1. Exercise I

1. (Affine Grassmannian of \mathbb{G}_a .) Show that $\text{Gr}_{\mathbb{G}_a} \simeq \varinjlim \mathbb{A}^n$, where $\mathbb{A}^n \to \mathbb{A}^{n+1}$ is the standard inclusion.

2. (Loop group and affine Grassmanian of \mathbb{G}_m .) (i) Let R be a commutative ring whose spectrum is connected. Show that every invertible element $f(t) \in R((t))^\times$ can be uniquely written as

$$
f(t) = r \cdot t^n \cdot f_+(t) \cdot f_-(t)
$$

for some $r \in R^{\times}, n \in \mathbb{Z}$,

(1.0.1) $f_+(t) = 1 + \sum$ i≥1 $r_i t^i \in R[[t]],$

and

(1.0.2)
$$
f_{-}(t) = 1 + \sum_{i \geq 1} r_{-i} t^{-i} \in R[t^{-1}], \quad r_{-i} \text{ nilpotent.}
$$

(ii) Let W be the presheaf that assigns every R the set of power series as in $(1.0.1)$. Let $\overline{\mathbb{W}}$ be the presheaf that assigns every R the set of polynomials as in (1.0.2). Show that W is represented by a group subscheme of $L\mathbb{G}_m$ and $\widehat{\mathbb{W}}$ by a group sub-ind-scheme. Usually, W is called the ring of big Witt vectors.

(iii) Show that as group ind-schemes,

$$
L\mathbb{G}_m\simeq \mathbb{G}_m\times \mathbb{Z}\times \mathbb{W}\times \widehat{\mathbb{W}}.
$$

In particular $\text{Gr}_{\mathbb{G}_m} \simeq \mathbb{Z} \times \widehat{\mathbb{W}}$ is not reduced.

(iv) Show that $\text{Gr}_{\mathbb{G}_m}$ is formally smooth. (In fact, $\text{Gr}_{\mathbb{G}}$ is formally smooth in general).

(v) Show that the morphism $L\mathbb{G}_m \to L\mathbb{A}^1$ is not an open embedding.

Remark 1.1. At the level of k' points, where $k' \supset k$ is a field, there is a canonical isomorphism $L\mathbb{G}_m(k') = L\mathbb{A}^1(k) \setminus \{0\}$. Intuitive, different connected components of $L\mathbb{G}_m$ (labelled by \mathbb{Z}) glue together. This is an important phenomenon in geometric representation theory. (More in Sasha Braverman's lecture?)

3. (Relative positions) (i) In the case $G = GL_n$, identify $\mathbb{X}_{\bullet}(T)_+$ with $\{(m_1, \ldots, m_n) \in$ $\mathbb{Z}^n \mid m_1 \geq m_2 \geq \cdots \geq m_n$ in a way such that $(m_1, \ldots, m_n) \leq (m'_1, \ldots, m'_n)$ if and only if

$$
m_1 \le m'_1,
$$

\n
$$
m_1 + m_2 \le m'_1 + m'_2,
$$

\n...
\n
$$
m_1 + \dots + m_{n-1} \le m'_1 + \dots + m'_{n-1},
$$

\n
$$
m_1 + \dots + m_n = m'_1 + \dots + m'_n.
$$

(ii)Show that given two rank n projective $R[[t]]$ -modules \mathcal{E}_1 and \mathcal{E}_2 , and an isomorphism $\beta : \mathcal{E}_1 \otimes R((t)) \simeq \mathcal{E}_2 \otimes R((t)).$ The set

$$
\{x \in \text{Spec}R \mid \text{Inv}_x(\beta) \le (r, r, \dots, r)\}\
$$

is a closed subset.

