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1 Geometric Satake

Let me start by recalling a fundamental theorem in the Geometric Langlands Program,
which is the Geometric Satake isomorphism.

Fix a reductive group G/k, and set Gr to be the affine Grassmannian for G. We’ll recall
the definition later on, but for now let’s just recall some basic facts:

• Gr is an ind-projective variety over k, i.e.

Gr = lim
←−−

Xi

where Xi ↪→ Xi+1 is a closed embedding of projective varieties.

• Gr admits an action of the loop group LG,

• Gr(k) = G(k((t)))/G(k[[t]]).

• We can define a category of perverse sheaves on Gr:

P(Gr) = lim
←−−
P(Xi).

• The Xi can even be chosen to be L+G-invariant, so we can define a category of equiv-
ariant perverse sheaves

PL+G(Gr) = lim
←−−
PL+G(Xi).

• The category is equipped with a monoidal structure via the convolution product

∗ : PL+G(Gr) × PL+G(Gr)→ PL+G(Gr).

Since we will be making heavy use of this, let’s recall the definition. Denote here
and throughout F = k((t)) and O = k[[t]]. Let G(F) ×G(O) G(F)/G(O) be the product
modulo the diagonal action. We can consider the multiplication

G(F) ×G(O) G(F)/G(O)
m
−→ G(F)/G(O)
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We can consider also the projections

G(F) ×G(O) G(F)/G(O) m //

uu **

G(F)/G(O)

G(F)/G(O) G(O) ×G(O) G(F)/G(O)

Then for F and G ∈ PL+G(Gr), we define

F ∗ G = m∗(F �̃G).

Theorem 1.1 (Geometric Satake). Taking hypercohomology induces an isomorphism

H• : (PL+G(Gr), ∗)
∼
−→ Rep(ĜQ` .

Applications.

1. The formulation of Geometric Langlands in general requires this theorem.

2. Applications to the representation theory of Ĝ.

3. Applications to classical Langlands by V. Lafforgue. More precisely, Lafforgue uses
correspondences on moduli stacks of Shtukas to define creation/annihilation “excur-
sion operators.”

If k = Fq, then this theorem is a categorification of classical Satake, which says

C(G(Fq[[t]])\G(Fq((t)))/G(Fq[[t]]) � R(Ĝ) ⊗ Q`

where R(Ĝ) is the representation ring of Ĝ.
In fact, the classical statement holds replacing Fq((t)) with Qp. This suggests:

Question. Do we have a geometric Satake correspondence for G (say split) over Qp?

If you wanted to apply V. Lafforgue’s ideas to the number field situation, you would
need such a thing.

Theorem 1.2 (Zhu). The answer is yes.

Of course, this needs to be made more precise. In this talk we’ll just try to indicate the
ideas. First let me mention some potential applications.

Application. One can define certain (very special) excursion operators for Shimura vari-
eties.
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2 Discussion of Theorem

For simplicity, consider G = GLn /Qp. There are two basic difficulties in creating a p-adic
version of geometric Satake.

1. We need an algebro-geometric analogue of the affine Grassmannian, i.e. G(Qp)/G(Zp)
should be realized as the Fp-points of some algebro-geometric object (namely an ind-
scheme).

2. Then you need to prove the analogue of the geometric Satake correspondence.

In the usual proof, although the statement is purely local the proof uses a global curve (in
fact, a product of two global curves). As far as I know, there isn’t an analogue of this.

2.1 Witt vector affine Grassmannian

Let’s first think about the first question. What could be the algebro-geometric structure on
G(Qp)/G(Zp)? You can think of this as

{free rank n Zp-modules in Qn
p}.

To give this algebro-geometric structure, we have to make a family version of this. The
classical answer in the equal-characteristic situation is that we are considering the set o
ffree rank n k[[t]]-modules in k((t))n. In families, if R is any k-algebra then we can consider
the set of rank n R[[t]]-projective modules in R((t))n. If you define the affine Grassmannian
as a functor which assigns to R this set, then it turns out to be an ind-projective scheme.

Now over Qp, we should define GrGQp
(R), for R an algebra over Fp, to be the set of rank

n projective W(R)-modules inside W(R)[1/p]n, where W(R) is the ring of Witt vectors for
R. Secretly think of W(R) = R⊗̂Zp, in analogy to R[[t]] = R⊗̂k[[t]].

This is a nice attempt, but it may not (probably doesn’t) work. The reason is that the
ring of Witt vectors for general R/Fp is very badly behaved. For example, an element of
W(R) can be represented as (a0, a1, . . . with p(a0, a1, . . .) = (0, ap

0 , a
p
1 ) so for instance p

could be a zero-divisor if R is non-reduced, and W(R)/p may not necessarily be isomorphic
to R.

