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1. CORRELATION FUNCTIONS

There are two examples: “free boson” and “free fermion”.

We will explain these by writing down their correlation functions. Then we’ll talk about
how to extract a factorization algebra from the correlation function.

From this one can further extract an associated (“chiral”) Lie algebra, and representation.

Furthermore, there is a “boson-fermion correspondence” which maps from the boson sit-
uation to the fermion situation.

Finally, there is a story which as to do with determinants of line bundles. The factoriza-
tion algebras will come from factorizable line bundles, in the way Jacob described.

2. FREE BOSON

2.1. Partition function. A CFT is a way of attaching a number to a Riemann surface 3,
which is given by integrating over the space of maps ¥ — R. Let’s call it

Z(Z> N /LpEMaps(E,R)(. - )

Once we have this, we can try to weight it by observables: given z1,..., 2, € X, define a
correlation function

<§0(21), ey (p(zn» _ fMaps(E,R)Z(é;) e (p(zn)

Actually it’s better to put in derivatives, ¢ = Jp, because they are translation invariant.
1
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2.2. Correlation functions on P'. We take ¥ = P!, We have
1
(¢(21)0(22)) = ——=3
(21 — 22)?
and more generally
1
- o <,<Zz_zz’)

pairings ¢ <+ 1° %%

of {1,2,...,2n}
Physicists have a very useful notation

1

(z—y)*
The ~ means “up to functions that are regular as z — y — 0”. Also it means we can make
this substitution into any correlator function, e.g.

(Pp(wr) ... p(wn))
(x—y)?

So the ~ in (3.1) tracks the “singular part” of the correlation function, and miraculously

this contains all that you need to do computations in practice.

o(x)o(y) ~ (2.3)

(@(w1) ... p(wn)d(x)(y)) =

+ (regular as z — y)

Definition 2.1. We define B := C[z1,x,...]. Regard “x1 <> ¢, 22 > 0, 13 <> 0%¢.” So
for example 23wy > ¢%(99).

2.3. Observables. We will explain how each element b € B gives an observable. For us
“observable” means “something which has a meaning in a correlator”. Each, an observable
“b(z) at 2” means we assigned meaning to all expressions of the form

(¢(2)p(w1) ... p(wn))

which are interpreted as meromorphic functions in the w;, holomorphic away from w; =
2, W; = Wy.

Example 2.2. By (2.1) ¢ gives an observable, with (¢(z)¢(w)) = (Z_lw)Q.

We will explain how any expression in B can be interpreted as an observable.

Example 2.3. We explain how to interpret 0¢ as an observable. We try to set
(00(21)p(w1) - .. p(wn)) := 0:(d(2)p(w1) - .. P(wn)).

Let’s compute this (for P!). We sum over pairings, and we distinguish what 2 gets paired
with, say w;.

_9 —

(00()8(w1) .- dlwa)) =D 7 5(@(wr) ... S(ws) ... $(wn)).

- z—w;)

Going forward we will write (i) = (¢(wy). .. m ...¢(wy,)). Similarly abbreviate (ij) =
(B(wn) ... 5w . w3) .. Hwn), ete.
Similarly, 0¢, 0%¢, . .. are observables.

Remark 2.4. We can also think of 9¢(z1), 9¢(z2) as an observable at (z1, z2).
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Example 2.5. Next we would like to make sense of ¢? as an observable. Naively, we try
to define

<¢2(2)¢(w1) e B(wy)) = lei_>fgz<¢(21)¢(z2)¢(w1) o (wn))

We will try to regularize this. We will interpret this limit as the constant term of the Laurent
expansion in z; as z; — 2o. Note that this is not symmetric in z1, zo. This regularization
scheme is called “normal ordering”.

So we’ve decided to set

(@*(2)p(w1) ... p(wn)) = Lim (B(21)p(22)d(wr) ... d(wy))

Z1—>Z22

with limit understood in the above sense. When you expand this out, you get various terms.

