
1. Exercise I

1. (Affine Grassmannian of Ga.) Show that GrGa ' lim−→An, where An → An+1 is the

standard inclusion.

2. (Loop group and affine Grassmanian of Gm.) (i) Let R be a commutative ring whose
spectrum is connected. Show that every invertible element f(t) ∈ R((t))× can be uniquely
written as

f(t) = r · tn · f+(t) · f−(t)

for some r ∈ R×, n ∈ Z,

(1.0.1) f+(t) = 1 +
∑
i≥1

rit
i ∈ R[[t]],

and

(1.0.2) f−(t) = 1 +
∑
i≥1

r−it
−i ∈ R[t−1], r−i nilpotent.

(ii) Let W be the presheaf that assigns every R the set of power series as in (1.0.1). Let

Ŵ be the presheaf that assigns every R the set of polynomials as in (1.0.2). Show that W
is represented by a group subscheme of LGm and Ŵ by a group sub-ind-scheme. Usually,
W is called the ring of big Witt vectors.

(iii) Show that as group ind-schemes,

LGm ' Gm × Z×W× Ŵ.

In particular GrGm ' Z× Ŵ is not reduced.
(iv) Show that GrGm is formally smooth. (In fact, GrG is formally smooth in general).
(v) Show that the morphism LGm → LA1 is not an open embedding.

Remark 1.1. At the level of k′ points, where k′ ⊃ k is a field, there is a canonical isomorphism
LGm(k′) = LA1(k) \ {0}. Intuitive, different connected components of LGm (labelled by Z)
glue together. This is an important phenomenon in geometric representation theory. (More
in Sasha Braverman’s lecture?)

3. (Relative positions) (i) In the case G = GLn, identify X•(T )+ with {(m1, . . . ,mn) ∈
Zn | m1 ≥ m2 ≥ · · · ≥ mn} in a way such that (m1, . . . ,mn) ≤ (m′1, . . . ,m

′
n) if and only if

m1 ≤ m′1,
m1 +m2 ≤ m′1 +m′2,

. . .

m1 + · · ·+mn−1 ≤ m′1 + · · ·+m′n−1,

m1 + · · ·+mn = m′1 + · · ·+m′n.

(ii)Show that given two rank n projective R[[t]]-modules E1 and E2, and an isomorphism
β : E1 ⊗R((t)) ' E2 ⊗R((t)). The set

{x ∈ SpecR | Invx(β) ≤ (r, r, . . . , r)}
is a closed subset.

(iii) Assume that G is simple and simply-connected over k. Show that Gr≤µ(k) can be
interpreted as the subset (E , β) ∈ GrG(k) such that for every fundamental representation
Vωi of G, the induced map of k((t))-modules

βi : EVωi ⊗ k((t)) ' Vωi ⊗ k((t))

extends to a morphism of k[[t]]-modules

βi : EVωi ↪→ Vωi ⊗ t−(ωi,µ)k[[t]].
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Here EVωi denotes the vector bundle E ×G Vωi .

Remark 1.2. (Assume that chark = 0 for simplicity.) It is still an open question whether in
(iii), one can replace k by any k-algebra R to get a moduli interpretation of Gr≤µ.

(iv) Conclude that Gr≤µ is closed in GrG.
(iv) Generalize (iii) to a not necessarily simply-connected group. (You may need the

relation between affine Grassmanians under central isogeny.)
(v) For G = GLn. Show that there is a canonical bijection of sets

Mn(k[[t]]) ∩GLn(k((t))) '
⊔
n≥0

(LGLn)≤nω1
(k).

Note that this bijection is closely related to Remark 1.1.

4. A dominant cocharacter µ of G is called minuscule if µ 6= 0 and for any positive root
α, (µ, α) ≤ 1. The Schubert variety Gr≤µ corresponding a minuscule cocharacter is called a
minuscule Schubert variety.

