
Discussion Session on p-divisible Groups

Notes by Tony Feng

April 7, 2016

These are notes from a discussion session of p-divisible groups. Some questions were
posed by Dennis Gaitsgory, and then their answers were discussed by Jared Weinstein.

1 Questions

1.1 Question 1

We have a p-divisible group over OCp . There was a “universal cover” G̃. What is this?
Also, please explain the short exact sequence

0→ Tp(G̃an)[1/p]→ G̃an → Lie(G) ⊗ Ga → 0.

1.2 Question 2

How do you associate isocrystals to p-divisible groups? What is the period map?

1.3 Question 3

How do you describe modifications of bundles on X in terms of p-divisible groups?

1.4 Question 4

What is the analogue of this stuff in equal characteristic?

2 Discussion of Question 1

Let me first write down the sequence without taking universal covers. The exact sequence
is basically coming from the logarithm:

0→ G[p∞](OC)→ G(OC)
log
−−→ Lie(G) ⊗C → 0. (1)
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2.1 Basics on p-divisible groups

There are often implicit identifications made in talking about p-divisible groups. If G a p-
divisible group, then it is “represented” by a formal scheme which usually is also denoted
G. What do we mean by this? (What is the associated formal scheme?) By definition a
p-divisible group G is an inductive system

G = lim
−−→

Gn

where Gn are group schemes. We could view G as a sheaf on the category Nilpp of rings in
which p is nilpotent. Then it turns out to be representable by a formal scheme.

Example 2.1. For the p-divisible group

µp∞ = lim
←−−

µpn

the formal scheme is Ĝm. In general it can be difficult to describe.

So if G is a p-divisible group, we denote by G(OC) the points of the formal scheme.
This is a Zp-module. We have a logarithm map

G(OC)
log
−−→ Lie G.

Before discussing what this is technically, we give some examples.

Example 2.2. For G = Qp/Zp the constant group scheme, this map is

Qp/Zp → 0

so in this case the sequence (1) is

0→ Qp/Zp → Qp/Zp → 0→ 0.

Example 2.3. For G = µp∞ , we have G(OC) = 1 + mC (considered as a multiplicative
group). Why? You might think at first that G(OC) should be the p-power roots of unity, but
we cannot evaluate it directly on OC because OC is not an object of Nilpp.

Instead, we have to view OC as an inverse limit of OC/pn. Then

µp∞(OC) = lim
←−−

n

µp∞(OC/pn)

Now on OC/pn, which really is an object of Nilpp, we can apply the definition of µp∞

literally. But in this ring there will be many p-power roots of unity - anything close to 1
works. So

µp∞(OC) = lim
←−−

n

µp∞(OC/pn) = lim
←−−

n

1 +mC/pn = 1 +mC .

Alright, let’s finally start building the short exact sequence. Again, the right map is the
p-adic logarithm:

1 +mC
log
−−→ C
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The kernel of the logarithm is the torsion subgroup, so in this case (1) is

0→ (1 +mCp)[p∞]→ 1 +mC
logp
−−−→ C → 0.

The two examples just discussed, Qp/Zp and µp∞ , can be thought of as the “building
blocks” of p-divisible groups. Everything else “looks like” a mix between them. For in-
stance, if G is a general p-divisible group then G(OC) will look like a product of disks (as
in 1 +mOCp

for µp∞) times a product of Qp/Zp factors.

2.2 Analytification

Let’s now return to the discussion of the short exact sequence

0→ G[p∞](OC)→ G(OC)→ Lie(G) ⊗C → 0.

We now construct the analogous sequence at the level of analytic spaces. To a p-divisible
group G there is an associated adic space Gan over C. The construction passes through the
associated formal scheme over OC . We know that there is a fully faithful embedding from
formal schemes over OC to adic spaces over Spa(C,OC); then we form the generic fiber
over Spa(C). (This was denoted Gad

η in Arthur’s talk.)
The claim is that there is a short exact sequence

0→ G[p∞]→ Gan → Lie(G) ⊗ Gan
a → 0.

