
THE SPECTRAL HECKE ALGEBRA

TONY FENG

Abstract. We introduce a derived enhancement of local Galois deformation rings that we call the
“spectral Hecke algebra”, in analogy to a construction in the Geometric Langlands program. This

is a Hecke algebra that acts on the spectral side of the Langlands correspondence, i.e. on moduli
spaces of Galois representations. We verify the simplest form of derived local-global compatibility

between the action of the spectral Hecke algebra on the derived Galois deformation ring of Galatius-

Venkatesh, and the action of Venkatesh’s derived Hecke algebra on the cohomology of arithmetic
groups.
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1. Introduction

1.1. Motivation. Venkatesh and collaborators have recently introduced a number of objects –
the local derived Hecke algebra, the global derived Hecke algebra, and the (global) derived Galois
deformation ring – in order to study algebraic structures in the cohomology of locally symmetric
spaces [Ven], [PV], [GV18]. However, it was suspected that there was a missing chapter in this story,
which should fill in the entry “???” in the table below.

Automorphic Galois
Local derived Hecke algebra ???
Global cohomology of locally symmetric space derived Galois deformation ring

The purpose of this paper is to suggest an answer, which we call the “spectral Hecke algebra”,
that fills in this lacuna. As the table suggests, the spectral Hecke algebra is an object that “acts” on
the derived Galois deformation functor of [GV18], in a manner parallel to the action of the (local)
derived Hecke algebra on the cohomology of locally symmetric spaces.

1.2. The idea of the construction. The spectral Hecke algebra takes it name and construction
from Geometric Langlands theory, which predicts a relation between the moduli stack of G-bundles

on a complex curve X, and the moduli stack of Ĝ-local systems on X. These are the analogues of the
“automorphic side” and “Galois side”, respectively, of the (arithmetic) Langlands correspondence,
which predicts a relation between automorphic representations of G and Galois representations into

Ĝ. A key aspect of this correspondence is the local-global compatibility, which in a minimalistic form
asks for “Hecke eigenvalues” of an automorphic representation to match the “Frobenius eigenvalues”
of the corresponding Galois representation.
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In Geometric Langlands one still has a notion of Hecke operators, but of course there is no
“Frobenius”, so how does one formulate local-global compatibility in that context? The answer is
that there is also a notion of “Hecke operator” on the moduli stack of local systems, coming from
an object called the “spectral Hecke stack” [AG15, §12.3]. Its definition can be phrased to appear
completely symmetric to that of the Hecke stack on the automorphic side.

• The automorphic Hecke stack, informally speaking, classifies
“Two G-bundles on a disk (around a point of the curve), together with an isomor-
phism of their restrictions to the punctured disk”.

• The spectral Hecke stack, informally speaking, classifies

“Two Ĝ-local systems on a disk (around a point of the curve), together with an
isomorphism of their restrictions to the punctured disk”.

Although these descriptions seem parallel, they are qualitatively quite different: the second de-
scription is highly redundant, because the isomorphism of the restrictions to the punctured disk must
automatically extend to the entire disk. Therefore, if one interprets the definition näıvely, it is just

the same information as that of a single Ĝ-local system (and no additional structure). However, if
one interprets the definition in a derived way, then the resulting derived enhancement admits an

interesting action on the moduli space of global Ĝ-local systems. The “local-global compatibility”
in the context of Geometric Langlands stipulates that this action should be compatible with the
action of the automorphic Hecke stack on the moduli stack of global G-bundles.

In the arithmetic context, the object analogous to the spectral Hecke stack should classify

“two π1(Zq)-representations, together with an isomorphism of their restrictions to
π1(Qq).”

Again it is clear that this is redundant when interpreted näıvely, but again we can interpret it in
a derived way, as follows. The space of π1(Zq)-representations can be viewed as a closed substack
of the space of π1(Qq)-representations, and we can form its derived self-intersection, which will be
a derived stack. The spectral Hecke algebra is obtained by performing this type of construction on
framed (so as to obtain something representable) Galois deformation rings.

1.3. What is done in this paper? The main objectives of this paper are to:

(1) Define the spectral Hecke algebra, and construct a co-action of it on the derived Galois
deformation ring from [GV18].

(2) Compare the co-action of the spectral Hecke algebra on the derived Galois deformation
ring with the action of the derived Hecke algebra on the cohomology of arithmetic groups,
which was studied in [Ven]. Informally speaking, our results show that these two actions
are “compatible” in a manner analogous to the formulation of local-global compatibility in
Geometric Langlands.

