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1. INTRODUCTION

1.1. Weil’s conjectures. Let X be a smooth projective variety of dimension n over Fq .

Definition 1.1. The zeta function of X is

ζ(X , s ) :=
∏

x∈X

�

1−
1

q s
x

�−1

.

This is in obvious analogy to the Riemann zeta function, but it will be more convenient
for us to work with the function

Z (X , t ) =
∏

x∈X

�

1− t −degx
�−1

.

We clearly have

ζ(X , s ) =Z (X ,q s ).

Now we can state Weil’s conjectures.

Conjecture 1.2 (Weil).

(1) Z (X , t ) is a rational function of t , i.e Z (X , t )∈Q(t ), with factorization of the form

Z (X , t ) =
P1(t ) . . . P2n−1(t )

P0(t ) . . . P2n (t )
.

(2) Z (X , t ) satisfies a functional equation.
(3) The roots of Pi (X , t ) have absolute value q−i/2.

Weil envisioned these conjectures as a consequence of an appropriate cohomology
theory for X/Fq which would behave analogously to singular cohomology. In particular,
(1) should follow from a “Lefschetz trace formula” in X , with X (Fq ) interpreted as the
“fixed points” of Frobenius. The functional equation predicted in (2) should follow from
Poincaré duality. The condition (3) is an analogue of Riemann’s hypothesis.

This hypothetical cohomology theory was eventually constructed by Grothendieck,
and is now called étale cohomology. The purpose of these notes is to explain the main
ideas going into the proof of (3). Everything here comes from Deligne’s article [1], but I
have reorganized the presentation, and focused on the simplest cases in order to high-
light the key ideas.
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2. ÉTALE COHOMOLOGY

The Pi in Weil’s conjecture are basically characteristic polynomials of Frobenius acting
on étale cohomology. The intuition to keep in mind is that étale cohomology with coef-
ficients in a constant (torsion) sheaf (or more generally, a torsion local system) behaves
“like singular cohomology”. As we will shortly see, the familiar fundamental results of
classical singular cohomology, once phrased invariantly enough, become theorems in
étale cohomology.

Remark 2.1. For quasi-coherent sheaves, étale cohomology coincides with coherent co-
homology. These won’t come up in our discussion.

2.1. The orientation sheaf. Here’s an example of what I mean. It’s commonly said that
complex manifolds are canonically oriented, but from an algebraic perspective that’s
not quite true - you have to choose an orientation for C. This amounts to a choice of ±i ,
which can be thought of as a choice of embedding of Q/Z into the roots of unity.

We’re going to be talking about Q`, the `-adic numbers. The orientation sheaf for Q`
involves a choice of the `-power roots of unity. Such a choice is equivalent to a choice of
trivialization

lim←−µ`
n ' lim←−Z/`n ' Z`.

In any case Z` acts on lim←−µ`
n , and we define

Q`(1) =Q`⊗Z` lim←−µ`
n .

For any n , we define Q`(n ) =Q`(1)⊗n . For negative n , this is defined by

Q`(n ) :=Q`(−n )∨.

Remark 2.2. For varieties over finite fields, you can think of this in the following way.
Q`(n ) is a Q`-vector space with a natural action of Gal(Fq/Fq ), where Frobenius acts as
multiplication by q . However, my Frobenius F will always be the geometric Frobenius
x 7→ x q−1 , which acts as multiplication by q−1.

2.2. Properties of étale cohomology. Let X be a smooth variety of pure dimension n
over an algebraically closed field.

(1) (Fundamental class) There is a fundamental class

Tr: H2n
c (X , Q`(n ))

∼−→Q`.

Equivalently, you can think of this as Tr: H2n
c (X , Q)

∼−→Q`(−n ).
(2) (Cohomological dimension) X has cohomological dimension 2n :

Hi (X , Q`) = 0 if i > 2n .

(3) (Poincaré duality) There is a cup product

Hi (X , Q`)⊗H2n−i
c (X , Q`)→H2n

c (X , Q`)
∼−→Q`(−n ).

which induces a perfect pairing.
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(4) (Lefschetz trace formula) There’s a Lefschetz trace formula

Fix(F ) = #X (Fq ) =
∑

i

(−1)i Tr(F, Hi
c (X , Q`)).