(iii) Assume that G is simple and simply-connected over k. Show that $\text{Gr}_{\leq \mu}(k)$ can be interpreted as the subset $(\mathcal{E}, \beta) \in \text{Gr}_G(k)$ such that for every fundamental representation V_{ω_i} of G, the induced map of $k((t))$ -modules

$$
\beta_i : \mathcal{E}_{V_{\omega_i}} \otimes k((t)) \simeq V_{\omega_i} \otimes k((t))
$$

extends to a morphism of $k[[t]]$ -modules

$$
\beta_i: \mathcal{E}_{V_{\omega_i}} \hookrightarrow V_{\omega_i} \otimes t^{-(\omega_i,\mu)} k[[t]].
$$

Here $\mathcal{E}_{V_{\omega_i}}$ denotes the vector bundle $\mathcal{E} \times^G V_{\omega_i}$.

Remark 1.2. (Assume that chark $= 0$ for simplicity.) It is still an open question whether in (iii), one can replace k by any k-algebra R to get a moduli interpretation of $\text{Gr}_{\leq u}$.

(iv) Conclude that $\text{Gr}_{\leq \mu}$ is closed in Gr_G .

(iv) Generalize (iii) to a not necessarily simply-connected group. (You may need the relation between affine Grassmanians under central isogeny.)

(v) For $G = GL_n$. Show that there is a canonical bijection of sets

$$
M_n(k[[t]]) \cap \mathrm{GL}_n(k((t))) \simeq \bigsqcup_{n \geq 0} (L\mathrm{GL}_n)_{\leq n \omega_1}(k).
$$

Note that this bijection is closely related to Remark 1.1.

4. A dominant cocharacter μ of G is called minuscule if $\mu \neq 0$ and for any positive root α , $(\mu, \alpha) \leq 1$. The Schubert variety $\text{Gr}_{\leq \mu}$ corresponding a minuscule cocharacter is called a minuscule Schubert variety.

(i) Show that a minuscule Schubert variety is smooth.

(ii) Describe minuscule Schubert varieties for PGL_n , SO_{2n+1} , PSp_{2n} , PSO_{2n} more explicitly.

A dominant cocharacter μ of G is called quasi-minuscule if $\mu \neq 0$ and for any positive root α , $(\mu, \alpha) \leq 2$. The Schubert variety Gr_{$\lt;\mu$} corresponding a quasi-minuscule cocharacter is called a quasi-minuscule Schubert variety.

(iii) Show that the quasi-minuscule Schubert variety for SL_2 is isomorphic to the projective cone of a quadratic curve in \mathbb{P}^2 .

(iv) In general, show that the *short dominant coroot* θ is a quasi-minuscule cocharacter of a simple simply-connected group. Show that $\text{Gr}_{\leq \theta}$ is a projective cone over a partial flag variety of G. What is Gr_{θ} in this case?

(v) Let θ be as above. Let e_{θ} denote a root vector corresponding to θ , and $\overline{\mathcal{O}}_{e_{\theta}}$ the closure of the corresponding nilpotent orbit. Construct an open embedding $\overline{\mathcal{O}}_{e_{\theta}} \to \text{Gr}_{\leq \theta}$. (You may need the big open cell on the affine Grassmannian.)

5. We consider $G = GL_n$, and $\mu = m\omega_1$. Let

$$
\widetilde{\mathrm{Gr}}_{\leq \mu} = \left\{ \mathcal{E}_m \subset \mathcal{E}_{m-1} \subset \cdots \subset \mathcal{E}^0 = R[[t]]^n \middle| \begin{array}{l} \mathcal{E}_i \text{ is an } R \text{-family of lattices} \\ \mathcal{E}_i / \mathcal{E}_{i+1} \text{ is a line bundle on } \mathrm{Spec} R \end{array} \right\}.
$$

(i) Show that there is a natural map

$$
\pi : \widetilde{\text{Gr}}_{\leq \mu} \to \text{Gr}_{\leq \mu}
$$

which is a resolution of singularities.

(ii) Identify $\pi^{-1}(t_{\omega_m})$ as a Springer fiber in the flag variety of GL_m .

(iii) Can you generalize (ii) to other points $t_{\lambda} \in \text{Gr}_{\leq \mu}$?