We now introduce some notation in order to state our findings more precisely.

1.3.1. The automorphic side. Let G be a split, semisimple, simply connected group over Q. We have
a system of locally symmetric spaces Y (K) for G, indexed by the level structure K ⊂ G(AQ). Let
TK be the Hecke algebra acting on H∗(Y (K); Zp), generated by Hecke operators at “good primes”.

We view H∗(Y (K); Zp), and more precisely the Hecke eigensystems it carries, as an incarnation

of “automorphic forms”. Let χ : TK → Q be a tempered character of TK , and m = kerχ. The
completion H∗(Y (K); Q)m is known to be supported in a band of degrees [j0, j0 + δ], where δ =
rankG(R)− rankK∞ and j0 is such that 2j0 + δ = dimY (K). (The integers j0 and δ are typically
called q0 and `0 in the literature, following [CG18].) Moreover, it enjoys the following suggestive
numerology:

dimQH
j0+j(Y (K); Q)m = k

(
δ

j

)
for some k > 0.
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After passing to a finite extension O/Zp containing the values of χ, we can consider the com-
pletion H∗(Y (K);O)m. Following [GV18] and [Ven], we restrict our attention to primes p where
the cohomology H∗(Y (K);O)m is particularly nice. In particular, we assume that there are “no
congruences at p” (which, in particular, implies k = 1), and that this cohomology is torsion-free; see
§6.1 for the details. Under these assumptions, we even have that H∗(Y (K);O)m is free over O, and
that

rankOH
j0+j(Y (K);O)m = k

(
δ

j

)
. (1.3.1)

Under these assumptions, Venkatesh shows in [Ven] that this spread of the eigensystem m in coho-
mological degrees can be accounted for by a derived Hecke action. More precisely, he studies (local)
derived Hecke algebras Hq indexed by certain (Taylor-Wiles) primes q, and shows that their action
on the lowest degree cohomology Hj0(Y (K);O)m⊗OΛ generates the entirety of H∗(Y (K);O)m⊗OΛ
for any finite quotient Λ of O. In this way he produces (see 6.1.2 for more detail) a “global derived

Hecke algebra” T̃m ⊂ EndO(H∗(Y (K);O)m) whose action on H∗(Y (K);O)m is free.

1.3.2. The Galois side. Conjecturally, the Hecke eigensystem m should correspond to a Galois rep-

resentation ρ : Gal(Q/Q) → Ĝ(O). This is now known in many cases; for us the most important
example (since it has δ > 0) is that of the Weil restriction of GLn from a CM field1, which is
established in [HLTT16] and [Sch15]. We assume the existence of ρ, following [GV18].

We impose niceness assumptions on the residual representation ρ, in particular that it has “big
image” and is Fontaine-Laffaille at p, and enjoys a strong form of local-global compatibility; see §6.2
for the details. Again, these conditions should conjecturally be true for all sufficiently large p. In
the case of the Weil restriction of GLn from a CM field, they are almost all known by [ACC+].

An idea going back to Mazur is to study the formal deformation functor of ρ, which is representable
by a “Galois deformation ring” RS [Maz89]. The Taylor-Wiles method, which is at the heart of
all work on modularity, centers around the relationship between the Hecke algebra (TK)m and
RS . However, for general groups (e.g. whenever δ > 0) these rings are not “big enough” to run
the Taylor-Wiles method. Calegari-Geraghty proposed a derived enhancement of the Taylor-Wiles
method in order to overcome this difficulty [CG18].

In [GV18], Galatius-Venkatesh re-interpreted the Calegari-Geraghty method in terms of a derived
Galois deformation ring RS . This is a simplicial commutative ring, whose set of connected compo-
nents recovers RS . In general, given a simplicial commutative ring R one can form its homotopy
groups π∗(R), which have the structure of a graded algebra. Galatius-Venkatesh show, under the
assumptions mentioned above, that π∗(RS) is an exterior algebra on a free O-module of rank δ, and
construct an action of π∗(RS) on H∗(Y (K);O)m, which realizes the latter as a free module of rank
one over π∗(RS), on any generator in degree j0. This gives an “explanation” for the numerology
(1.3.1).

