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Everything here is following Totaro [Tot99].

1. MOTIVATION

1.1. Principal G-bundles. Topology is concerned with topological spaces and continuous
maps between them. But the data is a topological space of so complicated and infinite
in nature that it can be very difficult even to tell when two topological spaces are “the
same.” For instance, all n-dimensional manifolds look locally the same. A central theme in
algebraic topology is to attach algebraic invariants to topological spaces, such as homotopy
groups, homology groups, cohomoloy groups, etc.

Today we will be discussing a very specific kind of topological object, which is nonethe-
less ubiquitous: the principal G-bundle.

Definition 1.1. Let G be a topological group. A principal G-bundle over X is a topological
space P equipped with a continuous, free action of G and a map

π : P → X

such that

(1) π identifies the quotient space G\P with X, and
(2) π is locally trivial, i.e. for all x ∈ X there is an open neighborhood x ∈ U ⊂ X such

that

p−1(U)
∼= //

##

U×G

||
U

Remark 1.2. We say thatG acts freely on Y if the mapG×Y → Y×Y sending (g,y) 7→ (y,gy)
is a homeomorphism onto its image. The bijectivity is equivalent to all stabilizers being
trivial, which is the familiar notion of free action for discrete groups.

Example 1.3. The trivial G-bundle on X is the product space G×Xwith the obvious projec-
tion map.

Any G-bundle π : P → X admitting a global section s : X → P is trivial, as we can view
s as giving a coherent choice of identity element in each fiber. Concretely, we have a map
G× X→ P sending (g, x) 7→ gs(x), which is necessarily an isomorphism.

Example 1.4. As with vector bundles, one can think of principal G-bundles in terms of
gluing. Explicitly, if {(Uα,φα)}is a trivialization of π : P → X, then P is determined by the
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transition functions τβα : U→ G:

G×Uα

τβα

88

φ−1
α // p−1(Uα)

φβ // G×Uβ

These transition functions must satisfy the cocycle conditions to be consistent. Thus G is
called the “structure group.”

One immediate consequence of this definition is that if G = GLn, then our transition
functions also define a vector bundle. So we see that there is an equivalence between
principal GLn-bundles and vector bundles! In fact wheneverG is the automorphism group
of a certain structure, a principal G-bundle will have an alternate interpretation in terms of
that structure.

Even if you are not familiar with principal G-bundles, you have probably encountered
plenty of vector bundles and appreciate their importance. Again, the datum of a vector
bundle is complicated, “infinite,” and global in nature, and it can be difficult even to tell
when two vector bundles are isomorphic. Luckily, we can again attempt to attach alge-
braic invariants to vector bundles. Namely, to any vector bundle V → X one can associate
elements of H∗(X) in a functorial way (meaning compatible with pullbacks).

Example 1.5. If V → X is a complex vector bundle of (complex) rank n, then there are Chern
classes c1(V), c2(V), . . . , cn(V) ∈ H∗(X;Z).

Example 1.6. If V → X is a real vector bundle of rank n, then there are Stiefel-Whitney classes
w1(V),w2(V), . . . ,wn(V) ∈ H∗(X;Z/2).

One might ask why these characteristic classes exist, and why there aren’t any more out
there waiting to be discovered. Classifying spaces answer these questions in a very elegant
way.

Definition 1.7. The space BG (well-defined up to homotopy) is a space representing the
functor Top→ Set sending

X 7→ {principal G-bundles on X}/isom.

In other words, there is a natural bijection

Hom(X,BG)/homotopy↔ {principal G-bundles on X}/isom

It is a theorem that such a space always exists. In fact, here is a “concrete” construction.
Take a contractible space EG on which G acts freely. [Why does such a thing always exist?]
Then BG = EG/G.

The map EG → BG is the “universal principal G-bundle,” and it corresponds to the
identity map BG→ BG. Given a map f : X→ BG, the corresponding principal G-bundle is
the pullback

f∗EG //

��

EG

��
X

f // BG
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1.2. Characteristic classes. Therefore, H∗(BG) parametrizes all functorial assignments of
cohomology classes to principal G-bundles. Given a vector bundle P → X, we get a map
X→ BG pulling back the universal bundle to P.

P

��

// EG

��
X // BG

We can then assign to P the pullback of a cohomology class of BG along this map. Con-
versely, suppose we have such an assignment. Then it is completely determined by its
value on the universal bundle, as any other bundle is a pullback of this one.