Everything generalizes to a version with coefficients in a more general local system. It
may not be clear how to do that for the last one now, but it should become clear later.

2.3. Rationality of the zeta function. Because it will actually be important for us later,
we derive the rationality of the zeta function from the above properties. Consider

t
d

d t
logZ (X , t ) = t

d

d t

∑

x

− log(1− t −degx )

= t
d

d t

∑

n≥1

x t −n degx

n

=
∑

n≥1

t −n
∑

degx |n
degx

Observe that
∑

degx | n = #X (Fq n ), since points of X can be thought of as orbits in
#X (Fq n ), of size equal to the their degree. Substituting in the Lefschetz trace formula,
we find that this is
∑

n≥1

t −n
∑

i

(−1)i Tr(F, Hi
c (X , Q`) =
∑

i

(−1)i
∑

n≥1

Tr(F n , Hi
c (X , Q`).

Now, recall that for an operator F on a vector space V ,

t
d

d t
log det(1− t F, V )−1 =

∑

n≥1

Tr(F n )t n .

Proof: write det(1− t F ) =
∏

(1− tαi ), so that this becomes

t
d

d t

∑

n

∑

i

αn
i t n

n
=
∑

n

t n
∑

i

αn
i .

So that tells us that

∑

i

(−1)i
∑

n≥1

Tr(F n , Hi
c (X , Q`)) = t

d

d t
log det(1− F t , Hi

c (X , Q`))−1.

Substituting this above, we obtain
∏

x

(1− t −degx ) =
∏

i

det(1− F t , Hi
c (X , Q`))(−1)i+1

.

The right hand side predicts the polynomials appearing in Weil’s conjectures.



4 TONY FENG

2.4. Overview of the proof. By étale cohomology, the statement reduces to bounding
the eigenvalues of Frobenius on étale cohomology. By simple reductions, one quickly
reduces to checking the eigenvalues of Frobenius on the middle-dimensional cohomol-
ogy. To analyze this, one chooses a Lefschetz pencil f : X → P1, which always exists after
possibly blowing up X (and it is easy to see that blowing up doesn’t affect the problem).

The idea is then to study the cohomology of Rn f ∗Q` on P1. This sheaf will be a local
system on a dense open subset of P1, for general reasons of constructibility of proper
pushforwards. There are three main ingredients:

(1) A “big image” result on monodromy for a Lefschetz pencil.
(2) An algebraicity result, showing that the eigenvalues in question are algebraic over

Q (being a priori in Q`). This is achieved by an extremely clever “gcd argument”,
which is quintessentially Deligne.

(3) A very clever analytic estimate, finally establishing the desired bound (in view of
the previous two ingredients). This is inspired by the Rankin-Selberg method.

We will actually present (3) first, even though it relies on the first two points, because it
is the crux of the argument. Then we will go back and indicate how to verify (1) and (2).

3. SOME REDUCTIONS

Let X be a smooth proper variety of dimension n . Let RH (Hi (X )) denote the statement
that the eignvalues of F ∗ on Hi (X , Q`) are algebraic with absolute value q i/2 under all
complex embeddings. We would like to prove RH (Hi (X )) for 0≤ i ≤ 2n .

3.1. Formalities. If we have an embedding

Hi (X ) ,→Hi (X ′)

then RH (Hi (X ′)) =⇒ RH (Hi (X )).

Example 3.1. If X ′ → X the blowup along a closed subvariety Z ⊂ X , then we get such
an embedding. We will use the special case where Z is the section by a codimension-2
plane.

If we have a surjection

Hi (X ′′)→Hi (X )

then RH (Hi (X ′)) =⇒ RH (Hi (X )).

3.2. Poincaré duality. Thanks to the perfect pairing

Hi (X , Q`)×Hn−i (X , Q`)→Q`(−n )

furnished by Poincaré duality, we automatically know that the Pi (T ) = T ???P2n−i (q n/T ).
In particular, if α is an eigenvalue for F ∗ on Hi (X , Q`) then q n/α is an eigenvalue for F ∗

on Hi (X , Q`). Therefore,

RH (Hi ) =⇒ RH (Hn−i ).