Note that π∗(RS) is homologically graded. Letting π∗(RS)∗ denote its O-dual, under the running
assumptions, [Ven, Proposition 8.6] and [GV18, eqn. (15.4)] give a canonical isomorphism of O-
modules,

π∗(RS)
∼−→ T̃m (1.3.2)

1.3.3. Summary of results. We say that a “good” prime q is a Taylor-Wiles prime for ρ if q ≡ 1
(mod p), and the image of Frobq under the residual representation ρ is strongly regular2. In this
paper we define for each Taylor-Wiles prime q a spectral Hecke algebra SHk

q , which is a simplicial
commutative ring that serves as a spectral counterpart to the derived Hecke algebras Hq. (We could
also define spectral Hecke algebras at non-Taylor-Wiles primes, but they are not relevant for our
global applications, just as the derived Hecke algebras at non-Taylor-Wiles primes are not relevant
in [Ven].)

1Admittedly, this doesn’t satisfy our semisimplicity and splitness assumptions.
2This omits the Selmer condition that is sometimes also included in the condition of being a ”Taylor-Wiles prime”.
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We construct a co-algebra structure on SHk
q . This co-algebra structure does not descend to

homotopy groups. (An analogous phenomenon is familiar in homology theory, where coproducts on
chains may not descend to coproducts on cohomology because “the Künneth theorem points the
wrong way”.) However, it does descend after tensoring with a ring Λ in which q ≡ 1. For such Λ we

get a coproduct on π∗(SHk
q

L
⊗O Λ), and then an algebra structure on the dualized (over Λ) homotopy

groups π∗(SHk
q

L
⊗O Λ)∗, since these homotopy groups are free over Λ.

We construct an isomorphism between this graded algebra and the local derived Hecke algebra
(in the sense of [Ven]) with coefficients in Λ, denoted Hq(Λ):

π∗(SHk
q

L
⊗O Λ)∗

∼−→ Hq(Λ). (1.3.3)

This is an arithmetic analogue of (a Koszul dual form of) the derived Geometric Satake equivalence
conjectured by Drinfeld, and proved by Bezrukavnikov-Finkelberg [BF08].

We also construct a natural co-action of SHk
q on the derived Galois deformation ring RS . Again,

this descends to homotopy groups after tensoring with Λ, and this leads to an algebra action of the

Λ-dualized homotopy groups π∗(SHk
q

L
⊗O Λ)∗ on the Λ-dualized homotopy groups π∗(RS

L
⊗O Λ)∗.

Now fix Λ a finite quotient of O. We show (Theorem 6.3) that for all q which are congruent
to 1 modulo a sufficiently high power of p (depending on Λ)3, this action is intertwined with the

action of Hq(Λ) on T̃m ⊗O Λ (via the homomorphism from local to global Hecke algebra) via the
identifications (1.3.3) and (1.3.2).

π∗(SHk
q

L
⊗O Λ)∗ Hq(Λ)

x x

π∗(RS
L
⊗O Λ)∗ T̃m ⊗O Λ

∼
(1.3.3)

∼
(1.3.2)

We call this property “derived local-global compatibility”; it bears a striking analogy to the strong
Hecke compatibility in the Geometric Langlands Conjecture [Gai15, §4.7.4].

Remark 1.1. The usual local-global compatibility at unramified places is essentially equivalent

to saying that actions of the “underived (i.e. degree 0) parts” π0(SHk
q

L
⊗O Λ)∗

∼−→ Hq(Λ)0 are
intertwined. Of course, we are assuming this to begin with, and our Theorem really amounts to the
assertion that the action of the “derived parts” then also match.

1.4. Guide to the paper. In §2 we summarize relevant aspects of Geometric Langlands theory.
This is mainly for motivational purposes, and is logically independent of the paper. The reader may
certainly skip it, but for our part we find the analogy with Geometric Langlands quite enlightening,
and it was a helpful guide for developing this paper.

In §3 we define the spectral Hecke algebra SHk
q , and study some of its basic invariants: homotopy

groups, cotangent complex, and André-Quillen (co)homology.
In §4 we construct the co-algebra structure on SHk

q , and the co-action on the derived deformation
ring of [GV18]. It is somewhat curious that we arrive at co-algebras and co-actions; §4.1 discusses
some (very loose) philosophical reasons why this happens in terms of the analogy to Geometric
Langlands.