2. Exercise II

1. (Birkoff decomposition) (i) Show that there is canonical bijection between

$$
GL_n(k[t^{-1}]) \backslash GL_n(k((t))/GL_n(k[[t]])
$$

and the set of isomorphism classes of rank n vector bundle on $\mathbb{P}^1_k.$

(ii) Prove the following theorem of Grothendieck: every vector bundle on \mathbb{P}^1_k is a direct sum of line bundles.

(iii) Conclude that there is a canonical bijection between $\mathrm{GL}_n(k[t^{-1}]) \backslash \mathrm{GL}_n(k((t))/\mathrm{GL}_n(k[[t]])$ and the set $\{(r_1,\ldots,r_n)\in\mathbb{Z}^n\mid r_1\geq\cdots\geq r_n\}.$

2. (Thick Grassmannian) Fix $x \in Bun_G$. Let $Bun_{G,\infty}x$ be the stack that classifies for every k-algebra R, the groupoid of pairs (\mathcal{E}, ϵ) , where \mathcal{E} is a G-bundle on X_R , and ϵ is a trivialization of $\mathcal E$ on the formal neighbourhood of $\{x\} \times \text{Spec} R$, i.e. the formal completion of X_R along the closed subscheme $\{x\} \times \text{Spec}R$. It is known that $\text{Bun}_{G,\infty}x$ is represented by a scheme (rather than an ind-scheme).

(i) Let $X = \mathbb{P}^1$, and $x = 0$. Show that $Bun_{G,\infty} (k) = G(k((t))/G[t^{-1}]$. In this case, Bun_{G, ∞ x} is also called the thick affine Grassmannian. The fundamental difference is that Gr_G is a local object but $Bun_{G,\infty}x$ is global.

(ii) Let y be another point on X , different from x . Show that there is a morphism from the affine Grassmannian Gr_{G,y} (i.e. the moduli of G-bundles on X with a trivialization on $X - \{y\}$ to Bun_{G,∞x}. In particular, if $X = \mathbb{P}^1, x = 0, y = \infty$, at the level of k-points, we get a map $G(k((t^{-1}))/G(k[[t^{-1}]]) \to G(k((t)))/G(k[t^{-1}])$. Could you describe this map more explicitly?

(iii) Assume that X is a general curve. Show that the natural action of L^+G on $\text{Bun}_{G,\infty x}$ given by changing the trivialization ϵ extends to a natural action of LG. Show that if G is semi-simple, the resulting action of LG on $Bun_{G,\infty}x$ is transitive.

3. (Determinant line bundle) Let $G = GL_n$ where $V = k((t))^n$, and write Gr_G by Gr for simplicity. We introduce the determinant line bundle on $\mathrm{Gr} \times \mathrm{Gr}$. For $\Lambda_1, \Lambda_2 \in \mathrm{Gr}(R)$, let

$$
\det(\Lambda_1|\Lambda_2) = (\wedge^{\text{top}} L \hat{\otimes} R/\Lambda_1) \otimes (\wedge^{\text{top}} L \hat{\otimes} R/\Lambda_2)^{-1},
$$

where L is some lattice in V such that $(L\hat{\otimes}R)/\Lambda_1$ and $(L\hat{\otimes}R)/\Lambda_2$ are projective R-modules. This is independent of the choice of L up to a canonical isomorphism. This is called the relative determinant line for (Λ_1, Λ_2) . This way, we define a line bundle \mathcal{L}_{det} on Gr \times Gr.