What is Gan
a and why did we tensor with it? We tensored with it because we want an

exact sequence of objects in the category of adic spaces, so we have to turn the vector space
Lie(G) into an “adic vector space”. (We are viewing G[p∞] as a discrete adic space. Strictly
speaking, maybe we should underline it) Now, Ga is what you expect in terms of the functor
of points:

Gan
a (R,R+) = R.

However, it is slightly subtle to present this as an adic space. This is not represented by an
affinoid adic space. It is something like the whole affine line, which is not quasi-compact
as an analytic space: it should be presented as a rising union of infinitely many disks of
increasing radius.

Now what is the logarithm actually? Let’s go to the very basics. If G is a formal group
of dimension 1, then by definition there is some power series

X +G Y = X + Y + . . . .

What’s the Lie algebra? You just choose a coordinate X, and the addition law is given by
this power series. Multiplication by p should be finite, so we should have

[p]G(X) = uXph
+ . . . u ∈ O∗C .
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Now we need to give a map
G(OC)→ C.

As a set G(OC) is mC , but with group law given by that power series. So

logG(X) = lim
n→∞

[pn]G(X)
pn .

Exercise 2.4. Do this explicitly for Ĝm.

Why is this valued in Lie(G)? The Lie algebra is dual to differentials. So if ω is an
invariant differential on G, there should be a natural way to evaluate

〈log(x), ω〉 = “
∫ x

0
ω” ∈ C.

What does this mean precisely? We can write the Kähler differential as ω = d f , and there
is a unique normalization of f so that f (0) = 0. We set∫ x

0
ω := f (x)

for this f .

2.3 Passing to the universal cover

Now, what is the universal cover? We could describe as a formal scheme whose functor of
points is

G̃(R) = lim
←−−

p

G(R).

This should be a Qp-vector space. Indeed, applying lim
←−−p

to any Zp-module gives a Qp-
vector space.

Example 2.5. If G = Qp/Zp then G̃ = Qp.

Example 2.6. If G = µp∞ then
G̃(R) = lim

←−−
1 + R00

where R00 is the ideal of topologically nilpotent elements. Why? Again we need to express
R as a limit of rings in Nilpp in order to compute:

µp∞(R) = lim
←−−

n

µp∞(R/pn) = lim
←−−

n

1 + R00/pn

since at the finite levels anything topologically nilpotent is a pnth root of unity.
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Note that this limit looks like R[ if R is perfectoid. In fact, recall that there are two
parallel constructions of the tilt: one in characteristic 0, and one after modding out by p.
Indeed we have here

G̃(R) = µp∞(R)

= lim
←−−

n

1 + R00/pn

= lim
←−−

x 7→xp

1 + R00/p

= G̃(R/p)

The preceding example reflects the general phenomenon that

G̃(R)→ G̃(R/p)

is always an isomorphism. We might say that G̃ is a “crystalline” construction because it is
insensitive to infinitesimal extensions.

Now what about the exact sequence? There is a map

G̃(OC)

��
G(OC)

which is projection onto the 0th coordinate. Let’s compare the logarithm maps for G and
its analytification.

G̃(OC)

��

// Lie(G) ⊗C // 0

0 // G[p∞](OC) // G(OC) // Lie(G) ⊗C // 0

The map G̃(OC) → Lie(G) ⊗ C can therefore be thought of as the composition with pro-
jection and the logarithm map for G(OC). In particular, the kernel consists of elements
whose 0th part is killed by the classical logarithm, i.e. consists of elements whose 0th part
is torsion.

Tp(G)

��
0 // TpG ⊗Zp Qp //

��

G̃(OC)

��

// Lie(G) ⊗C // 0

0 // G[p∞](OC) // G(OC) // Lie(G) ⊗C // 0
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Theorem 2.7. G̃ is a perfectoid space.