One is .
m(@ﬁ(wl) o P(wn))

and this vanishes in our limiting sense, because there is no constant term in the Laurent
expansion.
The rest is a sum over ¢ and j (pairing z; with w; and ze with w;) of

(i)
Z (2’1 - w1)2(22 — w2)2 '

]

Now this is regular as z; — 22. So

(o) o) ~ 3 it 249

Example 2.6. Let’s try to define ¢(9¢)(0¢) as an observable. The convention that works
is to regularize according to the above scheme from right to left.

¢- | (09)(99)
———

regularize

Example 2.7. Let T = %¢2 be the “stress-energy tensor”.
We will write down the operator product expansion of T'(z1)¢(z2). We claim that

P(22) N 0p(22)

(21— 22)% (21— 22)

T(21)9(22) ~ (2.5)

We have to figure out
(T'(21)(z2)d(w1) . . . d(wn)).
According to (2.4]), to calculate the above we have to pair T'(z1) with two other variables in
{z2,w1,...,w,}. The terms where it is not paired with z5 are regular as z2 — 21, so we can
ignore them. In the other terms, it is paired zo and something w;. Such terms contribute

1 (i)
=) ; o= w0 + (regular as 21 — z2).

This is the same as
1

5 (0(z1)d(w1) . .. d(wy)) + (regular as 21 — 22).
(2’1 22)
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This says that T(z1)p(z2) ~ (z1) To get (2.5), we then rewrite this by expanding

(z1—22)2"
around zs.

Exercise 2.8. Compute that

(1)1 (22) ~ (211/2)4 4 (221T<z222>)2 + (flT(ZZ)'

3. FACTORIZATION ALGEBRAS ASSOCIATED TO CORRELATION FUNCTIONS

In our definition of factorization algebra, we need to give F; on A, F, on A2, F3 on A3,
etc. with the property that when you restrict away from diagonals they factorize, and when
you restrict to the diagonals there are isomorphisms between the F;.

To construct the factorization algebra associated to the free boson, we will take F; =
B ® Op1, F5 to be the subsheaf of F; X F; such that all correlations are regular, F3 the
subsheaf of F; X F; X F; such that all correlations are regular, etc.

This is not imposing any condition away from the diagonals. What about on the diago-
nals? Fix a small Uy C C. Take sections a1, as of 71 on Uy. From this we get a correlation
function (aj(z1)az(z2)d(w1)...¢(w,)). For a3 Kas to be in Fa, this should be regular as
21 — %2.

For any b1,by € B we have an OPE

bl(Zl)bQ(ZQ) ~ Z Ck(ZQ)(Zl — ZQ)k. (31)
kEZ
for some ¢ € B. This is equivalent to:

(1) LHS ~ RHS in any correlator.

(2) In a unital factorization algebra, bi(z1) K ba2(z2) is a meromorphic section of Fa
which agrees with the section Y, .5 cx(22)(21 — 22)* of O ® F; in a neighborhood
of the formal completion.

4. RELATION TO VERTEX ALGEBRAS

In the language of vertex algebras, (3.1) would say:
Y (b1, 2)by = chzk.

We have seen some OPEs. Let’s try to go further:

1
By definition, Ag(w) =: $2. (Our definition of $? w as as the constant term in the Laurent
expansion of ¢(z)p(w)).

The next term can be computed by differentiating with respect to z. So it’s another
tautology that A;(w) = (¢¢')(w). The next term would be %(w)(z —w)?. So the OPE

of 9(2)p(w) is

H2)00) = oz + 6 (w) + (60 (W) — ) + (e 0
The is equivalent to the identity in the vertex algebra incarnation:
Y(p,2)p =224 (¢*)2° + (¢¢')2" + @D 2 .

2
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Next let’s consider T'(z)¢(z). We have

p(w) d¢(w)
T =

The term T - ¢ is there by definition — we defined it to be the constant term in this OPE.
We emphasize that although T = %ng, T ¢ is not %¢3, because we chose a regularization

scheme that goes from right to left. In fact (T - ¢) = 3¢ + 3¢".