We claim that if we have a group homomorphismH→ G, then we get a map BH→ BG.
Indeed, by definition giving a map BH → BG is the same as giving a functorial recipe for
turning a principal H bundle into a principal G-bundle. One perspective on a principle H-
bundle is in terms of transition functions with values inH satisfying the cocycle conditions.
But if we compose that with the homomorphism to G, then we get transition functions
valued in G satisfying the cocycle conditions, hence a principal G-bundle.

If H ⊂ G is a subgroup, we can choose the map BH → BG to be a fibration with fiber
G/H. To see this, note that H acts freely on EG a fortiori, and the fibers of EG/H→ EG/G
are evidently G/H.

The result we state now is probably not the optimal one, but it suffices for our purposes.

Proposition 1.8. If H ↪→ G is a weak homotopy equivalence, then BH→ BG is a weak homotopy
equivalence.

Proof. Recall that H ↪→ G is a weak homotopy equivalence if it induces isomorphisms on all
homotopy groups, which implies (Hurewicz’s Theorem) that it induces isomorphisms on
all (co)homology groups.

By the long exact sequence of homotopy groups for the fibration H → G → G/H, we
see that πi(G/H) = 0 for i > 0. Next applying the long exact sequence of homotopy
groups for the fibration G/H → BH → BG shows that BH and BG are weakly homotopy
equivalent. �

Example 1.9. By the Proposition, BGL(1, R) ∼= BZ/2. What is BZ/2? Well, Z/2 acts freely
on S∞, which is contractible. So BZ/2 ∼= RP∞. This has a cell structure, with one cell of
each dimension and in Z/2-(co)homology, the boundary maps are 0 (that’s what makes it
easy to calculate!). In fact, H∗(RP∞;Z/2) ∼= Z/2[w1] where |w1| = 1.

Given any real line bundle L → X, we get a map f : X → RP∞ such that the pullback of
the tautological bundle is L. The first Stiefel-Whitney class w1(L) is precisely f∗[w1].

Example 1.10. By the fact, BGL(1, C) ∼= BS1. Again, S1 acts on S∞ ⊂ C∞ by multiplication,
and the quotient is CP∞. The cohomology ring is H∗(CP∞;Z) ∼= Z[c1].

Given any complex line bundle L→ X, we get a map f : X→ CP∞ such that the pullback
of the tautological bundle is L. The first Chern class c1(L) is precisely f∗[c1].

2. CHOW GROUPS

2.1. The definition. One can think of Chow groups as being something like a “homology
theory” for algebraic varieties. We can think of elements of CH∗(X) as representing sub-
varieties of X, just as a map of closed, oriented, connected manifolds Y → X induces an
element of H∗(X;Z), namely the image of the fundamental class of Y.
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Definition 2.1. Formally, we define the group of cycles Zk(X) to be the free abelian group on
k-dimensional subvarieties (which we take by definition to be closed, irreducible, reduced).
Then Z∗(X) =

⊕
k Zk(X).

We say that two cycles in Zk(X) are rationally equivalent if there exists a cycle on P1 × X
whose restrictions to the fibers {t0}× X and {t1}× X are A0 and A1.

The subgroupBk(X) is generated by differences of rationally equivalent varieties. (Warn-
ing: this is non-standard notation!) We set B∗(X) :=

⊕
k Bk(X).

The (graded) Chow group CH∗(X) is the quotient Z∗(X)/B∗(X), and we have the natural
quotient grading

CH∗(X) =
⊕
k

CHk(X) := Zk(X)/Bk(X).

One can think of rational equivalence as stating that there is a “family” parametrized by
a segment in P1 whose boundary is A0 −A1. This is reminiscent of cobordism.

Example 2.2. Any two points in An are rationally equivalent, because we can pick a line
between them. In fact, a point is rationally equivalent to the empty set because we can
“push it off” to∞.

Any hypersurface in An is rationally equivalent to the empty set, as the graph of f : An →
P1 is a cycle in An ×P1 whose fiber over∞ is empty.