(i) For any $g \in LGL(R)$, and $\Lambda_1, \Lambda_2 \in Gr(R)$, there is a canonical isomorphism

$$
\det(g\Lambda_1|g\Lambda_2)\simeq \det(\Lambda_1|\Lambda_2),
$$

such that for g, g' , the isomorphism

$$
\det(gg'\Lambda_1|gg'\Lambda_2)\simeq \det(g'\Lambda_1|g'\Lambda_2)\simeq \det(\Lambda_1|\Lambda_2)
$$

coincides with $\det(gq'\Lambda_1|qg'\Lambda_2) \simeq \det(\Lambda_1|\Lambda_2)$. In other words, the diagonal action of LGL_n on Gr \times Gr lifts to an action on \mathcal{L}_{det} ;

(ii) For any $\Lambda_1, \Lambda_2, \Lambda_3$, there is a canonical isomorphism

$$
\gamma_{123}:\det(\Lambda_1|\Lambda_2)\otimes\det(\Lambda_2|\Lambda_3)\cong\det(\Lambda_1|\Lambda_3)
$$

such that for any $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4, \gamma_{134}\gamma_{123} = \gamma_{124}\gamma_{234}.$

(iii) Let $\Lambda_0 = k[[t]]^n \subset k((t))^n$ be the standard lattice. Therefore, we get a line bundle

$$
\mathcal{L}_{\det}|_{\{\Lambda_0\} \times \mathrm{Gr}},
$$

on Gr still denoted by \mathcal{L}_{det} . We can construct sections of \mathcal{L}_{det} as follows. Let $L \subset k((t))^n$ be a subspace complementary to Λ_0 , i.e. $k((t))^n = L \oplus \Lambda_0$. Let $x : \text{Spec } R \to \text{Gr}$ be a map given by an R-family lattice $\Lambda \subset R((t))^n$. Consider the 2-term complex

$$
\Lambda \oplus (L \otimes_k R) \to R((t))^n,
$$

of R-modules. Make sense of the determinant of this map and show that the determinant of this map defines a section ϑ_L of $x^*\mathcal{L}_{\text{det}}$. By varying x, we get a section ϑ_L of \mathcal{L}_{det} .

In the sequel, we fix $L = L_0 = (t^{-1}k[t^{-1}])^n$.

(iv) Let $SL_n \to GL_n$ denote the natural embedding, which induces a closed embedding

$$
i: \mathrm{Gr}_{\mathrm{SL}_n} \to \mathrm{Gr}.
$$

Show that the non-vanishing loci of ϑ_{L_0} on Gr_{SL_n} is exactly the big open cell

$$
L^{-}SL_nL^{+}SL_n/L^{+}SL_n\subset \mathrm{Gr}_{SL_n}.
$$

Show that $i^* \mathcal{L}_{\text{det}} \simeq \mathcal{O}(1)$.

(v) Assume chark $\neq 2$ Let $G = SO_n$. Then the natural embedding $SO_n \to GL_n$ induces a closed embedding

$$
i: \mathrm{Gr}_{\mathrm{SO}_n} \to \mathrm{GL}_n.
$$

Show that the non-vanishing loci of ϑ_{L_0} on $\text{Gr}^0_{\text{SO}_n}$ (the neutral connected component of $\operatorname{Gr}_{\mathrm{SO}_n}$) is still the big open cell

$$
L^{-}S O_n L^{+}S O_n/L^{+}S O_n \subset \text{Gr}_{SO_n}.
$$

However, show that $i^* \mathcal{L}_{\text{det}} \simeq \mathcal{O}(2)$.

4. We assume that $\text{char }k=0$.

(i) We assume that $G = SL_n$. Let $Ad : G \to GL(\mathfrak{g})$ be the adjoint representation, which induces a closed embedding

$$
\mathrm{Ad}: \mathrm{Gr}_G \to \mathrm{Gr}_{\mathrm{GL}(\mathfrak{g})}.
$$

Show that $\text{Ad}^*\mathcal{L}_{\text{det}} \simeq \mathcal{O}(2n)$.

(ii) Show that the restriction of $\mathcal{O}(n)$ to each Schubert cell Gr_{μ} is the anti-canonical bundle of Gr_{μ} . (Recall that since Gr_{μ} is a single L^+G -orbit, it is smooth.)