(i) Show that a minuscule Schubert variety is smooth.
(ii) Describe minuscule Schubert varieties for PGLn,SO2n+1,PSp2n,PSO2n more explic-

itly.
A dominant cocharacter µ of G is called quasi-minuscule if µ 6= 0 and for any positive

root α, (µ, α) ≤ 2. The Schubert variety Gr≤µ corresponding a quasi-minuscule cocharacter
is called a quasi-minuscule Schubert variety.

(iii) Show that the quasi-minuscule Schubert variety for SL2 is isomorphic to the projective
cone of a quadratic curve in P2.

(iv) In general, show that the short dominant coroot θ is a quasi-minuscule cocharacter
of a simple simply-connected group. Show that Gr≤θ is a projective cone over a partial flag
variety of G. What is Grθ in this case?

(v) Let θ be as above. Let eθ denote a root vector corresponding to θ, and Oeθ the closure
of the corresponding nilpotent orbit. Construct an open embedding Oeθ → Gr≤θ. (You may
need the big open cell on the affine Grassmannian.)

5. We consider G = GLn, and µ = mω1. Let

G̃r≤µ =

{
Em ⊂ Em−1 ⊂ · · · ⊂ E0 = R[[t]]n

∣∣∣∣∣ Ei is an R-family of lattices

Ei/Ei+1 is a line bundle on SpecR

}
.

(i) Show that there is a natural map

π : G̃r≤µ → Gr≤µ

which is a resolution of singularities.
(ii) Identify π−1(tωm) as a Springer fiber in the flag variety of GLm.
(iii) Can you generalize (ii) to other points tλ ∈ Gr≤µ?
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2. Exercise II

1. (Birkoff decomposition) (i) Show that there is canonical bijection between

GLn(k[t−1])\GLn(k((t))/GLn(k[[t]])

and the set of isomorphism classes of rank n vector bundle on P1
k.

(ii) Prove the following theorem of Grothendieck: every vector bundle on P1
k is a direct

sum of line bundles.
(iii) Conclude that there is a canonical bijection between GLn(k[t−1])\GLn(k((t))/GLn(k[[t]])

and the set {(r1, . . . , rn) ∈ Zn | r1 ≥ · · · ≥ rn}.

2. (Thick Grassmannian) Fix x ∈ BunG. Let BunG,∞x be the stack that classifies for
every k-algebra R, the groupoid of pairs (E , ε), where E is a G-bundle on XR, and ε is a
trivialization of E on the formal neighbourhood of {x} × SpecR, i.e. the formal completion
of XR along the closed subscheme {x} × SpecR. It is known that BunG,∞x is represented
by a scheme (rather than an ind-scheme).

(i) Let X = P1, and x = 0. Show that BunG,∞x(k) = G(k((t))/G[t−1]. In this case,
BunG,∞x is also called the thick affine Grassmannian. The fundamental difference is that
GrG is a local object but BunG,∞x is global.

(ii) Let y be another point on X, different from x. Show that there is a morphism from
the affine Grassmannian GrG,y (i.e. the moduli of G-bundles on X with a trivialization on
X − {y}) to BunG,∞x. In particular, if X = P1, x = 0, y = ∞, at the level of k-points,
we get a map G(k((t−1))/G(k[[t−1]]) → G(k((t)))/G(k[t−1]). Could you describe this map
more explicitly?

(iii) Assume that X is a general curve. Show that the natural action of L+G on BunG,∞x
given by changing the trivialization ε extends to a natural action of LG. Show that if G is
semi-simple, the resulting action of LG on BunG,∞x is transitive.

3. (Determinant line bundle) Let G = GLn where V = k((t))n, and write GrG by Gr for
simplicity. We introduce the determinant line bundle on Gr×Gr. For Λ1,Λ2 ∈ Gr(R), let

det(Λ1|Λ2) = (∧topL⊗̂R/Λ1)⊗ (∧topL⊗̂R/Λ2)−1,

where L is some lattice in V such that (L⊗̂R)/Λ1 and (L⊗̂R)/Λ2 are projective R-modules.
This is independent of the choice of L up to a canonical isomorphism. This is called the
relative determinant line for (Λ1,Λ2). This way, we define a line bundle Ldet on Gr×Gr.