In §5 we compare SHk
q to the local derived Hecke algebra studied in [Ven]. This allows us to

formulate “derived local-global compatibility”, whose statement and proof occupy §6.

3This restriction comes from a similar such assumption in the statement of Venkatesh’s Reciprocity Law [Ven,

Theorem 8.5]. We expect both statements to be true without it.
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2. The spectral Hecke stack in Geometric Langlands

In this section we briefly explain the role of the spectral Hecke stack in Geometric Langlands,
summarizing parts of [Gai15, §4], [AG15, §12]. This is purely for motivational purposes, and has no
logical impact on any of the later sections, so we keep our discussion informal.

2.1. The Geometric Langlands Conjecture. Let X be a smooth, connected, projective curve
over C and G be a reductive group over C. Associated to X we have BunG, the moduli stack of

G-bundles on X, and LocSysĜ, the moduli stack of Ĝ-local systems on X.
The Geometric Langlands Conjecture, as formulated in [AG15, Conjecture 1.1.6], predicts an

equivalence of categories:

LG : IndCohNilp(LocSysĜ)
∼−→ Dmod(BunG). (2.1.1)

Furthermore, it demands that this equivalence satisfies certain compatibility properties. The one
which is relevant to this paper is the categorical analogue of the requirement that “Hecke eigenvalues
= Frobenius eigenvalues” in the classical Langlands correspondence. (Note that the conjecture
(2.1.1) corresponds to “everywhere unramified” representations, so this is the only form of local-
global compatibility needed.)

2.2. Automorphic Hecke stack. We first explain the Hecke stack on the automorphic side. Let
x ∈ X(C), Ox be the completed local ring of X at x, and Fx be its fraction field. We denote by
Dx := Spec Ox the “disk around x”, and D∗x := Spec Fx the “punctured disk around x”.

The local Hecke stack (at x) parametrizes “two G-bundles on Dx, together with an isomorphism
of their restrictions to D∗x”. Any G-bundle on Dx is trivial, and after choosing trivializations such
an isomorphism is given by an element of G(Fx). Hence it admits the presentation

Hk(G, aut)loc
x := L +G\LG/L +G,

where L +G is the arc space of G (a pro-algebraic group over C whose C-points are G(Ox)), and LG
is the loop group of G (a group ind-scheme whose C-points are G(Fx)). The quotient is understood
as a prestack, but what really matters is its category of sheaves, which can be understood more
classically in terms of the presentation Dmod(Hk(G, aut)loc

x ) = DmodG(O)(GrG).

We denote a point of Hk(G, aut)loc(S) by (E 99K E ′), where E and E ′ are G-bundles on “the disk
around x” (in the sense of S-points). We have a diagram

Hk(G, aut)loc
x

BunG,Dx BunG,Dx

h← h→

where h←(E , E ′, E|D∗x 99K E
′|D∗x) = E and h→(E , E ′, E|D∗x 99K E

′|D∗x) = E ′.
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Restriction of bundles induces a map BunG → BunG,Dx for any x, and by the Beauville-Laszlo(-
Drinfeld-Simpson) Theorem [DS95] both squares in the commutative diagram below are cartesian.

Hk(G, aut)glob
x

BunG BunG

Hk(G, aut)loc
x

BunG,Dx BunG,Dx

h← h→

h← h→

This induces an action of Dmod(Hk(G, aut)glob
x ) on Dmod(BunG), by convolution: K ∈ Dmod(Hk(G, aut)glob

x )
acts on F ∈ Dmod(BunG) as

F 7→ h←∗ (K
!
⊗ (h→)!F).

Composing this action with the pullback Dmod(Hk(G, aut)loc
x ) → Dmod(Hk(G, aut)glob

x ) induces
an action of Dmod(Hk(G, aut)loc

x ) on D(BunG), which is the analogue the action of classical Hecke
operators at a place x on the space of automorphic functions.

Remark 2.1. We can assemble the Hk(Ĝ, aut)loc
x -action, for varying x, into an action of Hk(Ĝ, aut)loc

Ran(X)

where the Ran space Ran(X) parametrizes finite subsets of X (see [Gai15, §4] for a concise dis-
cussion of this formalism). This is the analogue of assembling the local spherical Hecke algebras
H(G(Zp)\G(Qp)/G(Zp)), as p varies, into the adelic Hecke algebra.

