of primes. Since S pulls back to T' Xgpecz[1/2n) SPec Q along the map ffzd[yzn] —
Spec Q, it suffices to show that T" — szd[l/%} is the trivial cover over a density 1 subset of

primes. Indeed, this triviality holds by the previously established commutativity of (3.3)
when char(k) is positive. O

Lemma 3.24. For a field k of characteristic p # 2 (allowing p =0) and any height d > 2,
the image of the spinor norm map

s, © Pt MOV 7) = (20)"/ ((2<p>) )

1s identified with the image of the composition

2

Gal(k/k) — Gal(T/L) 25y (2@)) "L (2@)) " <(i@>) X>2. (3.5)

Remark 3.25. In the case k is algebraically closed or d is odd, [Lemma 3.24] says the image
. - d . . .
of the spinor norm map spQg(m © PG 18 trivial.

Proof. 1t suffices to establish the claim for all finite n, with no prime factor of n equal to p,

in place of Z(®). The result then follows from [Lemma 3.23 |

3.10. Proving Combining the results of the preceding subsections, we are
ready to complete our monodromy computation.

Proof of [Theorem 3.1j First, by [Lemma 3.16, we find Q(Q%m) C im p%(p) o As

(Dga  »sP_g4

)
AQ4,) =ker [ 0(@d,)) — L2 | T 2oz | < (24@) |

primes £,
t#p

.« . . d . . . . . — . d
determining im Pgm 1, 18 equivalent to determining the image of (DQ%(p) , SpQ%(p) )oim Poo)
First, because r,,(0* (Q$)) C pi’ﬁ for every n > 1 and prime to p, by [Lan18, Theorem
4.4], piE does contain elements with trivial spinor norm and nontrivial Dickson invari-

ant. Therefore, since we know the image of the Dickson invariant map is Az/7(Z/27Z) by
Lemma 3.19| it follows that im pZ ~ contains kersp;, N (Dga )71 (Az 0z(Z/227)).
7() k Q%p) 7(p)

Therefore, the image of the joint map (DQ(}( . SD a )oim p%(p) . is generated by Az /97(Z/27) x
zp 7(p) )

id together with the image of the spinor norm when restricted to the kernel of the Dickson
invariant. This joint map (DQE( )7Spéd ) has image as claimed in the theorem statement
z\p 7(p)

by [Lemma 3.24] O

4. THE DISTRIBUTION OF Sely

In this section we will verify that the BKLPR heuristic agrees with the geometric dis-
tribution of Sely, for prime £. The psychology of the problem is as follows: one would like
to “understand” the distributions by computing numerical invariants such as moments, but
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the distributions in question are not determined by their moments, since these moments
grow too quickly. However, both distributions are the limit as a certain “height” parameter
tends to infinity, and at finite height they are distributions on finite sets, hence obviously
determined by their moments. We can then verify that the two limiting distributions agree
by showing that the “finite height” distributions are very close, which we can then do by
computing enough moments.

That this computation can be done at finite height d > 2 for the first moment (i.e.
average) of Sely, and is already equal to its limiting value as d — oo, is observed in [Lanl8|
Theorem 1.2]. In this section we push this further, computing the first 6d — 2 moments for
the large ¢ limit of families of elliptic curves with height d, and showing that they are already
equal to their limiting values. (Even computing one fewer moment would be insufficient for
our purposes, and it seems that computing one more moment in closed form would be quite
difficult, as the next moment is not equal to its limiting value!) However, the distribution
at finite height depends quite delicately on the image of monodromy; for example, the large
¢ limit does not literally exist because of small fluctuations in the image of monodromy, but
the difference between its liminf, o and limsup,_,., will tend to 0 as the height tends to
infinity.

We now give an outline of the contents of this section. In we introduce the random
kernel model, which is our model for Selmer groups that directly connects to points of
the Selmer space. This model will be defined in terms of kernels of random elements of
subgroups of an orthogonal group, and so in we compute the probability distributions
of the dimensions of these kernels. In[§4.3.5] we show how to determine compute the moments
of the above mentioned random kernels, and then how to determine their distribution in
terms of these moments, which is used in[§4-4]to bound the total variation distance between
the random kernel model and the BKLPR model.

4.1. The random kernel model. We introduce another probabilistic model which is
closely related to the distribution of Selmer elements. We will continue to use the nota-
tion introduced earlier, especially from [§3.2.1

Definition 4.1 (Random 1-eigenspace for an element of H). Let n and d be positive
integers. Let H C O(Q%) be a subset, where O(Q2) is the orthogonal group for the quadratic
form of [Definition 3.1 We define RSelif, to be the random variable ker(g — id), valued in
isomorphism classes of Z/nZ-modules, for g drawn uniformly at random from H.

In this section, we will primarily be concerned with the prime case of but
in we will crucially use the case that n = £¢ is a prime power. Now we will define the
precise random variable that we end up relating to the distribution of ranks and Selmer
groups of elliptic curves for our universal family.

Definition 4.2 (Random kernel model). For n € Z>1,d € Z>5 and k a finite field of
cardinality ¢ with ged(q,2n) = 1, let [¢] € (Z/nZ)" / ((Z/nZ)X)2 denote the class of g.
Define

1 = (Dos) ™ (Aayea(@/22) 0 (sp5,) (16" € O (@)
Define RSelZ’k as the distribution on Ab,, given by
~ #{g € Hy ker(g —id) = G}

Prob(RSel? , = G) :
' #H;f,k
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Define (Rrk, RSeln)g as the distribution on Z>y x Ab,, given by

#{9€50(Qq)NH,, ; ker(g—id)~G}

i ifr=0,
n,k
Prob((Rrk, RSel, )¢ = (r,G)) := #{gG(O(Qi)*SO(fﬁZﬁHi,kiker(gfid)’:G} =1,
n,k
0 ifr>2.

adapted to the case of finite fields, gives:

Corollary 4.3. For q ranging over all prime powers with ged(q,2n) = 1 and d > 2 an
integer, the distribution of impfl 2[1/2n] (Frob,,) ranging over x € %Og[l/g] (Fq), up to an

error of O, 4(q~/?), agrees with the distribution RSeli’Fq.

Proof. First, by[Corollary 3.11|to determine the distribution of Frobenius elements, it makes
no difference whether we work with %O%[l/z] or Wo%[l/Q], so we choose to work with the
latter. Observe that the monodromy agrees with the geometric monodromy (i.e., im pthq =
im pfqu) when ¢ is a square or d is odd or n < 2, and has index 2 in the geometric monodromy

when ¢ is a square and d is even and n > 2 by Therefore, in the former case,
it is equidistributed in the monodromy group, which is H;f, & in this case, up to an error of

On.a(g~*/?) by [Proposition 3.9] On the other hand, when ¢ is not a square and d is even
and n > 2, 74 as in |[Definition 3.8|is nontrivial since the geometric monodromy is not equal
to the monodromy. Hence, by [Proposition 3.9} Frob, is equidistributed in the nontrivial
coset of pil p C piﬁq’ which is precisely im pf z — im pzjq = HY .

The statement regarding the concrete characterization of the Dickson invariant and spinor

norm is merely a restatement of [Theorem 3.14 O

4.2. Distribution of random 1-eigenspaces. We now focus on the case where n = { is
prime.

4.2.1. Some notation. We will use in conjunction with to deduce

the probability generating function for ker(g — id) for g drawn uniformly at random from a
coset of Q(Q%) C O(Q%). Now we will take H C O(Q?) to be a coset of Q(Q%) in O(QY).

e Note that when ¢ = 2, the spinor norm is trivial on O(Q4) and hence Q(Q%) =
SO(Q%) and there are two possibilities for the coset H determined by the Dickson
invariant.

e When / is odd, there are four cosets of Q(Q%) given by the pair (sp(z)?,Dsz). We

label these cosets as in the following table.

Sp A
Q7 | trivial non-trivial
DQd
V4
trivial Q A
non-trivial B C

For Z a random variable valued in isomorphism classes of finite-dimensional F,-vector
spaces, define the probability generating function of Z to be the polynomial in ¢ given by
Gz(t) == E(tM"™%) = 3, Prob(dim Z = 4)t*. For a polynomial f(t) = Y,y a;t’, intro-
duce the notation [f(t)], := a, to denote the coefficient of t" in f(¢).
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4.2.2. The probability generating functions. We will now work towards the proof of:

Theorem 4.4. Let { > 2 be an odd prime and d > 1 a positive integer. Then we have
GRScle = GRSclcd and
Ve Ve

1 6d—3
Groge = Oreas + —— TT (2 - ).
RS IVed RS 1V[d #Q(Q;l) ZUO ( )

4.2.3. Some lemmas. We begin with some preliminary results. For (V, Q) a quadratic space
and k € Z>(, we will abbreviate

V=V XxVx---xV
—_————
s times

and consider the diagonal action of O(Q) on V*. This induces a diagonal action of the
subgroup Q(Q) € O(Q) on VF,

Lemma 4.5. Let m € Z>q and let (V,(Q) be a nondegenerate quadratic space over a finite
field L with dimp V =r. If r > 2m + 2, then the orbits of O(Q) and Q(Q) on V™ coincide.
Hence, the orbits of O(Q) on V™ agree with the orbits of any subgroup H D Q(Q) on V™.

Proof. Tt suffices to show that (@) acts transitively on any orbit of O(Q). Fix an arbitrary
tuple of vectors (v1,...,v,) € V™. Let W := Span(vy, ..., v,). We claim that if dimy, V' >
2m + 2, for every a € L, there is some w € W+ with Q(w) = a.