(iii) Let G be a general semsimple group, and let Ad : $G \to GL(\mathfrak{g})$ denote the adjoint representation, which induces $\text{Gr}_G \to \text{Gr}_{\text{GL}(\mathfrak{g})}$. Show that the restriction of $\text{Ad}^* \mathcal{L}_{\text{det}}$ to each Schubert cell Gr_{μ} is twice of the anti-canonical bundle of Gr_{μ} .

5. (Convolution Grassmannians) Let $\mathcal{E}_0 = \mathcal{E}^0$ denote the trivial \underline{G} -torsor. We define the convolution Grassmannian over X^n as

$$
\mathrm{Gr}_{X^n}^{\text{conv}} = \left\{ \{x_i, \mathcal{E}_i, \beta_i\}, i = 1, \dots, n \; \middle| \; \begin{aligned} \{x_i\} &\in X^n(R), \quad \mathcal{E}_i \text{ are } \underline{G}\text{-torsors on } X_R, \\ \beta_i &\colon \mathcal{E}_i|_{X_R \setminus \Gamma_{x_i}} \simeq \mathcal{E}_{i-1}|_{X_R \setminus \Gamma_{x_i}} \text{ is an isomorphism} \end{aligned} \right\}
$$

(i) Show that $\mathrm{Gr}_{X^n}^{\text{conv}}$ is represented by an ind-scheme over X^n .

(ii) Show that there is a canonical morphism

$$
m:\textnormal{Gr}_{X^n}^{\textnormal{Conv}} \to \textnormal{Gr}_{X^n}
$$

(where Gr_{X^n} is the Beilinson-Drinfeld Grassmannian as defined in the lecture) which restricts to an isomorphism $\text{Gr}_{X^n}^{\text{Conv}} \times_{X^n} U \simeq \text{Gr}_{X^n} \times_{X^n} U$, where U is the open subset of X^n consisting of points $\{(x_1, \ldots, x_n)\}\)$ that are pairwise distinct.

(iii) Let $n = 2$. Describe the map m over $(x, x) \in X^2$.

3. Exercise III

1. Describe the cohomology group of a smooth quadratic in \mathbb{P}^n using the geometric Satake.

2. Let $\text{Gr}_{\omega_1,\omega_1^*}$ be the variety classifying the chain of lattices $(\Lambda_2 \supset \Lambda_1 \subset \Lambda_0 = k[[t]]^n)$ in $k((t))^n$, with Λ_1 of codimension one in Λ_0 and Λ_2 . Let $Z \subset \mathrm{Gr}_{\omega_1,\omega_1^*}$ be the closed sub variety defined by the condition $\Lambda_0 = \Lambda_2$. Show that Z is middle dimensional and calculate the self-intersection number of Z using the geometric Satake.

3. Consider the situation as in Exercise I, Problem 5.

(i) Show that $\text{Gr}_{\leq m\omega_1} \to \text{Gr}_{\leq m\omega_1}$ as considered in that exercise is the convolution map $m: \text{Gr}_{\omega_1} \tilde{\times} \cdots \tilde{\times} \text{Gr}_{\omega_1} \rightarrow \text{Gr}_{\leq m\omega_1}.$

(ii) Let $\mathrm{Gr}_{\leq m\omega_1}^{\square}$ denote the GL_m -torsor over $\mathrm{Gr}_{\leq m\omega_1}$ classifying $(\mathcal{E} \to \mathcal{E}_0) \in \mathrm{Gr}_{\leq m\omega_1}(R)$ together with an isomorphism $\mathcal{E}_0/\mathcal{E} \simeq R^m$ of R-modules. Show that there is the following diagram

$$
\mathcal{N} \xleftarrow{\pi} \mathrm{Gr}_{\leq m \omega_1}^{\square} \xrightarrow{p} \mathrm{Gr}_{\leq m \omega_1},
$$

where N is the nilpotent cone in GL_m . Show that $Gr_{\leq m\omega_1}^{\square} \to \mathcal{N}$ is smooth of relative dimension mn .