2.3. Spectral Hecke stack. We now formulate the analogue of Hk(G, aut)loc
x , and its action, on

the spectral side. Informally, this should parametrize “two Ĝ-local systems on a Dx, together with
an isomorphism of their restrictions D∗x”, meaning the fibered product of the diagram

LocSysĜ,Dx

LocSysĜ,Dx LocSysĜ,D∗x

where LocSysĜ,Dx is the space of Ĝ-local systems on Dx, and LocSysĜ,D∗x
is the space of Ĝ-local

systems on D∗x. Let’s unwind what these objects are explicitly.

• A Ĝ-local system on Dx is equivalent to the datum of a Ĝ-torsor on x, which is necessarily

trivial with automorphism group Ĝ. Hence the space of such is LocSysĜ,Dx = BĜ := [pt/Ĝ].

• The formal neighborhood of the trivial local system in LocSysĜ,D∗x
is g/(Ĝ,Ad). This is easy

to see for Betti local systems (representations of π1), although our discussion has really been

for de Rham local systems (vector bundles with connection). In the Betti case, a Ĝ-local

system on D∗x is specified by the monodromy, which is an element of Ĝ up to conjugation,

and the formal neighborhood of the identity is isomorphic to g/(Ĝ,Ad) by the logarithm;
the formal neighborhood of the trivial local system happens to be the same in the de Rham
case.

Since a Ĝ-local system on D∗x coming by restriction from one on Dx is necessarily trivial, the map
LocSysĜ,Dx → LocSysĜ,D∗x

sends pt to 0 ∈ ĝ. Clearly this fibered product is only interesting if we

form it in a derived way. We define the local spectral Hecke stack Hk(Ĝ, spec)loc
x to be the derived
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fibered product

Hk(Ĝ, spec)loc
x BĜ

BĜ ĝ/(Ĝ,Ad)

h→

h←

2.3.1. Categories of sheaves. We are interested in certain categories of sheaves on Hk(Ĝ, spec)loc
x .

As was pointed out in [AG15], the singularities of LocSysĜ create some delicate issues in defining

suitable categories of sheaves. The “correct” category to work with is IndCohNilp(Hk(Ĝ, spec)loc
x ),

which contains QCoh(Hk(Ĝ, spec)loc
x ) as the full subcategory consisting of sheaves with 0 singular

support. The nilpotent singular support has some connection with Arthur parameters, and it would
be interesting to precisely understand the arithmetic analogue of this distinction. However we will
eventually restrict our attention to tempered automorphic representations, and conjecturally the
difference between these categories is invisible when acting on the “tempered parts” of (2.1.1), so
we don’t expect this subtlety to be meaningful for the purposes of this paper.

2.3.2. Monoidal structure. In general, a space of the form X ×V X has the structure of a groupoid
over X , with the composition map

(X ×V X )×X (X ×V X )

given by “(x1, x2), (x2, x3) 7→ (x1, x3)” (cf. §4 for more explanation). Applied to Hk(Ĝ, spec)loc,

we get a monoidal structure on IndCoh(Hk(Ĝ, spec)loc
x ), where we use !-pullback and ∗-pushforward

(which preserves IndCohNilp and QCoh). With this structure, the functor

Rep(Ĝ) = QCoh(BĜ)→ IndCoh(Hk(Ĝ, spec)loc
x ),

given by pushforward across the diagonal map pt /Ĝ→ Hk(Ĝ, spec)loc
x , is monoidal (with respect to

the usual tensor product on Rep(Ĝ)).

2.4. Spectral Hecke action on local systems. There is a map LocSysĜ → LocSysĜ,Dx given by

restriction of local systems, and by [AG15, eqn. (10.13)] we have a presentation of LocSysĜ as the
derived fibered product

LocSysĜ LocSysR.S.,x

Ĝ

BĜ ĝ/Ĝ

where LocSysR.S.,x

Ĝ
is the moduli stack of “local systems with (at most) a simple pole at x”. (The

arithmetic analogue of this cartesian square appears in (4.4.2).)
As explained in [AG15, eqn. (12.11)], this induces a commutative diagram with all squares

cartesian

Hk(Ĝ, spec)glob
x

LocSysĜ LocSysĜ

Hk(Ĝ, spec)loc
x

LocSysĜ,Dx LocSysĜ,Dx

h← h→

h← h→
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Hence one has an action of IndCohNilp(Hk(Ĝ, spec))glob
x on IndCohNilp(LocSysĜ) by convolution:

K ∈ IndCohNilp(Hk(Ĝ, spec)glob
x ) acts on F ∈ IndCohNilp(LocSysĜ) as

F 7→ h←∗ (K
!
⊗ (h→)!F).