In fact, we claim that

CH∗(An) ∼=

{
Z ∗ = n,
0 ∗ 6= 0

It suffices to show that any proper subvvariety W ⊂ An is rationally equivalent to the
empty set. We will try the same pushing off trick. As W is a proper subvariety, we may
assume that O /∈ Y. Consider the subvariety W̃ ⊂ An × (A1 − {O}) defined by

W̃ = {(z, t) |
z

t
∈W}.

In terms of geometry, this if the family whose fiber at t is the dilation of W by t. In terms
of equations, this is cut out f(z/t) such that f(z) vanishes on Y. Thus the closure of W̃ is a
family in An ×P1, whose fiber over t = 1 is precisely Y. The fiber over∞ should morally
be , as we have “pushed away” all the points. Let’s see this explicitly.

As O /∈ W, there exists a polynomial g(z) vanishing on Y and having non-zero constant
term: g(z) = c+ . . .. Then g(z/t) = c+ t−1 . . . has the value c on the fiber An × {∞}.

Example 2.3. Any two points on a genus g > 0 projective curve are not rationally equivalent
- if they were, then the corresponding cycle in X×P1 would give a birational map X→ P1.

Here is another characterization of B(X). For any rational function f on a subvariety
Y ⊂ X, we can associate a divisor

Div(f) =
∑
W⊂Y

codim1

ordW(f)[W].

Then B(X) is generated by Div(f) as f and Y vary.
One direction is quite trivial: given a rational function f, we get a rational map f : Y →

P1. The graph of f (the closure of the usual graph on an open subset) is a cycle in Y×P1 ⊂
X× P1, the difference of whose fibers over 0 and ∞ is precisely Div(f). This shows that
Div(f) ⊂ B(X).
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The other direction is a bit more subtle. Given a cycle Ṽ ⊂ X×P1 with fiber A0 −A∞,
the projection map determines a rational function f̃ on V such that Div(f̃) = [A0] − [A∞].
The map V → X is generically finite over its image unless Ṽ = X× P1, and then Nm(f̃)
turns out to do the trick.

Example 2.4. CHn(X) = Zn(X) is the free abelian group on the irreducible (connected)
components of X. Zn−1(X) is just the group of divisors of X. Bn−1(X)

If X has pure dimension n, then CHn−1(X) ∼= Cl(X), i.e. divisors modulo principal
divisors.

There is a mapCH∗(X)→ H∗(X), essentially by inclusion of the fundamental class (as we
discussed previously). This gets a little messy because you have to define the fundamental
class of a singular variety, but it works out. The map is actually more like a cobordism
theory than a homology theory, and Totaro showed that it factors through the complex
cobordism ringMU∗.

A very naı̈ve conjecture would be that if X/C is a smooth projective variety, then the
map CH∗(X) → H∗(X;Z) is surjective, i.e. any element of H∗(X;Z) is obtained as the fun-
damental class of some an algebraic subvariety. This fails for at least two reasons: first,
one cannot expect this to be true integrally, but only rationally. Second, there are some
constraints from Hodge theory. If one refines the conjecture appropriately to account for
these obstructions, then one arrives at the Hodge conjecture.

Definition 2.5. If X is a compact complex manifold of dimension n, then Poincaré duality
“identifies” Hi(X) and Hn−i(X). Motivated by this, we define CHi(X) := CHn−i(X).

2.2. Functoriality. As the homology and cohomology are functorial, one might expect
functoriality properties for Chow groups. These are a little subtle, but they do exist.

Proper pushforward. If f : Y → X is a proper map, then we can “push forward” sub-
varieties to subvarieties. However, one has to take care that this map preserve rational
equivalences. We define f∗ : CH∗Y → CH∗X by

f∗([A]) =

{
0 dim f(A) < dimA,
n[f(A)] [K(A) : K(f(A))] = n.

We will mostly just be thinking of the case where f is a closed embedding, in which case
f∗([A]) = [f(A)] on the nose.

Flat pullback. If f : X → Z is flat, then we may define a pullback map f∗ : CH∗Y → CH∗X
which is determined by

f∗([A]) = [f−1(A)]

when f−1(A) is reduced.

Push-Pull formula. These two operations satisfy

f∗(α · f∗β) = f∗α · β.
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2.3. Properties. We now discuss some features of the Chow groups that will be useful for
computations.

Excision. If Y ⊂ X is a closed subscheme and U = Y \ X is its complement, then the
inclusion and restriction maps of cycles give a right exact sequence

(1) CH∗(Y)
j∗−→ CH∗(X)

ι∗−→ CH∗(U)→ 0.