Assuming this claim, let us show that the orbits of O(Q) and Q(Q) coincide. First,
we tackle the case char(L) # 2. In this case, it suffices to show that for each (a,f) €
Z/27 x Z/2Z, there is some h € O(Q) fixing (v1,...,vm) With sp,(h) = a and det(h) = 3.
To see such an h exists, let w be an element in W+ with —Q(w) a square in L, and let w’ be an
element with —Q(w’) a non-square in L. Then the four elements id, 7, 7y, 7 0T € O(Q)
attain all four possible values of (spC_27 det) and fix (v1,...,v,). This implies that (Q) acts
transitively on the O(Q)-orbit of (v1,...,vy).

The case char(L) = 2 is similar, but easier. To show Q(Q) has the same orbits as O(Q),
it suffices to exhibit an element of nontrivial Dickson invariant fixing (v1,...,v;). Indeed,
for any v € W+, r, is such an element.

We now conclude the proof by verifying the claim. If (V, Q) is any nondegenerate qua-
dratic space of dimension at least 2 over a finite field L, then for every a € L there is some
v € V with Q(v) = a. Recall that the rank of a quadratic space (V, Q) is defined to be
tk(V, Q) := dim V —dimrad(V, @), where rad(V, Q) the radical of (V,Q), i.e., the set of z € V'
with Bg(z,y) = 0 for all y € V. Therefore, it suffices to show that rk(Q|y., W+) > 2.
Note that rad(Q|y 1, W*) = W NW-=L. Hence

tk(Qly ., W) = dim W+ — dim(W nWw+). (4.1)

Since dim V > 2dim W + 2, we have dim W+ — dim(W N W) > dim W+ — dim W > 2.
O

It will also be useful later to have a result on the case when dimV = 2m.

Lemma 4.6. Let (V,Q) be a nondegenerate quadratic space over a finite field L with
dimyp, V = r. If r = 2m is even, then the orbits of O(Q) and SO(Q) on V™ agree ex-
cept on m-tuples (v1,...,v,) € V™ that span a mazimal isotropic subspace of V.

30



Proof. Tt suffices to exhibit an element of O(Q) — SO(Q) that stabilizes (vy,...,v). Let
W := Span(vy,...,vs) as in the proof of If we can find w € W+ such that
Q(w) # 0, then r,, does the job.

To see that such w exists, it suffices to show that rk(Q|y ., W) > 0. But by (£.1), this
holds as long as W is not maximal isotropic. g

Lemma 4.7. For { a prime and d > 1, any coset H C O(Q}) of Q(Q%), we have
GRSelH (Z’L) = GRSeIQ (Zz) fOT L= O7 1, ey 6d — 3.
v v

Proof. For g € G, let V9=! denote the l-eigenspace of g acting on V. Let G’ C G be a
subgroup. By definition, we have

1 . .
G (1) = tdlm ker(g—id)
RSel‘G/L]d( ) #G gEEG:,

so that
1

=3 > (#veEy (4.2)

geG’
Note that (V9=1)! = (V¥)9=! where g € G acts diagonally on V', so that (#V9I=1)! =
#(V1)9=1. Putting this into ([4.2) gives

GRSeIG:j (")
Ve

, 1 ,
Grsacr, (€') = Z (#VH)o=h. (4.3)
Véd #G/ gec
By Burnside’s Lemma, we have
> #(VH)I=! = #{orbits of G’ on V'}. (4.4)

geG’

By [Lemma 4.5 the right hand side of (4.4) has the same value when we take G’ to be any
of Q(QY), ker(spéd), ker(Dga), and 0(Q%) for i < 6d — 3. Hence we have
14

G M =G . M =G M =G M, i=1,...,6d—3.
RSelged () Rse@; v () RSeliC;(vfd) () RSeli;V@d) ()
£ £ L

We then obtain the result by noting that any coset can be expressed in terms of differences
of the above subgroups. For example, we can obtain the result for H = B by writing
. 1 . 1 .
) ==G &)+ =G ).
s?v;l)( ) 5 RSelf‘jZd( )+ 5 RSel‘]Zd( )

RSel
Ve

]

Proof of[Theorem 7.4} Recall that the Dickson invariant of any element g € O(Q%) agrees

with the dimension of its 1-eigenspace mod2. Indeed, in general, the Dickson invariant of g
agrees with dimim(1—g), by p. 160], where the notation [V, f] is used for im(1— f).
Since dim V¢ is even, it follows that dimker(1 — g) = dimim(1 — g) mod 2.

Because of this, only odd powers of ¢ can appear in GRSelgd(t) and GRSelgd (t). Fur-

thermore, they have degree at most 12d — 5 since dimV = 12dl— 4. By |Lemma 4.7} these
functions agree at the 6d — 2 points 1,7, ..., ¢%%=3. Since they are both odd functions, they
must agree as well at 0, —1, —¢, ..., —¢%¢=3_ But two polynomials of degree at most 12d — 5
agreeing at 12d — 3 points must be the same.
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Similarly, Ggrsee, (t) and GRrsela, are even polynomials of degree at most 12d — 4, and
Vi Ve
they agree at the 12d — 4 points +1, £/, ..., 573, The difference Gggaie ,(t) — Ggsas , (t)
Ve Ve

must therefore be proportional to Hfd 3( — ¢%%). To find the constant of proportionality,
note that the coefficient of $'24=% in GRSelH (t) is the probability that g € H fixes all of V,

i.e. is the identity. This happens with probablhty #Q(Qd for H = Q(Qé) and probability
0 for any other coset. This completes the proof. O

4.2.4. Formulas for the generating functions. Let O(12d—4 F,) denote the orthogonal group
associated to the standard quadratic form Z 1 1'21 122; on a 12d — 4 dimensional vector
space over Iy,

Lemma 4.8. The group O(12d — 4,F;) is isomorphic to O(Q%).

Proof. We begin by showing the quadratic form Q% has discriminant 1 over Z/nZ. Indeed,
it the reduction modn of a quadratic form Q% over Z which has discriminant 1 over Z by
[Lanl8, Theorem 4.4 and Remark 4.5]. Indeed, [Lanl8 Remark 4.5] explains that Q% =
UeRd-2) P (—Fg)®?, where U denotes the hyperbolic plane and —Eg denotes the quadratic
form associated to the Ejg lattice with negative its usual pairing. Since U has discriminant —1
while —Eg has discriminant 1, the discriminant of Q% is (—1)2¢-2.1¢ = 1. We deduce that,
0(Q%) = O(12d — 4,F,) has rank 12d — 4 and discriminant 1. When £ > 2, there is a unique
orthogonal group over Fy, of discriminant 1 [Wil09, 3.4.6], and so O(Q¢) ~ O(12d — 4,F)
in this case. When ¢ = 2, there are two nonisomorphic quadratic forms of discriminant 1
and rank 12d — 4, but O(12d — 4,F,) is the unique hyperbolic such quadratic form, so we
only need check O(QY) is hyperbolic. To this end, it suffices to check the quadratic form
associated to Eg is hyperbolic when reduced modulo 2. A nondegenerate even dimensional
quadratic form over a field is hyperbolic if and only if it contains an isotropic subspace
of half the dimension of the quadratic space [MHT73, III, Lemma 1.2]. For the Eg lattice,
one can explicitly construct such a subspace, such as the space spanned by the first, third,
sixth and eighth basis vectors, when the Eg lattice is written as in [Huyl6, Chapter 14,
0.3(iii)]. O

O(12d 4,F,)

By |[Lemma 4.8} the generating function RSel;,, agrees with the generating func-

tion RSelI‘de from |Definition 4.1 with H = O(12d 4,F,) the full orthogonal group, so we

may use these notations interchangeably. The following theorem, which completely char-
(12d—4,F,)

acterizes RSel , is proved in an unpublished manuscript of Rudvalis-Shinoda, cf.

[FS16]. We w111 give an independent proof of this theorem in
For Z a random variable we let E(Z™) denote the mth moment of Z, which is the
expected value of the random variable Z™.

Theorem 4.9 (Rudvalis-Shinoda, [FSlG Theorem 2.5 and 4.7]). We have

6d—2—2z (—1)"
2|GL (]F 2)]| ZL 0 £z =1)i (020 —1)... (¢4 —-1) (£2—1)
. O(12d—4,F —1)6d-2-= .
Pl"Ob(lelRSelV; ) = v) = +2[2 a2 [QL (F ) [ (260022 — 1) -((—1) (1) ifv=2z
6d—2—z (-1 Lo
L] im0 w0 e =2l

Furthermore, we have

. . O(12d—4,F _i\-1
limg— o0 (Prob(dnnRSelV} )= U)) = szo (1 +4 ]) z<v27v)/2(174—1)11713—2).“(1715—")' (4'5)
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12d—4,F,)

Additionally, for 0 < m < 6d — 2, the moments of #RSelgg are computed as
£

E(#RSel)y =4 ym — TT (¢ +1) .

m
d
2 ]

=1

From [Theorem 4.9 and [Theorem 4.4] it is fairly straightforward to deduce explicit formu-
las for the probability generating functions associated to cosets of O(12d — 4,F,). However,
we omit the computation as we will not need them.

4.3. Direct computation of the moments. In this section we give an alternate compu-
tation of the moments of dimker(g — id) for g € O(Q), for @ a quadratic form over F, of
sufficiently large rank without using the unpublished results of Rudvalis and Shinoda. We
will explain that this gives an alternate proof of In addition, the analysis here
is used later to get better control on the convergence of the random kernel model.

As already mentioned above, [FS16] computed an explicit formula for the moments of
dim ker(g—id) for g € O(Q), using the probability distribution obtained in unpublished work
of Rudvalis-Shinoda. The calculation of Rudvalis-Shinoda rests on intricate combinatorial
analysis. We learned of this work after we had already found an independent computation
of the probability distribution, which we will explain in this subsection. Qur logic in this
subsection runs in the opposite direction: we directly compute the moments, and deduce
the probability distribution from it. (The advantage of this approach is that it also gives
the distribution for g drawn from subgroups of O(Q), such as §2.)