(iii) Show that the pullback the Springer resolution $\widetilde{\mathcal{N}} \times_{\mathcal{N}} \mathrm{Gr}^{\square}_{\leq m\omega_1}$ is isomorphic to $\widetilde{\text{Gr}}_{\leq m\omega_1} \times_{\text{Gr}_{\leq m\omega_1}} \text{Gr}_{\leq m\omega_1}^{\square}$. Conclude that the convolution map $m : \text{Gr}_{\omega_1} \times \cdots \times \text{Gr}_{\omega_1} \rightarrow$ $\mathrm{Gr}_{\leq m\omega_1}$ is semismall.

(iv) Let Spr be the Springer sheaf on N . Show that there is a canonical isomorphism $\pi^* \mathcal{S}pr[mn] \simeq p^* (\mathrm{IC}_{\omega_1} \star \cdots \star \mathrm{IC}_{\omega_1})[m^2].$

Remark 3.1. There is an action of symmetric group S_m on Spr coming from the Springer theory and an action of S_m on $\mathrm{IC}_{\omega_1} \star \cdots \star \mathrm{IC}_{\omega_1}$ coming from the symmetric monoidal structure on the Satake category. One can show that the canonical isomorphism above is compatible with the S_m -actions.

4. We consider a Quot Scheme

$$
\mathrm{Quot}(\mathcal{O}_X^n,r)=\{q:\mathcal{O}_{X_R}^n\to\mathcal{Q}\mid\mathcal{Q}\text{ is R-flat torsion sheaf of length r.}\}
$$

(i) Show that there is the morphism

$$
\pi: \mathrm{Quot}(\mathcal{O}_X^n, r) \to X^{(r)},
$$

where $X^{(r)}$ is the rth symmetric power of X.

(ii) Show that there is a natural embedding

$$
\mathrm{Quot}(\mathcal{O}_X^n, r) \times_{X^{(r)}} X^r \to \mathrm{Gr}_{\mathrm{GL}_n, X^r}.
$$

(iii) Let

$$
\tilde{\pi}: \mathrm{Gr}^{\mathrm{conv}}_{X^r, \omega_1, ..., \omega_1} \to X^r
$$

denote the scheme over X^r , classifying

$$
\left\{ \{x_i, \mathcal{E}_i, \beta_i\}, i = 1, \ldots, r \mid \begin{array}{c} \{x_i\} \in X^r, \mathcal{E}_i \text{ are locally free sheaves of rank } n \text{ on } X, \beta_i : \mathcal{E}_i \hookrightarrow \mathcal{E}_{i-1} \\ \text{embedding of coherent sheaves such that } \mathcal{E}_{i-1}/\mathcal{E}_i \text{ is a simple skyscraper sheaf at } x_i \end{array} \right\}
$$

Note that $\mathrm{Gr}_{X^r,\omega_1,\dots,\omega_1}^{\text{conv}}$ is a closed subscheme of the convolution Grassmannian as defined in Example II, Problem 5.

Show that $\mathrm{Gr}_{X^r,\omega_1,\dots,\omega_1}^{\text{conv}}$ is smooth over X^r and there is a small map

$$
p: \mathrm{Gr}_{X^r, \omega_1, \dots, \omega_1}^{\text{conv}} \to \mathrm{Quot}(\mathcal{O}_X^n, r)
$$

such that $\pi \circ p = \text{sym } \circ \tilde{\pi}$, where sym : $X^r \to X^{(r)}$ is the symmetrisation map. Deduce that, $p_*\mathbb{Q}_\ell$ is a perverse sheaf (up to shift) on $\mathrm{Quot}(\mathcal{O}_X^n,r)$ with an action of the symmetric group .

S_r. Show that $(p_*\mathbb{Q}_\ell)^{S_r}$ is the intersection cohomology sheaf of $\text{Quot}(\mathcal{O}_X^n,r)$ (up to shift) and in fact it is the constant sheaf. Conclude that $H^*(\text{Quot}(\mathcal{O}_X^n,r)) \simeq \text{Sym}^r(H^*(\mathbb{P}^{n-1}) \otimes$ $H^*(X)$).

6