Example 2.8. For G = µp∞ , what is G̃ as a perfectoid space? It turns out to be the “perfectoid
open ball of radius 1” (since these are precisely the topologically nilpotent elements for
multiplication). This is easiest to describe at the level of points:

µ̃an
p∞(R) = lim

←−−
x 7→xp

1 + R00.

How do we describe this as a perfectoid space in terms of affinoid charts? Again, the
description is a little complicated: it is certainly not affinoid since the open ball is not
quasicompact. We can exhaust it from inside by closed balls.

Note that Spa(C〈x1/p∞〉) is a “perfectoid closed ball of radius 1”. First of all, what
does C〈x1/p∞〉 even mean? C〈X〉 is the Tate algebra, with elements being convergent power
series. Then C〈x1/p∞〉 is obtained by adjoining all p-power roots of X and completing. Now
to exhaust the open ball from within, we need to taking a rising union of rescaled closed
disks |X| ≤ |pε | as ε → 0:

lim
−−→
ε→0

Spa(C〈
(

X
pε

)1/p∞

〉).

Perhaps a slicker way to describe this is as (Spf OC[[X1/p∞]])an.

3 Discussion of Question 2

3.1 Dieudonné modules

Let k be a perfect field of characteristic p. There is an equivalence of categories

M : {p-div groups/k}
∼
−→ {Dieudonné modules/W(k)}. (2)

What are Dieudonné modules?

Definition 3.1. A Dieudonné module is a finite free W(k)-modules M, together with maps

F,V : M → M

where F is σ-linear and V is σ−1-linear and FV = p.

Now, what we actually discussed were not Dieudonné modules but isocrystals, which
looked similar but were defined over fields. We can get that from a Dieudonné module by
inverting p. But then what happens to the equivalence (2)?

On the left, we get p-divisible groups up to isogeny. On the right, we don’t need to
specify the V because it is determined by F once p is invertible, but there is still a condition
because V had to preserve a lattice. So the right side becomes the category of isocrystals
over k (which by definition modules over W(k)[1/p]) with slopes in [0, 1].

{p-div groups/k}/isogeny
∼
−→ {isocrystals/k with slopes in [0, 1]}.
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Example 3.2. M(Qp/Zp) = W(k) with F = pσ.

Example 3.3. M(µp∞) = W(k) with F = σ.

In general, we have

ht(G) = rank M(G)

dim G = dimk M(G)/V M(G)

Note that the latter is a module over W(k)/p since V divides p.
So what is this equivalence M? Given G/k, lift to G′/W(k) arbitrarily. Then it is a

fact G′ has a universal vector extension. What does this mean? A vector extension is an
extension of G′ by a sheaf of W(k)-algebras isomorphic to Gn

a.

0→ V � Gn
a → EG′ → G′ → 0.

They form a category with morphisms required to be linear over W(k) on the vector parts;
the universal vector extension is the initial object. This turns out not to depend on G′.
The reason is basically that the difference between different lifts is divisible by p, so the
logarithm converges.

A good analogy to keep in mind is the following. Given a curve, its Picard scheme
depends on the complex structure, but the universal vector extension is the stack of local
systems on the curve, which is independent of complex structure. Then the Dieudonné
module is

M(G) := Lie EG′.

Why is this actually a Dieduonné module? Our original G has a Frobenius morphism

F : G → G(p)

inducing
V : M(G)→ M(G(p)) = M(G) ⊗W(k),σ W(k).

because of our conventions (note that this is σ−1-linear). Since F : G → G(p) divides p,
V : M(G)→ M(G(p)) also divides p, so we can define F as well.

Remark 3.4. There is also a contravariant version of the Dieudonné module in which “F
actually induces F”.

3.2 The period map

Now what’s the period map? It’s usually attributed to Gross-Hopkins or Grothendieck-
Messing. Fix a p-divisible group G. The target of the period morphism is Gr(d,M(G))an

(d-dimensional quotients of the Dieudonné module) where d = dim G and n = ht G. The
source is a deformation space for p-divisible groups, denotedMG. This is an adic space.
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What are its points? Roughly speaking, an (R,R+)-point is a deformation of G to R+. (Here
(R,R+) is an affinoid algebra over (W(k)[1/p],W(k)).)