Theorem 4.10. Fiz m € Z>q, let n be squarefree, and let (V,Q) be a nondegenerate
quadratic space over Z/nZ. For vky nz V > 2m 4 2, then:
(1) The number of orbits of O(Q) acting diagonally on V™ is
II a+oa+e)---@a+em). (4.6)
£ prime|n
(2) The orbits of Q(Q) acting diagonally on V™ coincide with those of O(Q) acting
diagonally on V™.
For the next part (which is about getting slightly sharper results in the “edge case” r = 2m,),
we let n = ¢ be prime and ask that (V,Q) be a spliﬁ quadratic space of dimension v over Fy.

(8) For r = 2m, the number of orbits of O(Q) acting diagonally on V™ is also given by

(1.6).
(4) For r =2m,

#{orbits of SO(Q) on V™} = #{orbits of O(Q) on V'"} + 1.

4.3.1. Proof of |Theorem 4.3,, assuming |Theorem 4.10. Let é(t) be the generating function
of the distribution in [Theorem 4.9} This is a polynomial of degree 12d — 4; write

é(t) _ éodd(t) + éeven(t)

where G°%4(t) is an odd polynomial and G¥*"(¢) is an even polynomial. The computation
in [FS16] shows that the moments of the even and odd parts of the distributions coincide,
so that

éodd(gm) _ éeven(gm)’ 0<m<6d-3.

4For the definition of this, see [MHZ73, 1, §6].
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As explained Lemma the orbit counts in|[Theorem 4.10|are the moments of #RSelO(ud 4.Fe )

0(12d 4,F,) .

so |Theorem 4.10| shows that the mth moment of #RSe 1, is as claimed in [Theo-

rem 4.9[for 0 < m < 6d — 3. Writing

GRS 10(12d 4]1?[)(t) = GRS 10(12d 4[FZ)( ) + GY

RS 10(1201 4,F;) (t)

E Z

for the decomposition into odd and even parts, implies also that

GRSle“Zd 4&,)(€m) G;’SGHIO(IZd 4M)(£m), for 0 <m < 6d - 3.
v v

Hence Godd(¢m) = GRdel 0G12a- sy (£™) for 0 < m < 6d — 2. Since they are both odd

polynomials, they also agree at —¢™ for 0 < m < 6d — 3. But since they both have degree
at most 12d — 5, and they agree at 12d — 4 points, they must be equal.

Similarly, Gever(/m) = Geven gt sry (£™) for 0 < m < 6d — 2. Since they are both

odd polynomials, they also agree at —¢™ for 0 < m < 6d — 2. Hence there difference is a
polynomial of degree at most 12d —4 vanishing at the 12d —4 points £¢™ for 0 < m < 6d—3,

and must therefore a multiple of [T°Z7(+2 Egm). But the coefficients of ¢!~ in both
Geven( ) and G;:}senlo(lzd 45, () are both m, so the constant of proportionality
must be 0. ]

The rest of this subsection is devoted towards proving

4.3.2. Counting orbits of independent vectors. Recall that a quadratic space is hyperbolic
if it has the form W @ WV with form Q(w,\) = A(w); over a field, this is equivalent to
the condition that it be metabolic, i.e., that it is nondegenerate and contains an isotropic
subspace of half the dimension [MH73, ITI, Lemma 1.2|.

Lemma 4.11. Let (V,Q) be a metabolic quadratic space over a field. Then any (possibly
degenerate) quadratic space (W, Q") of dimension dim(W) < dim(V')/2 embeds isometrically
mV.

Proof. Tf dim(W) < dim(V')/2, we can always enlarge W by taking the direct sum with a
trivial quadratic space of dimension dim(V)/2 — dim(W), so we may as well assume that
dim(W) = dim(V')/2. Let Q" be the quadratic form on W@®W* given by Q" (w, A) = Q' (w)+
A(w). Then (W,Q’) embeds isometrically in the metabolic (thus hyperbolic) quadratic
space (W & W*,Q"). Since two hyperbolic quadratic spaces of the same dimension are
isomorphic, there is an isometry (W e W*, Q") = (V, @), and thus (W, Q') embeds in (V, Q)
as required. O

Corollary 4.12. Let (V,Q) be a nondegenerate quadratic space over a finite field. Then
any (possibly degenerate) quadratic space (W, Q') of dimension dim(W) < (dim(V) — 2)/2
embeds isometrically in (V,Q).

Proof. Any nondegenerate quadratic space over a finite field is isomorphic to the direct sum
of a hyperbolic quadratic space and a nondegenerate quadratic space of dimension at most
2, and [Lemma 4.11| shows that (W, Q’) embeds in the former. a

The key technical ingredient in the proof of is the following Proposition.
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Proposition 4.13. Fiz m € Z>o and let (V,Q) be a nondegenerate quadratic space over
F, of dimension r > 2m + 2. Then, the number of orbits of O(Q) in V™ consisting of a
tuple of independent vectors (x1,...,&y,) is mmA1/2 - More precisely, the orbits consisting

(m+1)/2

of independent vectors are in bijection with F;n via the map sending

(xla e axm) = (Q(xl)a ey Q(xm)7 BQ(IL'Z',IZ']‘)I 1 S 1< .7 S m) (47)
If (V, Q) is metabolic, then the result still holds if r = 2m.

Proof of [Proposition /.15 First we argue that isinjective. If (x1,...,2,) and (2, ..., 2]
have the same image under , Span(z1,...,x,,) is isomorphic as a quadratic subspace
of (V,Q) to Span(z},...,z],) by the map sending z; — z;. Therefore, by Witt’s theorem
[Ched7, 1.4.1, p. 80], there is an element of O(Q) sending x; — x}. Hence, if (z1,...,2m)
and (21, ...,2},) have the same image under (4.7), they lie in the same O(Q) orbit.

It remains to show that is surjective. Suppose (c1,...,¢m,¢ij: 1 <i < j<m)C
Fzz(erl)/Z

are arbitrary. Let (W, Q’) be the quadratic space on basis vectors (yi,. .., Ym)
with Q'(y;) = ¢; and B/ (y4,y;) = ¢;j. The surjectivity amounts to showing that we can find
an embedding (W, Q') — (V,Q) which is an isometry onto its image. But this is exactly

the content of [Corollary 4.12] if » > 2m + 2, and [Lemma 4.11|if » > 2m and (V,Q) is

metabolic. O

4.3.3. Orbits of dependent vectors. We aim to explain how to determine the orbits of tuples
of vectors that are linearly dependent inductively using [Proposition 4.13] The following
lemma is key to counting these dependent orbits.

Lemma 4.14. Let (V,Q) be a nondegenerate quadratic space over F; and let O(Q) act
on V™. Fiz (v1,...,2m_1) € V™! and let W := Span (z1,...,7m_1). The number
of orbits of vectors of the form (z1,...,Zm-1,y) € V™ under the action of O(Q) with

y € Span(z1, ..., Ty 1) is (W,
Proof. Suppose that (z;,,...,x;,) is a basis for W, so dim W = ¢. Then for any g € O(Q),
g (z1,...,Tm—1,y) is uniquely determined by g - (x;,,...,z;,).

To count the number of orbits, we can express y uniquely as

t
Y= Z ajT;;.
j=1
Then the orbit of (z1,...,2Zm—1,y) is uniquely determined by the scalars (a; € F¢)i<i<t,
and so there are /4™ "W such orbits. g

4.3.4. A recursive formula.

Definition 4.15. Fix a quadratic space (V,Q) over a finite field k. Let f(n,i) be the
number of orbits of V™ under the action of O(Q) such that dimy Span(zy,...,z,) = i.

We next explain a recursive formula for the f(n,1).

Lemma 4.16. The functions f(n,i) satisfy the recursion

f(n,i) = f(n—1,5— 1) + f(n—1,0)¢". (4.8)
Proof. Fix a tuple (xq,...,2,_1) € V"1, We will count the number of orbits of the form
(z1,...,Tn-1,y) € V", by conditioning on whether or not y € Span (z1,...,Z,—1).

e If y € Span (z1,...,2,_1), each choice of y yields a different orbit and there are ¢!

possible such orbits by
3

5
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o If y ¢ Span (z1,...,2,-1), let (gcsl, .. 79557;71) be a basis for Span (x1,...,2,-1).
[Proposition 4.13| shows that there are ¢:(+1)/2=(=1i/2 — yi orhits of the form
(z1,...,Tn—1,y), parameterized by the possible values of the pairings

BQ(y7x31)7 s 7BQ(y7xSi—1)7 Q(yvy)

Adding these two contributions over varying vectors (z1,...,2,_1) € V"~ ! yields the result.
]

Remark 4.17. We have the initial condition f(0,7) = 1 for all ¢ > 0. This together with
the recursion of [Lemma 4.16| determine the f(n,4) uniquely. We extend f(n,i) by 0 to a

function on Z x Z.

Definition 4.18. For every j € Z>(, define

2 (m) = Zf(m,i)fis.
i€z
Remark 4.19. From the definitions, it follows that the total number of orbits of O(Q) on
Vs 20 (m) = > icz f(m,i). Also observe that for any j, () (0) = 1 by definition, since
£(0,7) = 0 unless ¢ = 0.

By [Remark 4.19] we want to calculate X(°)(m). The following lemma relates this to
»(m)(0).