+(T-¢)+... (4.2)

5. PASSAGE TO LIE ALGEBRAS

A vertex algebra is some kind of map B — End(B)((z)). We will define a Lie algebra
homomorphism
Blz, z71]
" “derivatives”
Derivatives are what you think, e.g. D(¢?2%) = 2¢¢'2> + 39?23,
We will define the map (and explain the Lie algebra structure later). Let a ® 2™ €
Blz,z71] for a € B.

— End(B) (5.1)

Op(a® z™)b = /sz(a,z)b

where the integration is over a contour in C containing 0. More algebraically, this extracts
the residue of the OPE for z™a(z)b.

Example 5.1. Op(¢ ® 1)¢ is the residue of ¢(2)¢(0), at z = 0. Examine (4.1)) with w set
to 0 — the residue vanishes, so Op(¢ ® 1)¢ = 0.
Similarly, Op(¢ ® z)¢ = 1, Op(¢ ® z™)¢ = 0 for n > 1.

Example 5.2. We calculate Op(T)¢. Set w = 0 in (4.2) and taking the residue, it gives
Op(T)¢ = 0¢.

So Op is defined by “integrating the vertex operator”. We put the Lie algebra structure
on the LHS by
[a® 2™, b® 2"] = Res,—w (2" w"a(z)b(w)).
Calla,, =a®2z"™,b, =b® 2".

Example 5.3. Let E € LHS be the class of 1 ® z=1. We can check that Op(E) = Idg.
Then (¢, om] = Res,,,_,z(wmz"(z_lw)Q) = mz™*t"~1  This vanishes unless m + n = 0.
If m 4+ n = 0 then its mE. So our Lie algebra contains a bunch of commuting Heisenberg

algebras (¢, d—n, E).

How do the ¢,, act on B? Write B = C|xy, 2, ...] with z; <> 0'"1¢.

Up to normalization constants, ¢_,, goes to multiplication by x,,, ¢,, goes to %. So
the Heisenberg subalgebras are acting by their standard representations.

Let’s sketch why this is a Lie algebra homomorphism. We will compute [Op(a®z™), Op(b®
z™)]e. The composition Op(a ® z™), Op(b ® 2™) is computed by

/Z /w Y (a,2)z™Y (b, w)w"c

This is an integral over a w-contour contained in the z-contour. When you do it in the
other order, the contours of integration are switched — the z contour is inside the w-contour.
Fixing w, the difference of the z integrals picks up the residue at z = w.
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Example 5.4. Let L, := T ® 2" € B[z*!]/derivatives. The Lie bracket satisfies
n(n? —1)
12

Together with E, these generate the Virasoro algebra. It is a central extension of (2"9,)
(span of these vector fields on G,,). “T is a conformal vector”. The conformality is what
allows vertex algebras to be transferred to any Riemann surface.

[Lna Lm] = E5n+m,0 + (n - m)Lner

6. FREE FERMION

In the case of the free boson, we started with the “basic field” ¢ and we specified its
correlation functions.
Now we will have two fields ¢, 9*. We specify the correlation function

W)Y (@2) - V@)™ (@1) - ¥ (gm))
It is 0 if n # m. If n = m, it is given by
[Lic;(pi —pj)(@ — q;)
Hi,j(pi —qj) .

(W(p1) - ()Y (q1) .- Y (qn)) = (6.1)

eg W)Y () =1/(p—q)
Warning 6.1. if you swap ¥ (p1), ¥ (p;) the sign changes.

It’s convenient to extend the definition so that it’s anti-symmetric in all arguments. Then
more generally,

(¢ or ") (21)(¥ or ¢*)(x2) ... (¥ or ¢*)(x2n))
is 0 or [(x; — x;)%“ where ¢; € £1 tracking whether the argument is ¢ or ¢*.
Now we’re going to enlarge the algebra of observables in the same way. They will consist
of 1 and ¥*, O, 9*1), etc. We can try to make )2 or (1»*)2, but they turn out to be 0. But
1h* is a non-trivial observable. Let’s call it A.