This is analogous to the excision axiom in algebraic topology.

Homotopy invariance. If π : V → X is an affine space bundle (i.e. a fiber bundle whose
fibers are affine space), then the induced map π∗ : CH∗(X) → CH∗(V) is a surjection. If V
is actually a vector bundle (i.e. there exists a section), then π∗ is an isomorphism. This is
analogous to the fact that a vector bundle is homotopy equivalent to its base.

2.4. Ring structure. In fact, CH∗(X) has a ring structure. This might seem weird at first,
if we’re thinking of CH∗ as some algebraic analogue of homology, but recall that com-
pact complex manifolds also have a ring structure coming from the intersection product
(dual to the cup product via Poincaré duality), which has the property that the intersec-
tion of the homology classes represented by two transversely intersecting, complementary-
dimensional submanifolds is precisely the number of intersection points.

Definition 2.6. We say that subvarieties A,B ⊂ X intersect generically transversely if they
intersect transversely at a generic point of each component of A∩ B.

Theorem 2.7. There exists a unique product structure on CH∗(X) satisfying the condition that if
A,B are generically transverse then [A] · [B] = [A ∩ B]. This product structure makes CH∗(X) a
commutative graded ring.

Example 2.8. If X is a quasiprojective surface and D is an ample line bundle on X, then
A + nD and B + nD will be very ample for n � 0. By Bertini’s Theorem, we can find
representatives in the class of [A+nD] and [B+nD] that intersect generically transversely.
Then linearity forces the value of [A] · [B].
2.5. Examples.

Example 2.9. We saw earlier that

CH∗(An) ∼=

{
Z ∗ = 0,
0 ∗ > 0.

We claim that the same holds for any open subset U ⊂ An. Indeed, Y := An \ U is a
closed subset of dimension at most n− 1, so the excision exact sequence gives a surjection
CH∗(An)→ CH∗(U).

Example 2.10. Let’s compute CH∗(Pn). We have an inclusion of Pn−1 as a closed sub-
scheme, with the complement being An. Therefore, the excision exact sequence is

CH∗(P
n−1)→ CH∗(P

n)→ CH∗(A
n)→ 0

but we know that CH∗(An) = Z (generated by the fundamental class) if ∗ = 0 and 0
otherwise. Therefore, CH∗(Pn) is generated by the fundamental class and CH∗(Pn−1).

We claim that CH∗(Pn) = Z[h]/hn+1, where h represents the class of a hyperplane, i.e.
the image of the fundamental class of Pn−1. Let h ′ be the hyperplane class of Pn−1, which
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maps to h2. Then if a(h ′)k = 0, we would have ah2k = 0. Since the intersection product
is well-defined, we could intersect an n− 2k-plane to find that a = 0 by Bezout’s theorem.

In fact, an easy generalization of this argument shows that whenever X has an affine
stratification, i.e. a partition into affine spaces {Ui} such that if Ui intersects Uj, then Ui ⊃
Uj, then CH∗X is generated by the closed strata, i.e. the classes of the Ui.

3. CLASSIFYING SPACES IN ALGEBRAIC GEOMETRY

Now we are finally ready to begin the fun. We would like to have some notion of “classi-
fying spaces” in algebraic geometry. What could this mean? Ideally, we could find a scheme
BG such that

HomSch(X,BG)↔ {principal G-bundles on X}.

In other words, we want to represent the functor taking a scheme X to algebraic principal
G-bundles over X. Here I am brushing an important but technical point under the rug:
the “local triviality” should not be with respect to the standard Zariski topology (except in
lucky cases), but some finer Grothendieck topology.

Anyway, this doesn’t really matter because BG doesn’t exist (in the category of schemes).
It is easy to see why this would be: for instance, as long as G has non-trivial center, a
principal G-bundle will have non-trivial automorphisms.

Nevertheless, Totaro gave a definition of the “Chow ring of BG.” The motivation goes
back to the topological construction of BG as G\EG, where EG is a contractible space with
a free G-action. We don’t have the luxury of an EG in algebraic geometry, but if we can
pick an “almost contractible” space with a free G-action then we might expect to get a
reasonable definition of Chow groups.