However, there is a situation in which the Witt vectors are very nice:

1. W(R) is well-behaved if R is a perfect ring, i.e. the map r 7→ rp induces an isomor-
phism R � R. In particular, in this situation W(R)/p � R.

2. If X/Fp is a variety, and you consider {X(R) : R perfect} then this collection deter-
mines the perfection of X,

Xperf = lim
←−−
Frob

X.

3. The étale topos of X depends only on Xperf .
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This means that we can just consider Gr : Affperf
Fp
→ Set. Then we can ask if this is

representable by a (perfect) ind-scheme on this subcategory.

Remark 2.1. We can consider presheaves on Affperf
Fp

. Inside this category we can consider
the subcategory of schemes, algebraic spaces... In the usual world of schemes, there is a
notion of “perfect scheme” or “perfect algebraic space” (these are the objects for which
Frobenius is an isomorphism). So the notion of representability certainly makes sense.

Theorem 2.2 (Bhatt-Scholze). Gr is represented by an ind-projective scheme.

Previously I had proved a weaker result that Gr is represented by an algebraic space.

2.2 Proof of Geometric Satake

Now it makes sense to talk about the monoidal category SatG := (PL+G(Gr), ∗), by replacing
F,O by Qp,Zp.

Theorem 2.3. This is Tannakian with the fiber functor given by

H• : SatG
∼
−→ Rep(ĜQ`).

Proposition 2.4. H• has a canonical monoidal structure

H•(F ∗ G)
∼
−→ H•(F ) ⊗ H•(G).

Proposition 2.5. There exists a canonical (unique) isomorphism F ∗ G � G ∗ F such that

H(F ∗ G) //

�

��

H(G ∗ F )

�

��
H(F ) ⊗ H(G) H(G) ⊗ H(F )

The uniqueness is automatic from the fact that the cohomological functor is fully faith-
ful and conservative, so the real content is existence.

The two propositions easily imply the theorem.
The basic idea is to consider

Gr ×̃Gr := G(F) ×G(O) G(F)/G(O).

Contrast this with
Gr×Gr = G(F)/G(O) ×G(F)/G(O).

We know that for F � G we easily have

H•(F � G) � H•(F ) ⊗ H•(G).

The key is to prove that Gr ×̃Gr is “topologically isomorphic” to Gr×Gr. Then one gets
the isomorphism by passing “through” this topological isomorphism.
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This doesn’t make sense in algebraic geometry, but what makes sense it that G(F)→ Gr
is a Gr(O)-torsor. You want to prove that this is topologically trivial, i.e. the chern class is
0. But we have a G(O)-action on Gr, so we can consider equivariant cohomology, which
makes HG(O)(Gr) a bimodule for H•(BG).

Lemma 2.6. The two H•(BG)-module structures coincide.

This implies the needed “topological isomorphism.”
I don’t know of a local proof. The group G = GLn has an anti-involution θ (the trans-

pose; in general need a Chevalley involution) which induces an anti-involution

θ : G(O)\G(F)/G(O)→ G(O)\G(F)/G(O).

By the anti-involution property, one has automatically

θ∗(F ∗G) � θ∗G ∗ θ∗F.

This (“Gelfand’s trick”) is the basis for the classical proofs, e.g. of commutativity of the
spherical Hecke algebra. What we need is to find an isomorphism θ∗F � F . Since the
category is semisimple, it suffices to do this for irreducible F . In fact we know that the
irreducible objects are “intersection cohomology sheaves” ICµ coming from local systems
on Schubert varieties.

You might think that you’re done, because on the Schubert variety there is a canonical
isomorphism

θ∗ICµ � ICµ

but in fact you need to introduce a sign
√
−1(−2ρ,µ) which is pretty subtle.

Let me give you the main idea of showing the necessary commutativity. We have a
canonical isomorphism θ∗ICµ � ICµ inducing θ∗ : H•(ICµ) � H•(ICµ).

Proposition 2.7. θ∗ acts as (−1)i on degree 2i.

This plus the aforementioned sign change shows the commutativity of the relevant dia-
gram. This seems easy, but I don’t know a direct proof. The only argument I have is through
a spectral sequence argument, studying the action of θ∗ on the stalks of ICµ. The stalks of
the ICµ are given by the Kazhdan-Lusztig polynomials, while the other side of the equation
turns out be described by LV polynomials. So the equality comes down to something of the
form KL = LV, but this is non-trivial, and ends up being a theorem of Lusztig-Yun using
Geometric Satake in equal characteristic.
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