Example 6.2. Let’s try computing (A(z)1 (w1 )* (ws)). How A(z) is standing for 1 (z1)1* (22).
The answer is the constant term of
i (71 — wi)(22 — ws)
im — .
21 —r22=2 (Zl — ’U}2>(21 — Zg)(’wl — wg)(wl — Zg)
Definition 6.3. Let B’ be the space of observables, which is the C-span of
(M) (0°29) .. (8% ) (D" p%) ... (8" )

where a1 > a9 > ...,a, and by < by < ... < by,.
Regard B’ as a Z/2-graded algebra with this expression having parity n +m. This gives
a (super?) factorization algebra.

Example 6.4. Consider (A(z)A(w)) = ﬁ This is the same as the answer for (¢(z)d(w))
in the bosonic case. This is an example of the Boson-Fermion correspondence. There’s a
map B — B’ carrying ¢ — A, preserving all correlations. It maps isomorphically onto the

subspace with m = n.

As before, we get a map of Lie superalgebras
B'[z,271]

End(B).
derivatives nd(B’)
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Example 6.5. Let ¢, =9 ® 2™ and ¢} =9 @ 2".

0 m+n=-1
EFE m+n=-1

["/er d];]+ = Res,—y (men

) = Res, (2™") = {

z—Ww
This looks like a bunch of Clifford algebras,

W}ma ¢T—m]+ =E.

Again, the representation on B’ looks like the tensor product of standard representations.

7. DETERMINANT BUNDLES

We want to explain how the correlation formulas

i —pi)lai —a5) _ 1
Mwi—a) (pi %’)ij

arises from determinants. This is parallel to the discussion of how factorization algebras
come from the determinant line bundle on the Beilinson-Drinfeld Grassmannian.

Let ¥ be a Riemann surface and L be a line bundle on ¥. We define [L] to be the deter-
minant of the cohomology of L, which is det H°(X, L) ® det H' (X, L)V. This construction
has nice properties.

e [L] defines a line bundle on Pic(X).
e [ has a factorization property: if s is a rational section of L, we get an isomorphism

[L]/[0] = ®pepiv(s) (fiber of local det bundle on Gr; at p).

Example 7.1. Consider L = O(>_p; — >_ ¢q;), for p;,q; distinct. This has a tautological
rational section. From this tautological section we get an isomorphism

O pi = X0)] o on [002)] _ [O(—a5)]
0] ‘@ o ¢ 0]

We compute the local terms as follows. We have a short exact sequence
0= 0(—¢;) >0 =0y —0 (7.1)

which exhibits a canonical trivialization of % Applying RHom(—,O) to (7.1) and
using Serre duality, we get a short exact sequence

0—0—=0()—K," =0 (7.2)

where K is the dual to canonical bundle, which exhibits an isomorphism % ~ Kp’il.
Now let K'/2 be an even spin structure. It has degree g — 1. On Pic?/"!(X), there’s a
distinguished section of [L]. Generically both H? and H'! are trivial. That gives a generic
section. The zero locus of this canonical section is the theta divisor.
Now we will construct the correlators from this. There’s a variant where you replace the
reference bundle [O] by [K1/?].

[K'2(Cpi =2 45)] 0 o K2 (00)] K2 (=ai)]
[K]i/z] ! :® [Kl/f} ® [K1/2]q :

i
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Now the right hand side is &) Kj:il/ ’® R K, /2 and we have a canonical section of this.
The inverse of this section gives a meromorphic section on ¥2" of K'/2X ... X K'/2, which
is

(W(p1) .- Y(pa)V™ (@) - ¥"(gn))
Example 7.2. In the previous example, wrote down a correlator function
IL,;(pi = pi)(ai — q5)
Hz’,j (pi — Qj)
Think of p; — p; as being xp,,yp, — 2p,yp, € '(O(1) K O(1)).
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