Consider the topological story. If V is contractible and S ⊂ V has high codimension, say
real codimension at least i+ 1, then the inclusion V − S ↪→ V will induce an isomorphism
on homotopy groups π0, . . . ,πi. In particular, V − S will be i-connected. Then the map
V − S→ EGwill induce an isomorphism on homotopy groups in dimension up to i, hence
also an isomorphism on homology groups up to dimension i+ 1 by the Hurewicz theorem.

Definition 3.1. We define CHi(BG) = CHi(V − S)/G for any pair (V ,S) such that G acts
freely on V − S and codimV S > i.

Definition 3.2. For an algebraic group G acting on a smooth variety X, we define the G-
equivariant Chow ring by

CHiG(X) = CH
i(X× (V − S))/G.

In order for this to really be well-defined, we have to check that it is independent of the
choices V ,S.

Proof. We want to show that if (V ,S) are (V ′,S ′) are two pairs such that G acts freely on
both V − S and V ′ − S ′ and codimV S, codimV ′ S ′ > i then

CH∗(V − S)/G ∼= CH∗(V ′ − S ′)/G for ∗ < i.
We use the “double fibration trick” due to Bogomolov in order to reduce to the special case
where one pair “dominates” the other, in the sense that V ′ = V and S ′ ⊃ S.

We first reduce to the case where the representations are equal by considering a common
domination by V ×V ′. Then (V − S)×V ′ is a vector bundle over V − S, so (V − S)×V ′/G
exists and S× V ′ has codimension at least i in V × V ′. Similarly, V × (V ′ − S ′) is a vector
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bundle over V ′ −S ′, satisfying the right conditions. By the homotopy axiom, a space as the
same Chow groups as any vector bundle over it. This reduces to the case V = V ′.

Next, replacing S ′ with S ∪ S ′ allows us to assume that S ′ ⊃ S. Then we apply the
excision axiom (1):

CH∗(S
′ − S)/G→ CH∗(V − S)/G→ CH∗(V − S ′)/G→ 0

is exact. But since S ′ has codimension greater than i, CH∗(S ′ − S)/G vanishes up to codi-
mension i, so the map CH∗(V − S)/G→ CH∗(V − S ′)/Gmust be an isomorphism in codi-
mension up to i. �

We can informally think of BG as lim−→i(Vi − Si)/G. This may not really make sense, but
we have shown that lim−→i CHi(Vi − Si/G) really does make sense, so we can just define it
to be CHi(BG).

We can make all the definitions we want, but why is this a good definition?

Theorem 3.3. Let G be a reductive group over a field k. Then the above group CHi(BG) is nat-
urally identified with the set of (pullback) functorial assignments for every smooth quasiprojective
variety X,

{principal G-bundle over X}→ CHiX.

Remark 3.4. This gives a natural ring structure on CHiX, which agrees with what you think
it is (namely the inverse limit of the ring structures on the finite approximations).

4. EXAMPLES

A good source of nearly contractible spaces equipped with G-action are representations.
Therefore, our strategy for computing BG will be to find a representation of G such that
the action is free on the complement of a high codimension subset S. We then need to
compute the quotient variety V − S/G. When G is a finite group we can just take the ring
of invariants in V − S; when G is a linear algebraic group, the quotient exists as a quasi-
projective variety by general theory.

4.1. Stratifications.

Example 4.1. Let G = Gm. Then G acts on An+1 by scalar multiplication, and the action
is free on An+1 − {O}. The quotient space is one we know and love: Pn. We computed
earlier that CH∗(Pn) ∼= Z[c1].

Let Ln be the tautological line bundle on Pn. The inclusion via 0-section Pn → L sends
the class of the hyperplane to the class of a codimension 2 plane. On the one hand, we
know that CH∗(L) → CH∗(Pn) is an isomorphism by homotopy invariance. On the other
hand, we have a pushforward map

CHn−k(Pn) = CHk(P
n)→ CHk(L) ∼= CHk−1(P

n) = CHn−k+1(Pn).

taking the fundamental class of Pn to the class of the zero section in CHk(L), to the hyper-
plane class in Pn. Therefore, this map corresponds to multiplication by c1(Ln).

