PROBLEM SET III: ORBITAL INTEGRALS

In these exercises, $k = \mathbb{F}_q$ denotes a finite field with $\operatorname{char}(k) \neq 2$, and F = k((t)).

0.1. Let $a \in k^{\times} - (k^{\times})^2$ and $G = SL_2$. Consider the matrix $\gamma = \begin{pmatrix} 0 & at \\ t & 0 \end{pmatrix}$ and $\gamma' = \begin{pmatrix} 0 & at^2 \\ 1 & 0 \end{pmatrix}$.

$$\gamma = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

- (1) What are the centralizers G_{γ} and $G_{\gamma'}$?
- (2) Are γ and γ' conjugate in $SL_2(F)$?
- (3) Calculate $O_{\gamma}(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)})$ and $O_{\gamma'}(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)})$ (using the Haar measure at your choice).
- (4) We have the affine Springer fiber \mathscr{X}_{γ} with the action of $L_{\gamma} \cong \mathbb{Z}$, both defined by passing to \overline{k} . What is the $\operatorname{Gal}(\overline{k}/k)$ -action on $\mathscr{X}_{\gamma}(\overline{k})$; how is it compatible with the L_{γ} -action?
- (5) The quotient $L_{\gamma} \setminus \mathscr{X}_{\gamma}$ is a variety over k. Calculate the number of k-points of the quotient $L_{\gamma} \setminus \mathscr{X}_{\gamma}$, and compare your answer with the orbital integrals in (3).

0.2. Let $G = SL_2$ over F and let $\gamma = \begin{pmatrix} 0 & t \\ 1 & 0 \end{pmatrix}$. What is the centralizer $G_{\gamma}(F)$? Is the loop group LG_{γ} (as a group ind-scheme over k) connected?

0.3. Let $G = \operatorname{GL}_n$ over F and let $\gamma = \operatorname{diag}(\gamma_1, \cdots, \gamma_m)$ be a block diagonal matrix in $\mathfrak{g}(F)^{\operatorname{rs}}$, where $\gamma_i \in \mathfrak{gl}_{n_i}(F)^{\operatorname{rs}}$. Consider the asymptotic behavior of the orbital integral $O_{\gamma}(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)})$ as q = #k tends to ∞ . Find the smallest integer d such that

$$O_{\gamma}(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)}) = O(q^d)$$

as $q \to \infty$. Note that the $O(\cdot)$ on the right side is analysts' O while on the left side it means orbital integral. Can you interpret d in terms of the characteristic polynomials of the γ_i 's?

0.4. Let
$$G = \operatorname{SL}_3$$
 and $\gamma = \begin{pmatrix} 0 & 0 & t^4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Compute $O_{\gamma}(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)})$.

Hint: use the cell decomposition introduced in the lecture.

0.5. Let $G = \text{SL}_2$. Let f be the characteristic function of elements $X \in \mathfrak{g}(\mathcal{O}_F)$ such that the reduction \overline{X} in $\mathfrak{g}(k)$ is regular nilpotent (i.e., nilpotent but nonzero in this case). Let $\gamma \in \mathfrak{g}(F)$ be a regular semisimple element.

- (1) Show that $O_{\gamma}(f) \neq 0$ if and only if $\det(\gamma) \in t\mathcal{O}_F$.
- (2) When $det(\gamma) \in t\mathcal{O}_F$, show that

$$O_{\gamma}(f) = O_{\gamma}(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)}) - O_{t^{-1}\gamma}(\mathbf{1}_{\mathfrak{g}(\mathcal{O}_F)}).$$