(i) For any g ∈ LGL(R), and Λ1,Λ2 ∈ Gr(R), there is a canonical isomorphism

det(gΛ1|gΛ2) ' det(Λ1|Λ2),

such that for g, g′, the isomorphism

det(gg′Λ1|gg′Λ2) ' det(g′Λ1|g′Λ2) ' det(Λ1|Λ2)

coincides with det(gg′Λ1|gg′Λ2) ' det(Λ1|Λ2). In other words, the diagonal action of LGLn
on Gr×Gr lifts to an action on Ldet;

(ii) For any Λ1,Λ2,Λ3, there is a canonical isomorphism

γ123 : det(Λ1|Λ2)⊗ det(Λ2|Λ3) ∼= det(Λ1|Λ3)

such that for any Λ1,Λ2,Λ3,Λ4, γ134γ123 = γ124γ234.
(iii) Let Λ0 = k[[t]]n ⊂ k((t))n be the standard lattice. Therefore, we get a line bundle

Ldet|{Λ0}×Gr,

on Gr still denoted by Ldet. We can construct sections of Ldet as follows. Let L ⊂ k((t))n

be a subspace complementary to Λ0, i.e. k((t))n = L ⊕ Λ0. Let x : SpecR → Gr be a map
given by an R-family lattice Λ ⊂ R((t))n. Consider the 2-term complex

Λ⊕ (L⊗k R)→ R((t))n,
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of R-modules. Make sense of the determinant of this map and show that the determinant
of this map defines a section ϑL of x∗Ldet. By varying x, we get a section ϑL of Ldet.

In the sequel, we fix L = L0 = (t−1k[t−1])n.
(iv) Let SLn → GLn denote the natural embedding, which induces a closed embedding

i : GrSLn → Gr.

Show that the non-vanishing loci of ϑL0 on GrSLn is exactly the big open cell

L−SLnL
+SLn/L

+SLn ⊂ GrSLn .

Show that i∗Ldet ' O(1).
(v) Assume chark 6= 2 Let G = SOn. Then the natural embedding SOn → GLn induces

a closed embedding
i : GrSOn → GLn.

Show that the non-vanishing loci of ϑL0
on Gr0

SOn (the neutral connected component of
GrSOn) is still the big open cell

L−SOnL
+SOn/L

+SOn ⊂ GrSOn .

However, show that i∗Ldet ' O(2).

4. We assume that chark = 0.
(i) We assume that G = SLn. Let Ad : G→ GL(g) be the adjoint representation, which

induces a closed embedding
Ad : GrG → GrGL(g).

Show that Ad∗Ldet ' O(2n).
(ii) Show that the restriction of O(n) to each Schubert cell Grµ is the anti-canonical

bundle of Grµ. (Recall that since Grµ is a single L+G-orbit, it is smooth.)
(iii) Let G be a general semsimple group, and let Ad : G → GL(g) denote the adjoint

representation, which induces GrG → GrGL(g). Show that the restriction of Ad∗Ldet to each
Schubert cell Grµ is twice of the anti-canonical bundle of Grµ.

5. (Convolution Grassmannians) Let E0 = E0 denote the trivial G-torsor. We define the
convolution Grassmannian over Xn as

Grconv
Xn =

{
{xi, Ei, βi}, i = 1, . . . , n

∣∣∣∣∣ {xi} ∈ X
n(R), Ei are G-torsors on XR,

βi : Ei|XR\Γxi ' Ei−1|XR\Γxi is an isomorphism

}
(i) Show that Grconv

Xn is represented by an ind-scheme over Xn.
(ii) Show that there is a canonical morphism

m : GrConv
Xn → GrXn

(where GrXn is the Beilinson-Drinfeld Grassmannian as defined in the lecture) which re-

stricts to an isomorphism GrConv
Xn ×Xn U ' GrXn ×Xn U , where U is the open subset of Xn

consisting of points {(x1, . . . , xn} that are pairwise distinct.
(iii) Let n = 2. Describe the map m over (x, x) ∈ X2.
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3. Exercise III