Lemma 4.20. For m > 0 and s > 0, We have
S (m) = (L+HBE (m - 1),
Proof. By we have
SO m) =" flm— 1,0 — D)0 43" f(m — 1,4)07+

1€L i1€Z
=N fm = 1,0 = 1EDEED LN — 1 4) Y
€L €L
— pstl Z f(m —1, i)ei(erl) + Z f(m —1, i)gi(s+1)
€L €L
= (¢t + )BT (m - 1). 0

Using [Lemma, 4.20, we can compute £(°)(m), and hence prove [Theorem 4.10

4.3.5. Proof of [Theorem 4.10. First we focus on the situation in parts (1) and (2), where

k7 /02 V' > 2m + 2. Since n is squarefree, we may reduce to the case n = ¢ is a prime by
the Chinese remainder theorem. Once the statement for O(Q) is established, the statement
for Q(Q) follows from [Lemma 4.5] By [Remark 4.19] we just need to show that

SOm)=Q+0Q+3)---(1+0m).



Indeed, using [Lemma 4.20] we find
2O m) =1+ 02V (m -1)
=1+ 01+ 22 (m-2)

=(1+0Q+2)---(1+m)xM(0)

=1+ +2)-(1+em). O
This completes the proof of parts (1) and (2). Now we move onto parts (3) and (4). The
argument for part (3) is the same as for the proof of [Theorem 4.10[ For Part (4), we note
by that the orbits coincide except on vectors (z1,...,2Z;,) € V™ that span a

maximal isotropic subspace of V. In this case there is only one orbit of such vectors under
0O(Q), but two orbits under SO(Q) [CF17, Corollary T.3.4].

4.4. Bounding the TV distance. We use the moment computations in to obtain
certain useful expressions for the probability generating functions.

In this section, let (V;.,Q,) be the split orthogonal space over F, of rank r (hence dis-
criminant 1). We denote O, = O(V,., Q..), SO, = SO(V,., Q,.), Q. = Q(V,.,Q,.), etc.

Let Hs,. C O, denote the kernel of the Dickson invariant, i.e., Ho, = SOs, when £ is
odd, and Hs, = Qs, when / is even. For j > O let M; be the limit as » — oo of the jth

moment of RSelV , which by [Theorem 4.9|is []7_, (¢* + 1).

Lemma 4.21. We have the following values for the moments of #ker(g — 1) for g drawn
from Ha,.:

Eger,, (#ker(g — 1)) = M;,0 < j <r
Egem,, (#ker(g —1)") = M +1
Eggm,, (#ker(g —1)7) = M;,0 < j <r
Eggm,, (#ker(g —1)") =

Proof. The claims for j < r follow from [Lemma 4.5|plus|Theorem 4.10] The claims for j = r
follow from [Lemma 4.6| plus [Theorem 4.10| (|

Let P,(t) be the unique even polynomial of degree 2r such that P.(¢/) = M; for all
0 < j <r, and let P/(t) be the unique odd polynomial of degree 2r—1 such that P.(¢) = M;
for 0 < j < r (not to be confused with the derivative of P,.).
Define
Crlt) 1= Ege, 14 er0D)
to be the probability generating function for 1-eigenspaces of elements drawn randomly from
Hsy,., and
G(t) = Egeoy, - i, [t FT O],

Lemma 4.22. We have identities

1 .
Gr(t) = Pr 1(t) + (t2 62])7 (4 9)
# Hor 0<j<r
12 g2
G7 (t) = P7 (t) + H €2T 62] ) (4 ].0)
0<j<r



— 0%

/ /
AMOENACER S || gzr%., (4.11)
0<j<r
r1(t) = Prl+1( ). (4.12)
Proof. First, we check ([.9). By m — P._1(t) vanishes at t = +¢ for

0 <j <r—1,and is of degree 2r, hence is proportlonal t0 [To< ;< (t* = £*). Therefore, we
can determine G,.(t) completely by examining the coefficient of ¢>", which is #HQ_rl because
that is the probability of drawing the identity element.

We next check Similarly, G,(t) — P,(t) is proportional to [, .., (t* — £*7), and it
can be determined by evaluating at ", where the value is 1 by

Next, ([4.12) holds because both Gr+1( ) and P/, (t) are polynomials of degree 2r + 1

vanishing at the 2r + 3 values 0,+1,+4,...,£0".
Finally, we show @11). By (& 12|) and [Lemma 4.21} we see P.(¢") = M, — 1 while
o (07) = Therefore G.1(t) — P/(t) is a degree 2r 4+ 1 polynomial vanishing at the

2r +1 values 0 +1,4+¢,... £ ¢", and hence is determined up to a constant. We can then
determine its constant value by plugging in t = ¢", using P/({") = M, — 1 and G, ,({") =
M,.

|

Recall that the Total Variation distance (TV) between two probability distributions P
and P’ is
dry(P,P') = sup [P(A) - P'(A).
events A

When P and P’ are defined on a countable discrete probability space X, as shown in
Proposition 4.2] we can write this as

drv (P, P) Z |P(z (z)). (4.13)
xeX

In other words, conflating P and P’ with distributions on X, this is essentially the L'-norm.
Clearly, convergence in TV distance implies convergence as distributions (which is pointwise
convergence in the case of distributions on a discrete space). Abusing notation, we use this
to extend the definition of TV distance to functions on discrete spaces which don’t have
mass 1 (such as limsup, ,cq(q,20)=1 dim RSelZFq).

We define the TV distance between two random variables to be the TV distance between
their induced probability distributions.

Theorem 4.23. For { a prime, d > 2, and q ranging over prime powers with ged(q,2¢) =1
We have
drv( limsup dim RSely,, lim Rselgegmd*“’”)) = O£~ (6427
ged(g,2n)=1
and
dry( liminf  dimRSelfy, . lim RSel%Elmd*“’F‘)) — (4~ (6427
ged(g,2n)=1 ‘

where the error constants are absolute in both cases.
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Proof. We write the proof in the case where ¢ is odd; the case where ¢ = 2 is even easier,
as the analysis of the cosets simplifies because there are fewer cosets (cf. the discussion in
§4.2.4).
We first compare the TV distance between RSelSSle_LLEZ) and rk RSely r,- We have
; :

1

1 1 1
Grse 1O<12d amp (1) = EGRselgﬁ (t) + ZGRSelced (t) + EGRSelﬁﬁ (t) + ZGRSel‘C/Zd (t)

and
G t —flG t —l—flG t flG t —l—flG t
RSelg,Wq( ) = B RSel‘;Zd( ) B RSelf‘Zd( ) or 2 Rselcgd( ) B RSelSZd( ).

Note that the TV distance between random variables Z and Z’ has a clean formulation
in terms of the probability generating functions Gz(¢t) and Gz(¢'): it is half the sum of
the absolute values of the differences of the coefficients, as follows from . Using this
observation together with [Theorem 4.4] we have

drpy (dim RSel%fimd""F’f) ,dim RSelfz ) < Zdrv (dim RSel}},, dim RSel )

1 6d—3
e (14 029,
s 7o 11

By examining the dimension of the orthogonal group, we find

#Q (Qz) *#O(Qd) ~ (12d—4)(12d-5)/2

On the other hand, we have

[ = =

6d—3
H (1 +€2i) — ¢(6d—2)(6d—3)
1=0
Hened?|
drpy (dim RSel%&md_‘l’F‘),dimRSelZW ) < ¢~ (6d-2)

Next, we estimate dTV(RSeISSZd_‘l’M),Ii m,_so0 RSe 10(12r 4 FZ)). It suffices to show that

dry (dim RSel)3:, dim RSelSiIii) <
We compare the even and odd parts of their generating functions, using the computations
of the preceding section. For the even part, using gives that the sum of the
absolute values of the coefficients of G, (t) — G,_1(t) is

1+ 2% 2y 1+ (2 2
L par 25 =L H 1 — f25—2r ¢ :
0<j<r 0<j<r

<

This shows
hqnﬁl\g.}f drv(dim RSelZFq, dllrgo RSel%&lZd*Al*Ff)) — O(g—(ﬁd—2)2)-

5The notation A < B means A = O(B).
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To move the limit in ¢ inside the expression for total variation distance, we note that the
sequence dim RSelZFQ is actually a union of at most 2 convergent subsequences (depending
on whether ¢?~! is a square, by definition [Definition 4.2)). It follows that
i e d . 0O(12d—4,F,)
dTv(hqn_%g.}f dim RSel@,Fq,dlggo RSelVZd )
. . d . O(12d—4,F —(6d—2)2
< 2qll>nolo drv(dimRSely . dlggo RSeIVé(i e)) = O~ 6d=2)7)
and similarly for limsup,_,~ in place of liminfgs— oo, which completes the proof. |

Corollary 4.24. For { a prime and d > 2, the TV distance between the BKLPR heuristic
and dim RSelZIFq is 0(6*(6‘1*2)2),

Proof. Note that in the case where ¢ is prime, which we are currently considering, the
“BKLPR heuristic” first appeared as the “Poonen-Rains heuristic” [PR12|, whose explicit
formula is given by [PR12, Conjecture 1.1(a)]. By inspection, this agrees with the distri-

bution of limg_, RSel‘O/gmd_‘l’FZ) calculated in [Theorem 4.9, Hence the result follows from
4

Mheorem 4.23| O

5. MARKOV PROPERTIES

In this section, we establish Markov properties satisfied by both the random kernel model
and the BKLPR model, which will be used to identify their distributions for prime power
order Selmer groups. In we state the Markov property satisfied by the random kernel
model, which we prove in We then recall the BKLPR model in and demonstrate
the Markov property satisfied by the BKLPR model in

5.1. Markov property for random 1l-eigenspaces. Let (V, Q) be a nondegenerate qua-
dratic space of rank rm over Z/(°Z. Recalling from that for a subset
H c O(V,Q) we let RSel{{ be the random variable ker(g — id), valued in isomorphism
classes of finite abelian ¢-groups, for g drawn uniformly at random from H.