MG(R,R+) ≈
{

G′/R = p-div group
ι = quasi-isogeny: G ⊗k R+/p→ G′ ⊗R+ R+/p

}
(Caveat: we have to sheafify, and this only applies to bounded rings. If R is not bounded,
then we need to first express it as a rising union of bounded subrings.)

Now we can finally define the period morphism. Given (G′, ι) we have

0→ V → EG′ → G′ → 0.

We have a rigidification
Lie EG′[1/p]

ι
� M(G) ⊗W(k) R.

This map is induced by the “crystalline property” of the Dieudonné module because ι is
only defined modulo p. Then the map Lie EG′[1/p] → Lie G′[1/p] defines a point in the
classifying space of d-dimensional quotients of M(G), which is Gr(d,M(G)).

4 Discussion of Question 3

Let G/OC be a p-divisible group. Then we have an exact sequence

0→ V → EG → G → 0.

The universal cover fits as

G̃

��
0 // V // EG // G // 0

In fact the covering map factors through EG.

G̃

��~~
0 // V // EG // G // 0

Why? Informally speaking, G̃ = {(x0, x1, . . .)} so

lim
i→∞

pi x̃i ∈ EG

defines a lift. The point is that choices were made in lifting xi to x̃i but they will be killed
in the limit, because the ambiguity is measured by V and this is multiplied by higher and
higher powers of p.
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So we get a map

G̃(OC)→ EG(OC)
logEG
−−−−→ Lie EG ⊗C.

The composition is called the quasi-logarithm q logG. We can geometrize it to a morphism

q logG : G̃an → M(G) ⊗ Ga.

Both source and target only depend on G modulo p; it is a theorem that the map itself also
only depends on G modulo p.

Theorem 4.1. Let (R,R+) be a perfectoid C-algebra. There exists an isomorphism

G̃(R+)→ (M(G) ⊗ B+
cris(R

+/p))ϕ=1 = H0(X(R,R+),EM(G)).

Proof sketch. We have

G̃(R+) = G̃(R+/p) = HomR+/p(Qp,G).

Since we’re over R+/p we know that some power of p dies in G, so this is a forward limit

lim
n→∞

Hom(Qp/pnZp,G) = Hom(Qp/Zp,G)[1/p].

Now passing to Dieudonné modules, we conclude that

G̃(R+) = HomR(M(Qp/Zp),M(G))

in the category of Dieudonné crystals. This means that whenever you have a PD thickening
of R+/p, we can evaluate this on that thickening. We choose to evaluate it on Acris(R+/p)→
R+/p, which is the universal PD thickening. Then we get

G̃(R+) = Hom(B+
cris,M(G) ⊗ B+

cris)

with the crystal structure on B+
cris being V = 1, so

G̃(R+) = Hom(B+
cris,M(G) ⊗ B+

cris) = (M(G) ⊗ B+
cris)

V=1, i.e. F=p

as desired. �

Go back to the exact sequence

0→ Tp(G) ⊗ Qp → G̃ → Lie(G) ⊗ Ga → 0.

We now see how to interpret the (R,R+)-points of the middle term as global sections of
a vector bundle EM(G). Geometrizing to the actual vector bundles, we can interpret our
sequence as a modification

0→ Tp(G) ⊗ OX → EM(G) →?→ 0
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Call i : ∞ → X the inclusion of the point with residue field C. We can view Lie(G) ⊗ C as
i∗ Lie(G) ⊗C, getting

0→ Tp(G) ⊗ OX → EM(G) → i∗ Lie(G) ⊗C → 0

The theorem also goes in the other direction: given any modification with trivial kernel,
there is a corresponding p-divisible over OC which induces it. Thus, there is a bijection

{p-divisible groups/OC}/isogeny � {modifications 0→ T → E → i∞W → 0}

where T is trivial and W is miniscule, which means that it is a module over B+
dR/t (i.e. killed

by the uniformizer).
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