The upshot is that it suffices to prove RH (Hi ) for i = 0, . . . , n .
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3.3. Weak Lefschetz. Let Y ⊂ X be a general (smooth) hyperplane section. (Since we’re
over a finite field, this might not exist a priori. But a smooth hypersurface section always
exists, so we’re okay after passing to some large Veronese embedding first.)

Theorem 3.2 (Lefschetz Hyperplane). The restriction map Hi (X )→ Hi (Y ) is an isomor-
phism for i < n −1 and an injection for i = n −1.

This will be useful for an inductive proof of the theorem. By the preceding reductions,
we get for free that the we only need to worry about the middle dimension.

4. COHOMOLOGY OF LEFSCHETZ PENCILS

4.1. Introduction to Lefschetz pencils. Most of what we can do for general varieties is
bootstrapped from curves, so it is natural to adopt an inductive approach. We’ve already
seen that a hyperplane section of X captures “most” of its cohomology (everything ex-
cept the middle). To get the rest we’ll put X in the“cookie cutter” to get many hyperplane
sections. By induction we “know” the cohomology of the hyperplane sections, and then
the task is to assemble them together.

A pencil of hyperplanes is the set of hyperplanes passing through some codimension-
2 plane A, which we call the axis of the pencil. This set has a natural structure of a P1. We
have a natural rational map X ¹¹Ë P1 sending x to the hyperplane spanned by x and A.
This is defined away from A∩X . The fibers of this map are points which lie in a common
hyperplane through A, i.e. hyperplane sections of X .

We can resolve the indeterminacy of the map by blowing up at the locus A ∩X , giving
an honest fibration

eX →P1.

Furthermore,

Hi (X ) ,→Hi (eX ) =Hi (X )⊕Hi−2(X ∩A)(−1)

(the last equality by the Thom isomorphism theorem), so by one of reductions it suffices
to prove RH (Hi (eX )).

There’s an additional technical point in the definition of Lefschetz pencil. The map
eX → P1 is not smooth, since hyperplane sections can be singular (exactly when the hy-
perplane becomes tangent to X ). I’ll want to choose A generally, so that these singular-
ities are as mild as possible, i.e. simple points. You can think of this as asking that the
function f : eX → P1 be a “morse function”. A Lefschetz pencil is by definition a fibration
eX → P1, with singularities as mild as possible. As more precise definition will be given
when it is needed, in §6.

4.2. Monodromy and the spectral sequence. We’re going to try to “fit together” the co-
homologies of the different hyperplane sections and see what they tell us about the co-
homology of the whole thing. This is an obvious setting for a spectral sequence.

E
iq
2 =Hi (P1, Rq f ∗Q`) =⇒ Hi+q (X , Q`).

Now, since P1 is a curve we have that Hi (P1, Rq f ∗Q`) vanishes for i > 2. Therefore, there
are only three groups that we need to worry about, corresponding to (i ,q ) = (0, n ), (1, n−
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1), and (2, n−2). However, it is clear that in order to analyze them we need to understand
Rq f ∗Q`.

Basically, you should think of this “constructible sheaf” Rq f ∗Q` as being assembled
together from its stalks (Rq f ∗Q`)u =Hq (Xu , Q`) using monodromy. Let me explain.

Let j : U ,→ P1 be the inclusion of the open set where f is smooth. Over U , Rq f ∗Q`
restricts to a local system. This means that it is a locally constant Q` sheaf for the étale
topology (with some finiteness assumptions). There is a monodromy action of π1(U , u )
on the fibers which determines the local system - in fact, a Q`-local system is equivalent
to the data of a finite-dimensional Q`-representation of π1(U , u ).

The key is to understand this monodromy action. Its precise nature will be elabo-
rated upon later, but for now it’s enough to emphasize that the monodromy is only non-
trivial on the middle-dimensional groups Hn−1(X ét, Q`). In other words, the local systems
R i f ∗Q`|U are trivial except when i = n−1. This fact will be part of the “Picard-Lefschetz”
formula for the monodromy to be discussed in the future.

Armed with this knowledge, we can immediately dispose of a couple terms of the
spectral sequence. One of them was

H0(P1, Rn+1 f ∗(Xu , Q`) = (Hn+1(Xu , Q`))π1 =Hn+1(Xu , Q`).