In this section only, we will use the notation O(V, @), Q(V,Q), and SO(V, Q) for various
subgroups of orthogonal groups, because we will consider various coefficient changes and
wish to emphasize this in the notation. Noting that H acts on V[(/], we let H; be the image
of H in O(V[fj], Q|V[€f])-

Theorem 5.1. Let (V,Q) be a nondegenerate quadratic space of rank 2m over Z/{°Z. For

Jj < e, write d;(H) := dimp, (éj_lRSelgfej]).

If H is a non-empty union of cosets of Q(V,Q) in O(V,Q), then the sequence of random
variables dy(H),da(H),...,d.(H) is Markov. If £ is odd or d; # 2m, then the distribution
of div1(H) given d;(H) is the same as the dimension of the kernel of a uniform random

alternating form on IF?Z'(H).

Corollary 5.2. For n a prime power, d > 2 and k a finite field, the statement of [Theod

holds with H = (im pf )™,

Proof. By definition, (im pfl k)"‘ult Ya is a coset of the geometric monodromy group in the
monodromy group. By [Theorem 3.14} the geometric monodromy group contains Q(V,4, Q%)
and the monodromy group is contained in O(V,¢,Q%). Hence (impg ;)™ is a union of

cosets of Q(V4, Q%) in O(V4,Q%), and we can apply [Theorem 5.1|to each of the cosets. [J
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We next reduce [Theorem 5.1| to [Theorem 5.4 below. For any 1 < 5 < e, consider
(¢=3V = V[#’], which is a nondegenerate quadratic space of rank 2m over Z/{?Z. The
action of g € O(V,Q) on V[#7] factors through the quotient O(V,Q) — O(V[¢7], Q|ve1).
Let H be any coset of Q(V,Q). If g is drawn uniformly at random in O(V, @), its image
in O(V[Ej],Q\VW]) will also be uniform in a coset of Q(Vz/4iz, Qz/eiz). We now naturally
generalize to the setting of quadratic space over Zj.

Definition 5.3. Let (V, Q) be a quadratic space over Zy, and let H C O(V, Q) be a subset
which is a union of cosets of Q(V, Q) in O(V, Q). Define the random variable RSelI‘f@Qz/Zz

to be given by ker(g —id |y gq,/z,) for g € H drawn from the Haar measure (normalized to
be a probability measure) of [Lemma 3.20

By the compatibility with reduction modulo ¢/ discussed above, |[Theorem 5.1{then follows
from:

Theorem 5.4. Let (V,Q) be a nondegenerate quadratic space of rank 2m over Z,;. Let
H C O(V,Q) be a union of cosets of UV, Q). Define the random variable

d;(H) := dimg, (' RSely] % )"

Then the sequence di(H),do(H),. .. is Markov, and for £ odd or d; # 2m, the distribution

of div1(H) given d;(H) is the same as the dimension of the kernel of a uniform random

alternating form on IE"?"(H).

We prove [Theorem 5.4 in [§5.2}
Remark 5.5. Another way to think about the numbers d;(H) is as follows. Decomposing
RSelll .= (z/ez)" ") o (2/?7)>"D g (2./63 7)) & . ..
where the r;(H) are random variables, we have
di(H)=r1(H)+re(H)+rs(H) +...
do(H) =ro(H)+rs(H) + ...
ds(H) =rs(H)+...

5.2. Proving We now embark on the proof of The proof en-

compasses this entire subsection, and notation is built cumulatively throughout the section.
We begin by giving one more interpretation of the sequences d;(H). Referring to notation

of [Theorem 5.4} let VjH be the random variablﬂ valued in isomorphism classes of [Fy-vector

spaces, given by
(ker(g — id)|y ey +LV)/LV CV @ Fy,
for g drawn from the Haar measure on H. For a fixed g € O(V, Q) we write

VI = ker((g —id)|v/ev)-
Lemma 5.6. For a fived g € O(V,Q), the isomorphism V ®z, Fy = V ®gz, %[é] identifies

g~ i1 -
VI = 07 ker (g —id |V®zz%[€j]> .

Swe apologize for the similarity to the notation V,‘Li; at least, the latter notation will not appear in this
section.
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Hence dim V" coincides with the random variable d;(H).

Proof. This is a straightforward verification which follows from commutativity of

(V @ Q/Z)[0] 225 V @ 2002
lx@j71 J{ mod £ (51)
(V®Qu/Z)] —£— VT,

We set Vi := V®z,F, by convention. We claim that the sequence Vi, Vi1 ... of random
subspaces is Markov, and more precisely that if £ is odd or VJH # Vi, then V.{IH is the
kernel of a uniformly distributed alternating form on VjH . In view of [Lemma S.GL this will
complete the proof of

Lemma 5.7. The orthogonal complement of Vf C V@I, with respect to the quadratic form
induced by Q is ((1~7 (im(g —id) N¢=1V)) 4V C V @ Fy.
Proof. Inside V/€7V, we have ker((g — id)|veiv )" = im((g — id)|y//eiv), hence

(im((g = id)v/ev) NEV/EV)T = ker((g — id)|v/ev) + V.

This immediately induces the claim about orthogonal complements inside V ® Fy. O

Lemma 5.8. Keep the notation of the preceding discussion. The following are equivalent:
DoV |
(i) €7 (g_— id)o € (1= (im(g —id) N #=1V)) /eV = (ng)L,
(i1i) B(t~7 (g —id)0,w) = 0 for all w € V/, where B is the bilinear form associated to
the quadratic form @ on V.

Proof. Given v € V/, we want to know when it is in V,,;. The condition that v € V is

equivalent to there being a lift @ of v to V such that (g —id)o € #/V. Fixing such a lift v,
the question is whether we can modify it to another lift v’ such that (g —id)?’ € #+1V.
The freedom for modification is that we can replace v by v+ ¢ for some § € V. So we want
to know if § can be chosen so that

(g —id) (v + €5) € 11V,
or equivalently, so that _

(g —id)v = £(g —id)d mod FH1V.
Since we know that (g —id)v € #/V by assumption, we can rewrite this as
(g —idp =01 (g-id)s e VT,

for 6 such that (g —id)d € ¢7~1V. This establishes the equivalence of (i) and (ii).

The equivalence of (i) and (iii) then follows from O

The Fy-linear functional w +— B(£77 (g —id)d, w) on ng depends only on v, and expresses
V7, as the kernel of a linear transformation V/ — (V)Y or equivalently as the radical of
a bilinear form.

Lemma 5.9. Keep the notation of the preceding discussion. Define the bilinear form on
VI
j '
(v,w); == B (g —id)v,w).
Then
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(i) V7, is the radical of (-,-);.
(i) {-,-); is alternating.

Proof. Part (i) follows from For (ii), we need to show that
B((g —id)s, ) € #117Z,.
But this follows by observing:

B((g —id)v,9) = Q(g?) — Q((9 — id)v) — Q(?)
=—-Q((g —id)v)
= 2Q(7 (g —id)d) € (7.

O

We thus find that V]:qJrl is the kernel of an alternating form on V]:q, so it remains only
to show that as g varies over elements with fixed sequence (V/,...,V/), this alternating
form is uniformly distributed. It suffices to show this when g merely varies over elements
of a fixed coset of Q(V,Q) C O(V,Q). Let Q; C Q(V,Q) be the subgroup consisting of
elements which are 1 mod #/. We will show that the uniform distribution holds already
when drawing uniformly from the coset H = Q;g. For fixed v, changing g — hg with h € €,
changes the linear functional by

w B(K_J(h - 1)gﬁ7w) = B(5h9v7w) = B(éhvag_lw)7

where §;, = (77 (h — 1). We view its reduction modulo as an element of the Lie algebra of
the special fiber of O(V, Q): dp, € Lie(O(V, Q)r,).- To get equidistribution, it suffices for the
induced homomorphism from Q;/€;.1 to the space A*(V7)" of alternating forms on V7,

sending h to the restriction of 5, to be surjective.

5.2.1. The case ! > 2. If £ is odd, then ) is a pro-¢-group, and thus the spinor norm vanishes
on Q. It immediately follows that the logarithm induces an isomorphism €;/Q;41 —
Lie(O(V, Q)r,) = A*(V @ Fy)", hence the further projection map to A*(V7)" is surjective.

5.2.2. The case £ = 2. For { = 2, it may not be the case that ; surjects on Lie O(V, Q).
However, Q(V,Q) contains the commutator subgroup of O(V,Q), and the image of the
commutator subgroup in Lie(O(V, Q)r,) contains the image of Ad g—1d for all g € O(V, Q).
In particular, the image of (2; contains

(Adg —1d)-a = ar gag' — «

for any g € O(V, Q) and any alternating form o € A2(V @ Fy)V.

Take g to be any lift of the reflection in a nonisotropic vector v € Vg, (i.e., a vector with
Q(v) # 0). Denoting v* = B(v,e) € V¥, g € Vi¥ ® Vk, can be represented by Id +#;)v
(the unusual expression because we are in characteristic 2). Then

* * 1 * *
(V'®uv-ata-v ®U)_W(U ®v)a(v ®v).

gag' —a = —
Q(v)
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A computation shows all w* ® v* with B(v,w) = 0 are in the space generated by such
expressions |Z|

Since for any w, (w
contains

)1 is spanned by nonisotropic vectors, the space log(£2;) in fact

{v* Aw™: B(v,w) =0}, (5.2)
and thus has codimension at most 1. The full Lie algebra Lie O(V, Q) is generated over this
space by any single element v* A w* with B(v,w) # 0. If W is any proper subspace of V,
then we can pick v € W+ and w € V such that B(v,w) # 0. The image of v* Aw* in A2WV
is zero, hence the restriction map from to A2(WV) is surjective for any proper subspace
W C V. Thus the only case in which the alternating form may not be equidistributed is

when V; = Vp. This completes the proof of O

5.3. The BKLPR heuristic. We summarize the model for the Selmer group described in
[BKLT15, §1.2].

5.3.1. The (> rank and Selmer distribution from BKLPR. Let m € Z and V = Z2™, with
the quadratic form @: V — Z, given by

m
Q(x17~ s Tmy Y1y .- 7yTYL) = leyl
=1

A Zg-submodule Z C V is called isotropic if Q|z = 0. Let OGr(y,g)(Z¢) be the set of
maximal isotropic summands of V', hence each Z € OGr(y,q)(Z) is a free Z, module of
rank m.