This induces an action of IndCohNilp(Hk(Ĝ, spec)loc
x ) by composing with the pullback

IndCohNilp(Hk(Ĝ, spec)loc
x )→ IndCohNilp(Hk(Ĝ, spec)glob

x ).

Remark 2.2. Parallel to Remark 2.1, we can assemble the action of Hk(Ĝ, spec)loc
x into an action

of Hk(Ĝ, spec)loc
Ran(X) on IndCohNilp(LocSysĜ).

2.5. Local-global compatibility. The derived Geometric Satake equivalence of Ginzburg and
Bezrukavnikov-Finkelberg [BF08] induces by Koszul duality a monoidal equivalence [AG15, §12.1.1]

Sat : IndCohNilp(Hk(Ĝ, spec)loc
x )

∼−→ Dmod(Hk(G, aut)loc
x ).

The “Hecke compatibility” aspect of the Geometric Langlands Conjecture demands that the
equivalence LG from (2.1.1) intertwines the automorphic and spectral Hecke actions through the
Satake functor [AG15, Conjecture 12.7.6]:

IndCohNilp(Hk(Ĝ, spec)loc
Ran(X)) Dmod(Hk(G, aut)loc

Ran(X))

x x

IndCohNilp(LocSysĜ) Dmod(BunG)

Sat
∼

LG
∼

3. The spectral Hecke algebra in arithmetic

We now introduce an arithmetic analogue of the spectral Hecke stack.

3.1. Motivation. The arithmetic version of Dx should be Spec Zq and the arithmetic version of
D∗x should be Spec Qq. So in the arithmetic case, we roughly propose to replace

LocSysĜ,Dx  LocSysĜ,Zq ,

LocSysĜ,D∗x
 LocSysĜ,Qq

.

Here LocSysĜ,Zq should be a moduli space of representation of π1(Spec Zq), and LocSysĜ,Qq
should

be a moduli space of representations of π1(Spec Qq) ∼= Gal(Qq/Qq).
We would then be interested in the derived fibered product

Hk(Ĝ, spec)q := LocSysĜ,Zq ×LocSysĜ,Qq
LocSysĜ,Zq .

This is roughly the object that we will study, but some technical issues need to be addressed. One is
the definition of the spaces “LocSysĜ,Qq

” and “LocSysĜ,Zq”, for which candidates are constructed

[Zhu, §3], which lead to a good candidate for a spectral Hecke algebra, as in [Zhu, Conjecture 4.2.1].
Our approach will be different. Firstly, the functors LocSysĜ,Zq and LocSysĜ,Qq

are not repre-

sentable in general, so we need to introduce framings in order to work with rings. For our present
applications to studying the action on deformation spaces of global Galois representations, we need
to complete at a given residual representation. Hence for our present purposes we work instead with
formal deformation rings.

3.2. Definition of the spectral Hecke algebra.
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3.2.1. Some notation. Following the notation in [GV18, §7.4], let q be a prime (the notation reflects
that it will eventually be a “Taylor-Wiles prime”).

Let k be a finite field of characteristic p 6= q and O = W (k). Let Ĝ be an algebraic group

over O and ρ be a representation of π1(Zq) into Ĝ(k), which we view by inflation as an unramified

representation of Gal(Qq/Qq).
We let FZq,ρ be the (derived) deformation functor of ρ, i.e. the functor parametrized unramified

GQq
-deformations of ρ, from [GV18, §7.4]. (See §4.3 for a brief discussion of how to define this.)

We let FQq,ρ denote the deformation functor of ρ as a GQq
-deformation (here, the deformations

are allowed to become ramified). These are functors from simplicial commutative rings to simplicial
sets; they are certainly not representable in general.

3.2.2. Taylor-Wiles primes. We now assume that q is a Taylor-Wiles prime for ρ in the sense of
[GV18, §6.7], i.e.

• ρ is unramified at q,
• q ≡ 1 ∈ k,

• ρ(Frobq) is conjugate to a strongly regular element of T̂ (k).