1. Describe the cohomology group of a smooth quadratic in Pn using the geometric
Satake.

2. Let Grω1,ω∗
1

be the variety classifying the chain of lattices (Λ2 ⊃ Λ1 ⊂ Λ0 = k[[t]]n)
in k((t))n, with Λ1 of codimension one in Λ0 and Λ2. Let Z ⊂ Grω1,ω∗

1
be the closed sub

variety defined by the condition Λ0 = Λ2. Show that Z is middle dimensional and calculate
the self-intersection number of Z using the geometric Satake.

3. Consider the situation as in Exercise I, Problem 5.

(i) Show that G̃r≤mω1 → Gr≤mω1 as considered in that exercise is the convolution map
m : Grω1×̃ · · · ×̃Grω1 → Gr≤mω1 .

(ii) Let Gr2≤mω1
denote the GLm-torsor over Gr≤mω1 classifying (E → E0) ∈ Gr≤mω1(R)

together with an isomorphism E0/E ' Rm of R-modules. Show that there is the following
diagram

N π← Gr2≤mω1

p→ Gr≤mω1 ,

where N is the nilpotent cone in GLm. Show that Gr2≤mω1
→ N is smooth of relative

dimension mn.
(iii) Show that the pullback the Springer resolution Ñ ×N Gr2≤mω1

is isomorphic to

G̃r≤mω1
×Gr≤mω1

Gr2≤mω1
. Conclude that the convolution map m : Grω1

×̃ · · · ×̃Grω1
→

Gr≤mω1 is semismall.
(iv) Let Spr be the Springer sheaf on N . Show that there is a canonical isomorphism

π∗Spr[mn] ' p∗(ICω1
? · · · ? ICω1

)[m2].

Remark 3.1. There is an action of symmetric group Sm on Spr coming from the Springer the-
ory and an action of Sm on ICω1

? · · · ? ICω1
coming from the symmetric monoidal structure

on the Satake category. One can show that the canonical isomorphism above is compatible
with the Sm-actions.

4. We consider a Quot Scheme

Quot(OnX , r) = {q : OnXR → Q | Q is R-flat torsion sheaf of length r.}
(i) Show that there is the morphism

π : Quot(OnX , r)→ X(r),

where X(r) is the rth symmetric power of X.
(ii) Show that there is a natural embedding

Quot(OnX , r)×X(r) Xr → GrGLn,Xr .

(iii) Let
π̃ : Grconv

Xr,ω1,...,ω1
→ Xr

denote the scheme over Xr, classifying{
{xi, Ei, βi}, i = 1, . . . , r

∣∣∣∣∣ {xi} ∈ X
r, Ei are locally free sheaves of rank n on X,βi : Ei ↪→ Ei−1

embedding of coherent sheaves such that Ei−1/Ei is a simple skyscraper sheaf at xi

}
.

Note that Grconv
Xr,ω1,...,ω1

is a closed subscheme of the convolution Grassmannian as defined
in Example II, Problem 5.

Show that Grconv
Xr,ω1,...,ω1

is smooth over Xr and there is a small map

p : Grconv
Xr,ω1,...,ω1

→ Quot(OnX , r)

such that π ◦ p = sym ◦π̃, where sym : Xr → X(r) is the symmetrisation map. Deduce that,
p∗Q` is a perverse sheaf (up to shift) on Quot(OnX , r) with an action of the symmetric group
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Sr. Show that (p∗Q`)Sr is the intersection cohomology sheaf of Quot(OnX , r) (up to shift)
and in fact it is the constant sheaf. Conclude that H∗(Quot(OnX , r)) ' Symr(H∗(Pn−1) ⊗
H∗(X)).