There is a probability measure on OGr(y,qy(Z¢) such that the distribution of Z/¢°Z
in V/¢¢V for each e > 1 is uniform [BKL"15, §1.2, §2, §4]. We define 25, (notated
in [BKL"15| as Zs,,,) to be the distribution associated to the random variable S, valued
in isomorphism classes of abelian groups, where S obtained by drawing Z and W from
OGr(v,q)(Z¢) independently from this measure, and forming

— ] @
s (262)n(wo 2).

Remark 5.10. In [BKL"15|, 25, and related distributions were defined on symplectic
abelian groups, which are abelian groups together with a nondegenerate alternating pairing
to Q/Z. Since two symplectic abelian groups are isomorphic if and only if their underlying
abelian groups are isomorphic [BKL™15, §3.2|, their distribution can be regarded as a dis-
tribution on abelian groups (which takes probability 0 on any abelian group not admitting
a symplectic structure).

As m — oo the distributions Zs,, ¢ converge to a discrete probability distribution 2,
[BKL 15, Theorem 1.2], which is conjectured in [BKL'15, Conjecture 1.3] to determine the
asymptotic distribution of £°° Selmer groups of elliptic curves ordered by height.

Furthermore, S fits naturally into a short exact sequence

0O—R—-S—-T—0

TWe spell out this computation in more detail. Let « be such that B(z,v) = 1. Take « to be represented
by z*®@w € V]F*[ ® Vk,, where we have used B to identify V' with V*. Then gagt — a is represented by

W Rv)(z* @w)+ (" w)(v* ®v)+ (v ®v)(z* @ w)(vF Q).

v*FQuw 0 0
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where R := (ZNW)® % and T is torsion. It is further conjectured that the joint dis-
tribution of (R, S,T) models the joint distribution of the rank of the elliptic curve (i.e.,
R = (Q¢/Zy)" for r modeling the rank), the £>° Selmer group, and the ¢-primary part of
the Tate-Shafarevich group, respectively [BKL™15, Conjecture 1.3]. For example, the fol-
lowing proposition expresses the compatibility of these predictions with the Katz-Sarnak
philosophy [KS99] that 50% of elliptic curves should have rank 0 and 50% should have rank
1.

Proposition 5.11 (|[BKL"15, Proposition 5.6]). Let notation be as above. Fiz W €
OGr(v,0)(Z¢). If Z is chosen randomly from OGr(y,q)(Ze) (according to the above mea-
sure), then Z N W has rank 0 with probability 1/2 and rank 1 with probability 1/2.

5.3.2. The > Selmer distribution from BKLPR conditioned on rank. Let o, r o be the
distribution on finite abelian ¢-groups, (notated in [BKLT15] as 5, ) given by the above
process in conditioned on the assumption rk(Z N W) = r. By [BKL"15, Theorem
1.6], these distributions converge as m — oo to a discrete distribution .7, 4, (notated in
IBKL™15| as .7,) which agrees with Delaunay’s conjecture for the distribution of ITI[¢*°] of
rank 7 elliptic curves over Q [BKLT15, p. 278|.

There is another characterization of the distribution .7, 4. For non-negative integers m, r
with m —r € 2Z>¢, let A be drawn randomly from the Haar probability measure on the set
of alternating m x m-matrices over Z, having rank m — r, and 7, ¢ be the distribution
of (coker A)iors. According to [BKL™15, Theorem 1.10], as m — oo through integers with
m —r € 2Z>q, the distributions 7, ,, converge to a limit <7 o, which coincides with .7, .

Finally, |BKL™15, §5.6] predicts that, conditioned on elliptic curves having rank r, 111 is
distributed as the direct sum over all primes ¢ of a finite abelian group drawn from 7 ,.

5.3.3. The BKLPR n-Selmer distribution. We next review the model for n-Selmer elements
described at the beginning of [BKL"15, §5.7]. Let 7., denote the random variable defined
on isomorphism classes of finite abelian ¢ groups (notated Z, in |[BKL™15|) defined in
IBKL"15, Theorem 1.6] and reviewed in For G an abelian group, we let G[n]
denote the n torsion of G. For n € Z>; with prime factorization n = [],,, (*, define a
distribution .7, 7 /.7 on finitely generated Z/nZ modules by choosing a collection of abelian
groups {T;}s,, with T, drawn from .7, ,, and defining the probability .7, 7,,z = G to be
the probability that @, T¢[n] ~ G.

Given the above predicted distribution for the n-Selmer group of elliptic curves of rank
r, the heuristic that 50% of elliptic curves have rank 0 and 50% have rank 1 leads to the
following predicted joint distribution of the n-Selmer group and rank:

Definition 5.12. Let (rkPXLPR SelPRLPRY be the joint distribution on Zso x Ab,, defined
by

3 if r <1
Prob((rkBEEPR SelBKLPRY — (1 ) = 5T /nT ifr <
0 if 7 > 2.

5.4. Markov property for the BKLPR model. Fix Z, W € OGr(y,q)(Z¢) and set S =
(Z® 34) N (W ® 34). Define

, oy
;= | wienzw+ 22 v, (5.3)
N 774
v/
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which are the analogues of the V; in[Lemma 5.6] Although S; depends on Z and W, and will
be viewed as a random variable in the future, we suppress this dependence for notational
convenience. The main result of this subsection is the following [Theorem 5.13] and the proof
encompasses the remainder of this subsection.

Theorem 5.13. Let V, Z, and W be as in[§5.3, Define random variables, valued in isomor-
phism classes of finite-dimensional F¢-vector spaces, by Sy :=V @F¢, and S1,52,...,5;,...
as in . Then, the sequence S1,S2,. .. is Markov, and the distribution of dim S; 11 given
S; coincides with the distribution of the dimension of the kernel of a uniformly random
alternating form on S;.

We omit the proof of the following lemma, which is similar to that of

Lemma 5.14. Keep the notation above. Under the identification
<V® QZ) ] =V @F,,
Zy
we have ' _
P S S S;.

The non-degenerate bilinear form B on V induces a non-degenerate bilinear form on
V @ Fy, that we denote by B. We may sometimes abbreviate notation by using B(v,z),
with v € V and z € V ® Fy, to denote B(v (mod ), z).

We will construct the sequence of alternating forms (one for each S;, whose radical is

Sj+1) referenced in
Lemma 5.15. Identifying (' =7 ((371V/03V) = V @ Fy, the orthogonal complement of S;
inV@F, is (77 ((Z/0 + W/I) N =V /EV).
Proof. Inside V/#V, we have
(2/0 WO = 2110 + W0 = 2)00 + W0

using that Z and W are maximal isotropic. Therefore,

(Z/6 AW/E) + 0VIE) " = (Z)6 AW/E)E A (EVIE)E = (2/0 + W/E) N6V /6,
The result then follows by tensoring with F,. ]

Given v € S, we next seek to understand when v € Sj+1? By definition, v € S; is
equivalent to the existence of a representative v € W/ N Z /¢ reducing to v mod ¢, and

lifts w, of ¥ to W and z, of ¥ to Z such that w, = 2, (mod #V). Hence w, — z, = /¢ for
some € € V.

Lemma 5.16. With notation above, v € S; lies in S;11 if and only if the associated € as
above satisfies € € ('3 ((Z/07 + W/ N BV /HIV) .

Proof. For v € S;41, if we can find other lifts ¥’, w),, 2/, satisfying the same conditions, but
such that w! = 2/, (mod #/*1). Such modifications are exactly of the form w! = w, + €5y
with dy € W and 2, = z, + €0z with §z € Z. Hence v € Sj4; if and only if we can choose
dw, 0z such that

Wy + Loy = 2y + 06 + 0IT1E.
Since w, = 2z, + #’¢, this is equivalent to solving

t~te=6w — 5z (mod #7) for some &y € W/ 6, € Z/.
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which is equivalent to

ec 7 ((Z/P +W/E)YNETIV/EV).

O
Lemma 5.17. There is a well defined bilinear form
Aj 85 x 85 = Qu/Zy
given by
Aj(v,z) := Ble,x) = Bl (w, — 2,), 7). (5.4)
Proof. We need to check that the value
B(e,r) = B(l7I(wy — 2,),2) mod . (5.5)

is independent of the choices of U, w,, and z,. Indeed, any other allowable w! differs from
w, by an element of /W, say ¢/§ with 6 € W. But since W// is isotropic and z lies in
S; ¢ W/t C V/¢, we have B(§,z) = 0 (mod ¢). Similarly, replacing z, with any other
allowable 2/, will not alter (5.5). O

Lemma 5.18. Keep the notation of the preceding discussion.

(i) The radical of A; is S;41.

(i1) A; is alternating.
Proof. By definition, v € S; is in the radical of A; if and only if (following the notation
above) €, = {7 (w, — z,) lies in Sj‘. But by |[Lemma 5.151, € € Sj.- if and only if ¢, €
(=3 ((Z/00 + W) N =1V /#7V), which, as we proved in [Lemma 5.16[7 occurs if and only
ifee Sj+1.

For (ii), since we can take z, as a lift of v to V, it suffices to check B(w, —z,, z,) € ##T1Z,.

For this, write w, — 2, = #’¢ and observe that Z and W are isotropic for Q, we have

Qwy) — Q(wy — 2y) — Q(zy)
(wv - Zv)

(e)

=0%Q(e) € 17117,

B(wv — Zv, ZU)

I
O O

O

As in [§5.1] it suffices to show that as Z and W are drawn from the canonical measure
on OGry,)(Z), the alternating form A; is uniformly distributed.