Now, the result follows from induction on the dimension of X . Actually, it turns out that
we need to induct on even dimension (for reasons having to do with the Picard-Lefschetz
description of monodromy), so technically we need to take another hyperplane section
of Xu , but that’s okay: the cohomology group is not in middle dimension, and so is “de-
tected” by a hyperplane section.

There is a difference between Hi (U , Rn+1 f ∗Q`) and Hi (P1, Rn+1 f ∗Q`) and it can hap-
pen that Rn−1 f ∗Q` is not a local system, whileits restriction to U is. But that’s not really
an issue, because we always have a short exact sequence

0→ j !F → j∗F → j∗F /j !F → 0

which induces (because the last thing is torsion)

H1
c (U ,F )→H1(P1, j∗F )→ 0.

Therefore, for our purposes is really is enough to consider the restriction to U .
The other term H2(P1, Rn−1 f ∗Q`) is basically dual to the one just discussed, and in fact

the complication above never even arises.
The last case H1(P1, Rn f ∗Q`) is the most subtle. For now we’ll just say that there is a

sequence

0→ j∗E →Rn f ∗Q`→ (constant sheaf)→ 0

and so it suffices to analyze H1(U ,E ). The local system E contains the “vanishing cycles”,
which are the cohomology classes that vanish in restriction to some special (singular)
fiber. The monodromy action is unipotent, deforming the cohomology by vanishing cy-
cles, so the quotient is constant. For now please just accept the above plus the fact that
the restriction of the symplectic form to E is non-degenerate. (This is true, but only by
deduction a posteriori; the actual argument requires a further filtration by E ∩E⊥.)
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5. THE FUNDAMENTAL ESTIMATE

5.1. Theorem on weights. Recall that a local system F on X is said to have weight β

if F ∗x acting on Fx has eigenvalues which are algebraic with absolute value q
β/2
x under

every complex embedding. In particular, Q`(r ) has weight −2r .

Theorem 5.1. Suppose E0 is a sheaf on U0 satisfying the following conditions:

(1) E0 is equipped with an alternating, non-degenerate bilinear form

ψ: E0⊗E0→Q`(−β ).

(2) The image of π1(U , u ) in GL(Eu ) is an open subgroup of Sp(Eu ,ψu ).
(3) For all x ∈U0, the polynomial det(1− Fx t ,E0) has rational coefficients.

Then E0 has weight β .

The inspiration from the following argument is said to come from ideas of Rankin
attacking the Ramanujan conjecture (one of the consequences of Deligne’s work).

Recall that

t
d

d t
log det(1− Fx t ,E0) =

∑

n≥1

Tr(F n
x )t

n .

In particular, since Tr(Fx ,
⊗2k E0) = Tr(Fx ,E0)2k we have that t d

d t log det(1− Fx t ,E0) has
positive rational coefficients (the positivity would make no sense without knowing that
they were rational!). Therefore, the same holds for

det(1− Fx t ,⊗2kE0).

Now,

Z (U ,⊗2kE0, t ) =
∏

u

det(1− Fu t ,⊗2uE0).

A product of power series with positive coefficients has radius of convergence at most
that of any of its factors, since this is just some statement about the size of the coeffi-
cients.

Now let’s consider the Grothendieck-Lefschetz formula for the zeta function:

Z (U ,⊗2kE0, t ) =
P1(t )

P0(t )P2(t )
.

Here P0(t ) = det(1− F ∗t , H0
c (U ,E )). But a local system on an affine variety has no com-

pactly supported global sections, so P0(t ) = 1. What about H2
c ? By duality,

H2
c (E0)'H0(E∨0 )

∨(−1) = ((E∨u )
π1 )∨ = (Eu )π1 (−1)

Now, since π1(U , u ) is open in Sp(Eu ) it has the same coinvariants. Then Eu is just the
“standard representation” of the symplectic group. This become a classical question
about the coinvariants of tensor powers of the standard representation. It is a theorem
that the ring of invariants is generated by the tensor symbols [x , y ] corresponding to the
symplectic form, and so we find that

�

⊗2kEu

�

π1
'Q`(−kβ )P

′

whereP ′ is a set of partitions of [1, 2k ] into pairs, corresponding to [x i ,x j ].
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The upshot is that H2
c (U ,⊗2kE )'Q`(−kβ −1)N . So

Z (U0,⊗2kE , t ) =
P1

(1−q kβ+1t )N
.