As this is the “universal” line bundle, it implies the same in general: if L→ X is any line
bundle, then

CHk(X)→ CHk(L) ∼= CHk−1(X)

corresponds to multiplication by c1(L) ∈ CH∗(X).
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Example 4.2. What’s BGLn? Let V be the standard representation of BGLn. Let W =

Hom(AN,V) ∼= VN for N � 0. Then GL(V) acts freely on the open subset of surjec-
tive linear maps Surj(An,V). The quotient space Surj(An,V)/ GL(V) is isomorphic to
Gr(N−n,N), by associating the kernel.

The codimension of the complement goes to∞with N, so we get that

CH∗BGL(n) = lim−→CH∗Gr(N−n,N).

As the Grassmannian also admits an algebraic affine stratification (Schubert cells), its Chow
groups are the free abelian group on the set of cells, like the ordinary cohomology ring.
Therefore,

CH∗BGL(n) ∼= Z[c1, . . . , cn] |ci| = i.
By the earlier theorem, each ci furnishes a functorial assignment from rank n vector bun-
dles V → X to CHi(X), which is called the Chern class.

4.2. Finite groups.

Example 4.3. Let’s try to compute CH∗B(Z/2).
i = 0. Z/2 acts freely on A1 − {O}, with quotient again A1 − {O}, so

CH0(BZ/2) ∼= CH0(A1 − {O}) ∼= Z.

i = 1. Z/2 acts freely on A2 − {0} by multiplication by ±1. The ring of invariants
its k[x2, xy,y2] ⊂ k[x,y], which you might recognize as the (affine) quadric cone Q :=

Spec k[u, v,w]/(uw− v2). Removing the origin corresponds to removing the cone point.
When calculating the first Chow group, we may as well throw the cone point back in

since it has codimension 2 (hence doesn’t affect CH1). We claim that CH1Q ∼= Z/2, gener-
ated by the class of a line through the origin lying on the cone, e.g. u = 0.

First let’s see why twice the line should be zero. A plane tangent to the line intersects the
cone in the double line. As the plane is rationally equivalent to zero on A3, its intersection
is rationally equivalent to zero on the cone.

According to the basic exact sequence, the quotient of CH1 by the class of this line is just
CH1 of the cone minus the hyperplane section. That corresponds to inverting x, in which
case we get Spec k[x±,y], which is an open subset of affine space, and hence has trivial
CH1.

In general, Z/2 will act freely on An − {O}, and you can see that the quotient will be
Spec (k[x1, . . . , xn])2• minus the origin. That’s the affine cone over the Veronese embed-
ding of the smooth quadric in Pn−1 minus the cone point. The CHk of this group will
have a class represented by a k-plane contained in the quadric, and twice the k-plane is the
intersection of the tangent hyperplane with that k-plane is rationally equivalent to 0.

Why does this generate? Well, the complement of that that plane intersection is the
image of the complement of a certain number of quadrics in An, i.e. an open subset of
An.

Moreover, by the usual rules of intersecting k-planes in affine space, we see that the
Chow ring will be Z[h]/(2h).

Example 4.4. Let P → X be a principal Gm-bundle (with X smooth). Then P is the total
space of the corresponding line bundle Lminus the 0-section. The excision sequence gives

CH∗(X)→ CH∗(L)→ CH∗(L−X = P)→ 0.

But the map CH∗(X) → CH∗(L) is multiplication by c1(L), so we get that CH∗(P) =
CH∗(X)/c1(L).

9



Compare this with the Gysin sequence of a circle bundle:

. . .→ Hi−2X
c1(L)−−−−→ HiX→ HiP → Hi−1X→ . . .

Example 4.5. What’s CH∗(BZ/p)? Let W be a faithful 1-dimensional representation of
Z/p (i.e. via a non-trivial character) and V = W⊕n. As Z/p acts freely on V − {O}, an
nth level approximation to B(Z/p) is (V − {O})/(Z/p). Now, this action factors through a
representation of Gm, via Z/p ↪→ Gm ↪→ GL(V). Therefore, we should have a fiber bundle

Gm/(Z/p)→ BZ/p→ BGm.

This means nothing in scheme-land, but concretely An − {O} can be used as an approxi-
mation to EG for both Gm and Z/p, so we have a genuine fiber bundle

Gm/(Z/p)→ (An − {O})/(Z/p)→ (An − {O})/Gm.

