PROBLEM SET II: AFFINE SPRINGER FIBERS

In these exercises, F = k((t)), and γ always denotes a regular semisimple element in $\mathfrak{g}(F)$.

0.1. Consider the case $G = SL_2$ and $\gamma = \begin{pmatrix} 0 & t^n \\ 1 & 0 \end{pmatrix}$.

- (1) Describe \mathscr{X}_{γ} and \mathscr{Y}_{γ} . Note: separate into two cases according to the parity of n.
- (2) Construct a nontrivial \mathbb{G}_m -action on both \mathscr{X}_{γ} and \mathscr{Y}_{γ} , and determine its fixed points.

0.2. Recall that we have a lattice L_{γ} in the centralizer $G_{\gamma}(F)$. Show that the action of L_{γ} on Gr_{G} is free, hence in particular its action on \mathscr{X}_{γ} is free. Show also that the permutation action of the lattice L_{γ} on the set of irreducible components of \mathscr{X}_{γ} is free.

0.3. Consider the case $G = SL_3$ and $\gamma = diag(x_1t, x_2t, x_3t)$. Describe the affine Springer fibers \mathscr{X}_{γ} and \mathscr{Y}_{γ} .

0.4. Let $G = SL_2$ and let $\gamma = \begin{pmatrix} t & 0 \\ 0 & -t \end{pmatrix}$. What is the action of the affine Weyl group $\widetilde{W} = \langle s_0, s_1 \rangle$ (infinite dihedral group) on $H_2(\mathscr{Y}_{\gamma})$?

0.5. Using the dimension formula for affine Springer fibers, can you come up with some examples of 1-dimensional \mathscr{X}_{γ} and \mathscr{Y}_{γ} for various types of G?