Lemma 5.19. O(V,Q) acts transitively on OGry,q)(Zy).
Proof. Fix W, Z € OGr(y,q)(Z¢). Then we have a scheme
Isom(W, Z) = {g € O(V,Q): gW = Z} C O(V, Q)

over Zg. This is evidently a torsor for the parabolic subgroup Isom(W, W) C O(V, Q).

Moreover, Witt’s theorem implies that Isom(W, Z) has a point over F,, which lifts to a

Zg-point because Isom (W, Z) is smooth (being a torsor for a smooth group scheme). O
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It will suffice to show that conditioning on a fixed W, the distribution of A; is already
uniform. The distribution of Z conditioned on a fixed W coincides with the orbit measure
on OGr(y,g)(Z¢) induced by the Haar measure on O(V, @), since O(V, Q) acts transitively
on OGr(y,)(Z¢) by [Lemma 5.190 As in [§5.1} it suffices to show that the distribution of A;
is already uniform as Z varies over an orbit of a coset of the principal congruence subgroup

I(#):={ge0(V,Q): g=1d (mod #¥)}.
For fixed Z°, which induces the alternating form
Aj(v,2) = Bt (w, — 27), ),
the alternating form associated to vZ° for v € T'(¢/) is
B (w, —2%), 2)

which changes the functional by
= BUTI(1—7)20, ).

Now, since the map v + 1 — v induces an isomorphism T'(¢#/)/T(#7+1) = Lie O(Vg,, Q), the
resulting alternating form A; is uniformly distributed, so we are done. |

Remark 5.20. Note that unlike in the case of the random kernel model, where we had
additional complications to deal with associated to £ = 2 in there are no additional
complications here for £ = 2 in the proof of because here we are working with
the full congruence subgroup I'(#), instead of a subgroup which may have index 2, as was

the case in

6. PROOFS OF THE MAIN THEOREMS

We conclude the paper by proving our main theorems. In we connect the actual
Selmer distribution to the random kernel distribution, while in we connect the random
kernel distribution to the BKLPR distribution. Combining these gives us a proof of our
main theorem, Finally, in we prove [Theorem 1.6] and [Corollary 1.7}

6.1. Comparing the Selmer distribution with the random kernel model. To start,
we state one of our main theorems, which compares the distribution of Selmer groups of
elliptic curves to the random kernel model. We prove this at the end of the subsection.

Theorem 6.1. Fix integers d > 2 and n > 1. For q ranging over prime powers, with
ged(q,2n) =1 and (r,G) € Z>o X Ab,, we have

Prob(Sel;, /Fy(t) ~ G) = Prob(RSel}, z = G) + Ona(q™"/?) (6.1)
and

Prob((rk, Seln)%q = (r,@)) = Prob((rk®", Seln)]‘f«q =(r,G)) + On.alg 216d2—_1162d+31) 62)

1

= Prob((Rrk, RSel,, )¢ = (r,G)) + O q(qFea—i6zats1 ),
In particular,

lim sup (rkan,Seln)fqu = limsup (rk,Seln)fqu = lim sup(Rrk, RSeln)%q (6.3)
q—00

q—o0 q—o0

ged(q,2n)=1 ged(q,2n)=1

PR an d __ DR d 114 d

hqrgg.}f (rk™, Sely )z, = hqrgg%f (rk, Sel,, )y, = hqrggéf(Rrk, RSel,)f, » (6.4)
ged(g,2n)=1 ged(g,2n)=1
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The values of (6.3) and (6.4) agree when d is odd or n < 2, but differ when d is even and
n > 2.

We are nearly ready to prove but first we will need to establish two pre-
liminary results. The first preliminary result relates the Selmer group of an elliptic curve to
the 1-eigenspace of Frobenius.

Lemma 6.2. Forn>1,d>2 and [E;] =2z € V/O%[l/Qn] (Fy), we have
Sel,, (E,) = ker (pﬁlhz[l/zn] (Frob,) — id \(70@’ ) .

Proof. Notate the geometric fiber of %OZ over x by (EOZ’,JJ and the fiber by (ﬁoi,k) .
Since (%%) is a finite étale Fj-scheme, we have

od o d . od
(2°%) (Fy) = ker (i oo (Frob) —id | (£°F) ).
Hence, combining this with M(l), we obtain that for [E,;] =z € %OZ,
. od
ker (pfb’z[l/%] (Frobg) —id | (% k)f) = Sel,, (Ey).

Here we are using that there is an isomorphism (Eoik)z o~ (Selozyk)z/ for 2’ € W°
mapping to z, coming from the definition of E"ik and %OZ as quotients of Selof%k and
V/OZ by a compatible group action. O

Our second preliminary result relates the rank of an elliptic curve [E,] € #°¢(F,) to the
Dickson invariant of p%z i (Frobg).

Recall from [Definition 3.1|that (Q%, V#) denotes the quadratic space over Z, whose reduc-
tion modn is (Q4, V,¥) on which the monodromy representation p , acts. Let (QF,, Vy) :=

n’ n

(Q% ®7 74,V ®7 Z¢) denote the base change to Z;.

Proposition 6.3. Let d > 2, and let ¢ be a prime. For q a prime power with ged(q,2¢) =1,
define

WS = (B = o € WP g (Fy) s 1K (By) < 1}
(1) For q ranging over prime powers with gcd(q,2¢) = 1, we have
#Wz,;k“"gl
#Wm%[l/%] (Fq)

(2) For all x € Wz,’;kmél C ”//mz[l/%] (F,), we have

:1+Od(qm)'

0 «— p%z,Z[l/QL’] (Frob,) € SO(Q%Z)
1] = P%e,zu/ze](FrObm) ¢ SO(Q%Z).

(3) The above statements are true with analytic rank replaced by algebraic rank.

rk ker (p%bz[l/%] (Froby) — id) = {

Proof. To start, observe that (2) follows directly from [Lemma 3.18| and [Proposition 3.22|
We next demonstrate (1). By [Lemma 3.18] whenever x € V/Z‘;[l/%], the analytic rank
of F, is equal to the rank of the 1-generalized eigenspace of p%[ 2]1/24] (Frob,,) — id.
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By |Proposition 3-22L whenever = ¢ W?’;kangl, there is a particular Zariski closed hyper-

surface Z in the algebraic group O(Q%Z), i.e., the hypersurface parameterizing elements with
a two or more dimensional generalized 1-eigenspace, such that p%[ 21720 (Froba) € Z(Zg).

By for any positive integer e, we have
1m(Z(Z/€eZ) s O(Q%E)(Z/EeZ)) =0y (ze(dimO(Q%Z)—l)> _ Oé,d (f@(dimO(le)—l)) .

By |Theorem 3.14} we know im p(eie,z[l/ze] has index at most 2 in O(Q%z), and hence has size
. d
within a constant factor of £¢ ™ ©(Q%)  Therefore, it follows from [Proposition 3.9| that

d ke
# (P20 E) —WEE"S)  wim(z(z/0°2) - 0(QL,))
#2502 (Fy) #4711 /9

im(Z(Z/ 7 o4

q

ée(dimO(Q%[)il) — edim O(Q4 ) yLe(dim O(Q2 )—
) OM( otz O O e O
= Opa (€7 4 g7 /2 ()3 HmO@E)=D))
(6.5)
Crucially, the above constant does not depend on e, and so we may freely choose e to
minimize the above error term. Indeed, we may take e to be the least positive integer so
1

. d T o~ Ad N
that ¢ < (¢¢)+34mOQ@L)) o equivalently ¢ 7™ @ < ¢¢. Then, so long as ¢ > £,

(1+3dimO(Q%[))

replacing ¢ by (¢¢) will introduce at most a factor of ¢, and so

—1

Oé,d(g_e) Oe,d(q 143 dim O(Q%Z)) )
1+é ”O(Q%g)’% 1 (66)
3 g d I e r——— p— a5
Oe’d(qfl/Q(ge)(%dlmO(QZe)fé)) Ova (q 27 1+3dim0(Qf ) ) Ot <q1+3d1m0(Q%Z)> )

Further, for the finitely many ¢ < ¢, we can adjust the constants so that the above still
holds with no dependence on gq.

Combining (6.5) and (6.6)), we find

d d,rk* <1 _

# (sz[l/M] (]Fq) - Wé,q ) — Oy (q 1+3damé(Q%e)>>

7 =0y, .
#5112 (Fy)

Further, the constant above does not depend on ¢ because the analytic rank, and hence

the subset W?,’;kangl C ng[l /20 (Fg) is independent of the auxiliary choice of £. Now, (1)
follows because
-1 -1 -1 -1
14+3dimO(Q%,)) 1+ 3(12d-4)(12d-5) ~ 1+4+3(6d—2)(12d —5)  216d2 — 162d + 31"

Part (3) follows from the proceeding ones and fact that, for elliptic curves of rank at most

1 over IF, of characteristic > 3, we know on a full density (as ¢ — c0) subset that algebraic

rank equals analytic rank. For charlF, > 3 the statement holds for every elliptic curve

of rank at most 1, as explained in §3.8], using the analogue of the Gross-Zagier

formula in [Ulm03, Theorem 1.2|. If char F, = 3, it follows by combining §3.8] with
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the Gross-Zagier formula for everywhere semistable elliptic curves in [YZ19, Remark 1.5|.