Of course, we computed the latter objects as Pn−1, and Gm/(Z/p) ∼= Gm. This real-
izes (An − {O})/(Z/p) as a Gm-bundle over Pn−1, which corresponds to the line bundle
O(−p), as it’s evidently the pth power of the tautological bundle. Therefore,

CH∗B(Z/p) ∼= CH∗P∞/pc1 ∼= Z[c1]/pc1.

4.3. Classical groups. We now develop the tools to calculate the Chow ring of some clas-
sical groups.

Theorem 4.6. Let G be an affine group scheme over k and V a faithful representation of G. Under
the induced map

CH∗BGL(V) ∼= Z[c1, . . . , cn]→ CH∗BG

Let ci 7→ ciV . Then
CH∗(GL(V)/G) ∼= CH∗BG/(c1V , . . . , cnV).

Proof. We (morally) have a fibration

GL(n)/G→ BG→ BGL(n).

By “looping” this, we also get

GL(n)→ GL(n)/G→ BG.

[In actuality, if V − S approximates EGL(n) then we get

GL(n)/G→ (V − S)/G→ (V − S)/ GL(n)

and
GL(n)→ [H× (V − S)]/G→ (V − S)/G.

where the middle has the diagonal G-action. ]
This shows that GL(n)/G is a principal GL(n)-bundle over BG. That’s the same as a

vector bundle, so it suffices to show that if P → X is principal GL(n)-bundle, then

CH∗(P) = CH∗(X)/(c1(P), . . . , cn(P)).

We already saw this in the special case n = 1. That implies the result for a direct sum of
line bundles, i.e. a (Gm)n-bundle. Then we get the result for a Borel, by considering a flag
(the “splitting principle in algebraic geometry”).

�

We can use this to gain information about CH∗BG if we know CH∗(GL(V)/G) (or vice
versa). For instance, if CH∗(GL(V)/G) is trivial, then
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Example 4.7. What is CH∗BO(n)C? Let V be the standard representation of O(n), inducing
an embedding O(n) ↪→ GL(n). What is GL(n)/O(n)?

Well, GL(n) acts on symmetric forms onV , i.e. Sym2 V∗, which is isomorphic to An(n+1)/2.
All non-degenerate symmetric bilinear forms are GL(n)-equivalent, and the stabilizer of a
non-degenerate form is O(n). Therefore, GL(n)/O(n) can be realized as an open subset of
An(n+1)/2, so

CH∗GL(n)/O(n) =

{
Z ∗ = 0
0 ∗ > 0

.

By the theorem, we may conclude that CH∗BG is generated by CH∗Z[c1, . . . , cn]. What’s
the kernel?

As the representation V of O(n) is self-dual, we get c1 = −c1, and in general cj =

(−1)jcj(V). Therefore, 2cj = 0 for all odd j. In fact, this is injective. One way to see this is
that the map

Z[c1, . . . , cn]/(2c2k+1 = 0) ↪→ H∗(BO(n), Z)

is injective, but this factors through Chow.

Example 4.8. What isCH∗B Sp(2n)C? Again, let V be the standard representation of Sp(2n).
GL(2n) acts transitively on the space of symplectic forms on V , which the non-degenerate
ones being isomorphic to an open subset of affine space. Again, CH∗BG will be generated
by CH∗Z[c1, . . . , c2n]. But what are the relations?

Again, the natural symplectic form makes V self-dual, so by the same reasoning we
get 2ci = 0 for i odd. In fact, we claim that ci = 0 for i odd. It suffices to show that
CH∗B Sp(2n) ↪→ CH∗BT = CH∗BGm (the maximal torus), as we checked that the latter is
torsion-free. As BT is an iterated affine space bundle over BB (the classifying space of the
Borel), it suffices to show that CH∗B Sp(2n) ↪→ CH∗BB. This fits into a fiber bundle

Sp(2n)/B→ BB→ B Sp(2n).

As Sp(2n) is “special,” this bundle is Zariski locally trivial, so we can take a section over an
open subset and then take its closure. This gives an elementαmapping to 1 ∈ CH0B Sp(2n).
This gives a section for Chow groups, as f∗(α · f∗x) = x for all x ∈ CH∗B Sp(2n).

It is known thatH∗(BSp(2n), Z) ∼= Z[c2, c4, . . . , c2n], so we can conclude thatCH∗B Sp(2n) ∼=
Z[c2, c4, . . . , c2n].
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