In particular, the only pole is at t =q−kβ−1. So there are no zeros of the det(1−Fx t ,⊗2kE0)
with absolute value less than q−kβ−1. The zeros are the inverses of the eigenvalues of
Frobenius raised to 2k , so

|α|−2k ≥q−kβ−1.

Rearranging we get

|α| ≤q
β
2 +

1
2k .

Now we just take 2k →∞ to get the desired upper bound. By Poincaré duality qβ/α is
also an eigenvalue, so

|qβ/α| ≤qβ/2

implies the opposite inequality.

5.2. Frobenius eigenvalues. Recall that what we actually wanted was the eigenvalues of
Frobenius on H1

c (P
1,E0). The zeta function is

Z (U ,E0, t ) = P1(t ).

The zeros of P1(t ) are the inverses of the Frobenius eigenvalues. Now, this is manifestly
an `-adic polynomial, but also a power series with rational coefficients by our assump-
tions, hence a rational polynomial. This shows that the eigenvalues are rational.

Since Z has an Euler product expansion, we should be able to use that to see that
the location of the zeros. The factors have, as showed, eigenvalues with absolute value
qβ/2 under every complex embedding. The problem is that we do not necessarily know
that the Euler product converges at t = q−β/2. In fact it doesnt, so we will show that it
converges for |t |<q−β/2−1.

We have det(1− F ∗u t ,Eu ) =
∏

(1−αi ,u t ). Therefore, it suffices to analyze when
∑

i ,u

αi ,u t

converges. We know that |αi ,u |=qβ deg u /2, so we can regroup the sum as
∑

u

∑

n

q nβ/2#U (Fq n )t n .

What is #U (Fq n )? Well U is off from A1 by just a few points, so #U (Fq n )≤A1(Fq n ) =q n . So
the conclusion is that the sum is

∑

n

q n (1+β/2)t n

and thus converges for |t |<q−(1+β/2).
We’re almost done. We proved that H1(U ,E0) has eigenvalues of magnitude

qβ/2−1 ≤ |α| ≤qβ/2+1.
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We want to get |α| = qβ/2 on the nose. But this is just another application of the tensor
power trick. Replace X by X k , and we get (by Künneth)

q kβ/2−1 ≤ |α|k ≤q kβ/2+1.

6. MONODROMY THEORY OF LEFSCHETZ PENCILS

We now want to go back and substantiate some of the claims about Lefschetz pencils
that we used. The setup of interest is that we have a fibration

f : X →P1

such that

(1) X is non-singular of dimension n +1
(2) f is proper,
(3) f has non-degenerate critical points, i.e. the only singular points of the singular

fibers are simple double points.

The third condition is essentially that of being a “morse function”.
In such a situation, f will be smooth outside a finite set of points S ⊂ P1. If U is the

open complement, then R i f ∗Q` will be a loca system on U , and we want to understand
the monodromy action of π1(U , u ) on (R i f ∗Q`)u =Hi ( f −1(u ), Q`).

6.1. Existence of Lefschetz pencils. This situation arose from taking a pencil of hyper-
plane sections of a smooth projective X ⊂ PN along an axis A, and blowing up along
A ∩X . Why does a pencil of the desired form exist? The picture is clarified by looking at
the dual variety X∨ ⊂ (PN )∨. The points of (PN )∨ are the hyperplanes of PN , and X∨ is the
subset of hyperplane tangent to some point of X . In other words, it is the image of the
incidence correspondence

{(x , H )⊂X × (PN )∨ |H ⊃ Tx X }.

By dimension counting, this has dimension dim X + (N −dim X − 1) = N − 1, so X∨ has
dimension at most N−1. A pencil of hyperplanes is the same as a literal pencil P1 ⊂ (PN )∨

(linearly embedded). It turns out that if it avoids the singular locus and intersects X∨

transversely, then it will be a Lefschetz pencil. This is a local calculation which we leave
as an exercise to the reader.

6.2. The local theory. Let’s considerthe classical case first: suppose we have a map f : X n+1→
D where is an open unit disc in C, which is smooth outside 0 and such that X0 := f −1(0)
has a double point.

It turns out (but is not obvious) that X deformation retracts to X0, so we have an iso-
morphism

Hi (X0, C)'Hi (X , C).