Note that there is an open subscheme V/mdB - V/g parameterizing those elliptic surfaces
which have squarefree discriminant, so are everywhere semistable. This is fiberwise dense
over B by [Lanl8, Lemma 3.11], so that in the large ¢ limit, a density 1 subset of #2(F,)
corresponds to elliptic curves with everywhere semistable reduction. O

Proof of [Theorem 6.1, We will explain how the distribution of (rk™”, Seln)ﬁq and (rk, Seln)fqu,
-1
up to an error of O, g(g?#®-1624+31) are determined by the distributions of Frob, for
T € W?”;kansl C ngq (F,), as defined in [Proposition 6.3] By definition, these distribu-
tions are determined by Frob, for x € %q (F,), so we only need justify why there are
—1 an

Oy, q(g?1647-162a+31) points in ﬂgq (Fq) — Wg’;k st

To start, we explain why (rk*", Seln)%q and (rk, Seln)%q agree with their restrictions from
%ﬁfq (Fy) to 7/@5‘1 (F,), up to an error of O, 4(q~'/?). The argument here is analogous

. qu _ d d o

to that in [Remark 1.41 Indeed, the closed substack #2;" — #y C ¥ has positive

codimension. Hence, contributes at most O,, 4(¢g~'/?) to the distributions (rk®", Seln)]‘f‘q and
(rk, Seln)]‘f«q, as can be deduced from the Lang-Weil estimate and [Lan18, Lemma 5.3].

We next explain how to relate the distribution of pfl,zu /o) (Froby) over € V/M]Zq (Fy) to
(rk™", Seln)%q and (rk, Seln)ﬁiq. The key will be the following two results shown above.

(i) By |Lemma 6.2} we have Sel, (F,) = ker (pivz[l/%] (Frob,) —id | (%Oﬁ‘{q)m)'

d,rk*" <1
4

"y C ngq (F,) whose density is 1 +

(ii) By [Proposition 6.3L there is a subset W

O4(q 216d2:1162d+31) for ¢ ranging over prime powers with ged(g,2¢) = 1 such that
rh(By) = 1k™(Ey) = 050 | (Frob,)¢S0(Q1):

where d,¢p =1ifa ¢ Band 0if a € B.

The observation (i) then establishes (6.1)). Combining (i) and (ii) with the preceding dis-
cussion, we have explained how the distribution of Frobenius elements determines the joint

—1
distributions (rk*", Seln)%q and (tk, Seln)%q, up to an error of O,, 4(q2164°~162d+31 ), By |Corol-

flary 4.3 and (Corollary 3.11} up to an error of On.a(g~1/?), the elements P 211 jom) (Froby)

are equidistributed between the two cosets of Q(Q%) given by

(Dan Spéi) € {((07 e 0), [qd_l]) ) ((L 1), [qd_l])} :

This describes the distribution (Rrk, RSeln)ﬁ%q and hence yields , and .

To conclude the proof we need justify the values of and agree when d is odd
or n < 2 but differ when d is even and n > 2. Because these limits approach (Rrk, RSeln)fqu,
it suffices to show (Rrk,RSeln)% is independent of ¢ when d is odd or n < 2 but depends
on g when d is even. When d is odd, this follows from because the square
class of ¢?~! is always trivial, hence independent of gq. Also, when n < 2, this holds again
by because the spinor norm is trivial. However, when d is even and n > 2,
the spinor norm is nontrivial, and (Rrk, RSeln)féq will change depending on whether ¢ is
a square or nonsquare. Indeed, when ¢ is a square, Prob(RSeliJFq = (Z/nZ)le_4) > 0,
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corresponding to the case that ¢ = id in while when ¢ is not a square,
Prob(RSel} x = (Z/nZ)"**™") = 0. 0

6.2. Comparing the random kernel model with the BKLPR heuristic. We now
prove:

Theorem 6.4. The TV distance between the BKLPR heuristic and lim sup(Rrk, RSel,, )

q—)OO
18 0(2*(6‘1*2) ), where the error constant is absolute, and similarly for the TV distance
between the BKLPR heuristic and liqrgioréf(Rrk, RSeln)]‘éq

In particular, we have

(rkBKLPR’ SengLPR) = lim limsup(Rrk, RSel, )

d—oo g—oo

= lim lim inf(Rrk, RSel,, )
d—o00 g—00
Proof. By [Definition 4.2 with probability one the rank is 0 or 1, and determined by whether
the random g in the random kernel model has Dickson invariant 0 or 1, respectively. Hence
the rank component of these distributions is completely determined by the Selmer compo-
nent, we can focus our attention on the Selmer component.

Thanks to |Corollary 4.24] we know that the TV distance between dimRSeIZFQ and

BKLPR heuristic for Sely is O(f‘<6d_2)2). The Markov properties |The0rem 5.1| and |Corol—|
[[ary 5.2l and [Theorem 5.13|imply that for £ > 2, the two distributions for Sele agree condi-
tioned upon them agreeing for Sel,. For ¢ = 2, the same is true up as long as d; < 12d — 4
where the notation d; is as in which only fails if g reduces to the identity
element in O(12d — 4,F,). This happens with probability 1/#0(12d — 4,F,), which is neg-
ligible compared to the error term we seek. We conclude that the TV distance between the
two distributions for Sele distributions is also O (¢~ (64~ 2)* ).
Finally, we consider general n. For n = []¢*, the prime factorization of n, we have

Seln = Dy Selga[, .

The BKLPR heuristic predicts that the distributions of the Selye, are independent after
condition on the rank. If (V,Q) is a quadratic form over Z/nZ then note that Q(Q) ~
[Tprime ¢n €2(Q|z/¢0¢7). Therefore, conditioned on each coset of €2 in H Z % the distributions
(RSe llﬁﬁnel)F are independent.

Since the TV distance of two product distributions is the sum of the TV distance of the
factors, the TV distance between the BKLPR heuristic and lim sup(Rrk, RSel )]F is

q— o0

< N DT < ((6d - 2)?) — 1 < 27027,

prime £|n

We can now complete the proof of

Proof of [Theorem 1.1 This follows immediately from combining [Theorem 6.1] and [Theo]
e 6.4 O
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6.3. Remaining results. We conclude by proving two remaining results, promised in the
introduction.

Corollary 6.5 (Large ¢ analog of [PR12, Conjecture 1.2]). For fized integers d > 2 and
n > 1, and q ranging over prime powers with ged(q,2n) = 1, we have

1/2+Od(qm) ifr <1,

- Oalgmes- (6.7)
Od(q216d2 162d+31) zf r> 2.

Prob(rk? /F,(t) = r) = {

Furthermore,
Efrk [, (8)] = 1/2 + Qg7

Proof. The first statement follows immediately from by summing over the set of pos-
sible groups G which can appear. For the statement regarding average rank, we also need
to know that there is a uniform bound on the rank of elliptic curves of height d over Fy(t),
only depending on d. This holds because the rank is bounded by the size of the Selmer
group, which is uniformly bounded in ¢ among all elliptic curves of height d, as follows from
[Lani8, Corollary 3.24], since the Selmer space SelfL’Fq is quasi-compact and quasi-finite over

%‘i and hence has uniformly bounded fiber degree. O

Theorem 6.6 (Large ¢ analog of [PR12l Conjecture 1.4]). Let n be a squarefree positive
integer, d > 2, and w(n) be the number of prime factors of n.

(1) Fiz ¢, € Z>q for each prime ¢ | n. Then

. . . d cp 1 s d ~ ce
Jim. hg}ip Prob (Sel ~[[@/ez) ) = lim liminf Prob (Seln RAGESE | () )
ged(gq,2n)=1 Ln ged(q,2n)=1 ln (6 8)

_ {QW(")l Iy ((szo (1- Z*j)fl) (Hj" T 1)) if all c¢ have the same parity,

0 otherwise.

(2) For q ranging over prime powers with ged(q,2n) =1, we have
]E[# Seli /Fq(t)] o(n) +Ond 1/2 ZS+Ovzd ~Y )

s|n

(8) For m < 6d — 3 the mth moment of Sel® /F,(t) is

E[(#Seld /F,t)™ = [[ TI +1)+Onala™?).

prime £|n i=1

Proof. The first part follows from [Theorem 1.1{once we establish that Sel2X*"® has distri-

bution as predicted in the bottom line of (6.8)). To see this, note that, by definition, the
model SelE’KLPR is determined by the models for SelBKLPR with ¢ | n which are independent,
except for the constraint that the parities of their Z/EZ ranks are all equal. Hence, it suffices
to establish the first part in the case n = £ is prime. Note that the model SelBKLPR agrees
with the model for ¢-Selmer groups defined in [PR12, Definition 2.9] by [PR12, Theorem
2.19(f)]. Therefore, in the case n = ¢ is prime, Sellg’KLPR has distribution as predicted in
the bottom line of (6.8) by [PR12 Proposition 2.6(d) and (f)].

To establish parts (2) and (3), by (6.I) , it suffices to show that the average value of
RSel‘TiL’]Fq is the sum of the d1v1sors of n, and, when n is squarefree, the mth moment of
RSel. s [T, [Ty (€ + 1)
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Part (2) then follows from Burnside’s lemma and the fact that the number of orbits of
p . acting on the free Z/nZ module V¢ is the sum of the divisors of n. One can deduce
this using the same argument as in [dJF11, Lemma 4.12]. Alternatively, one can deduce this
from [Lanl8l Lemma 4.13 and Corollary 4.14] and the fact that the number of components
of %oz agree with the number of components of V/Oz, since the former is a quotient of the
latter by a smooth connected algebraic group.

Finally, Part (3) follows from Burnside’s lemma for the action of im pfl_’ , acting diagonally
on (Vi)™, which we claim has a total of [],,, [TiZ, (¢ +1) . Note that Q(Q.) C imp{l , C
0(Qy); so it suffices to show both Q(Qf) and O(Q7) have [],,, [TiZ, (¢ 4 1) orbits on
(V,4)™. This follows from [Theorem 4.9|and [Lemma 4.5] together with the Chinese remainder
theorem to bootstrap this latter result from primes to squarefree integers. O
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