On the other hand, if t denotes some generic non-zero point of D then we have a restric-
tion map

Hi (X0, C)'Hi (X , C)→Hi (X t , C).

The image consists of the “monodromy invariants” under the monodromy action of
π1(D∗, t )' Z on Hi (X t , C). Let T be a generator.
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Definition 6.1. We define the vanishing subspace to be Hn (X0, C)⊥ ⊂Hn (X t , C) under the
pairing induced by Poincaré duality.

♠♠♠ TONY: [drawing my picture here]
Facts:

• The vanishing cycles form a line generated by δ.
• T acts trivially on Hi (X t , C) for i 6= n .
• For x ∈Hn (X t , C), T acts by x 7→ x ± (x ,δ)δ.

Remark 6.2. The ± depends on n mod 4.

Example 6.3. Example: degeneration of elliptic curves.

It is straightforward to write down the algebro-geometric analogue. We replace D by
the spectrum of a (strictly henselian) DVR, with special point s and generic point η, so
have maps

Hi (Xs , Q`)'Hi (X , Q`)→Hi (Xη, Q`).

Now the possibilities are a little complicated. First they depend on whether n is odd or
even. Fortunately we’re only going to discuss the even case, so we can ignore that. It is
also possible that there is no vanishing cycle, i.e. δ = 0, which makes things easier (no
monodromy means everything is a local system). The interesting case is the one where

γ(x ) = x +(x ,δ)δ.

6.3. The global theory. We have a Lefschetz pencil

f : X →P1.

This is smooth outside a finite set S. We choose a baseopint u /∈S. For each s ∈S, we get
a vanishing cycle δs , an da loop γs such that for x ∈Hn (Xu := f −1(u ), Q`)

γs (x ) = x ± (x ,δs )δs .

Definition 6.4. We define the subspace of vanishing cycles E ⊂Hn (Xu ) to be the psan of
hte vanishing cycles.

Proposition 6.5. E⊥ is the monodromy invariants.

This obvious from the nature of the Picard-Lefschetz formula. Therefore, we rename
E = E/E⊥ and forget that E⊥ exists.

Theorem 6.6. The vanishing cycles δs are conjugate.

Proof. I honestly don’t understand Deligne’s argument. �

Corollary 6.7. The representation of π1(U , u ) on E is irreducible.

Proof. Note that γs x = x±(x ,δs )δs . Take some non-zero x ∈ F . Then (x ,δs ) 6= 0 for some
s , so

γs x −x =±(x ,δs )δs .

Therefore, δs ∈ F . But since the δs are all conjugate, they must then all lie in F . �

Theorem 6.8. The image of ρ : π1(U , u )→ Sp(E ) is open.
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Proof. The image is some compact `-adic Lie group. It suffices to show that its Lie alge-
bra L is open. Note that the L is generated by automorphisms of the form

d (x 7→ x ∓ (x ,δs )δs ) = x 7→ ±(x ,δs )δs .

In slightly more generality, we claim that if V is an irreducible representation of L which
is irreducible, and L is generated by endomorphisms of the form x 7→ψ(x ,δ)δ then L=
Sp(V,ψ).

To see this, we want to try to define a subrepresentation. Let W be the set ofδ ∈V such
that N (δ) := x 7→ (x ,δ)δ ∈ L . This has no evident linear structure. Well, it is obviously
closed under scaling. But what about addition?

Notice that since N (δ) has square 0, the automorphism exp(N (δ))makes sense. More-
over, this preservesψ and L if δ ∈W :

exp(λN (δ))δ′ exp(−λN (δ))

acts by

x 7→ (1+λN (δ))N (δ′)(1−λN (δ))x

=δ′+λN (δ)N (δ′)−λN (δ′)N (δ)+λ2ψ(x ,δ)ψ(δ,δ′)ψ(δ′,δ)δ.

But exp(λN (δ′))δ′′ = δ′′ +λψ(δ′′,δ′)δ′) ∈ W , so if ψ(δ′,δ′′) 6= 0 then one gets that the
subspace spanned by δ′ and δ′′ are in W .

This shows that W is the union of its maximal linear subspaces, which are pairwise
mutually orthogonal. Any such is stable under N (δ), by the above considerations. Since
it not 0, it must be everything.

�
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