(We do not impose the Selmer condition that is often associated with the phrase “Taylor-Wiles
prime”.) This implies that ρ admits a lift

π1(Zq) T̂ (k)

Ĝ(k)

ρT̂

ρ

which is determined by FrobT̂q := ρ(Frobq)
T̂ ∈ T̂ (k). Abusing notation, we regard this choice of lift

as part of the datum of a Taylor-Wiles prime. (Later, the comparison to the derived Hecke algebra
shows that the action is independent of this choice in the only reasonable sense.)

3.2.3. Framed deformation rings. Let q be a Taylor-Wiles prime for ρ; henceforth we suppress ρ from

the notation. Following the notation of [GV18, §7.4], let F T̂ ,�Zq,ρ
and F T̂ ,�Qq,ρ

, denote the unramified and

full framed deformation functors into T̂ , respectively. (This depend on the choice of lift ρ(Frobq) ∈
T̂ (k), which is suppressed in our notation.) These are pro-representable by pro-rings Sur

q and Sq,
respectively. One can think of these as being the usual (non-derived) framed deformation rings, as
follows.

Recall that we say a pro-ring R is homotopy discrete if R → π0(R) induces a weak equivalence of
the induced pro-represented functors [GV18, Definition 7.4]. By [GV18, Lemma 8.6], the rings Sur

q

and Sq are homotopy discrete. For our purposes, this means that one can simply regard them as
discrete (i.e. non-simplicial) pro-rings, and by forming inverse limits as complete local Noetherian
rings [GV18, Lemma 7.2]. These complete local Noetherian rings then pro-represent the usual
classical framed deformation functors.

Definition 3.1. The spectral Hecke algebra (at q, completed at ρ) is

SHk
q := Sur

q ⊗SqS
ur
q

where the tensor product is the “derived tensor product”, regarded as a simplicial commutative ring
(meaning the tensor product of Sur

q with a cofibrant replacement of Sur
q as a Sq-algebra).

The corresponding functor pro-represented by SHk
q will be denoted Hk(Ĝ, spec)loc

q . (The somewhat
“ad hoc” use of framings in this definition is eventually justified by §4.4).)

Remark 3.2. In the usual category of commutative rings, constructions such as tensor products
are unique up to unique isomorphism. This will never be the case for constructions we consider
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in the category of simplicial commutative rings; instead we get constructions that are, informally
speaking, “unique up to a contractible space of isomorphisms”. One way to express this is to say
“unique up to unique isomorphism in the homotopy category”, but this is not very good. In [GV18],
authors choose to work with the notion of “naturally weakly equivalent”, which means that the two
functors are related by a finite “zig-zag” of natural weak equivalences [GV18, Definition 2.10]. The
language of ∞-categories could probably provide a cleaner solution.

These expository issues do not affect any calculation at the level of homotopy groups, (co)tangent
complexes, André-Quillen (co)homology, etc. Our “official” policy is to follow the convention of

[GV18]. For two simplicial commutative rings R,S we write R ≈ S or R
∼−→ S to indicate a weak

equivalence between R and S in the usual model structure on simplicial commutative rings.

Remark 3.3. One can make a more general definition of a spectral Hecke algebra at primes q 6= p
which are not of Taylor-Wiles type, by simply considering the framed deformation functor for G.
Among the primes q different from p, we expect the resulting object to be most interesting when q
is Taylor-Wiles, analogously to what happens for the local derived Hecke algebra in [Ven]. However,
when q = p there should be a much richer story, and we have little idea what to expect. The
analogous derived Hecke algebra has been investigated by Ronchetti [Ron].

3.3. Explication in the Taylor-Wiles case. Let Sq = π0(Sq) and Sur
q = π0(Sur

q ). It is also
convenient to introduce the notation S◦q be the (underived) framed deformation ring for the trivial

representation Iq → T , where Iq ≈ (Z/q)× is the tame inertial subgroup of Gal(Qq/Qq)
ab.

For a finitely generated abelian group Γ, let Γ(p) denote the quotient of Γ by all of its prime-to-p
torsion. Following the notation of [GV18, Remark 8.7], we write T (Qq)

ur := T (Qq)/T (Zq) and
T (Qq)

tame for the profinite completion of T (Qq)/ ker(T (Zq) → T (Fq)). The usual computation of
the deformation space at a Taylor-Wiles prime [GV18, Remark 8.7] shows that

Sur
q = completed group algebra of T (Qq)

ur
(p),

S◦q = completed group algebra of T (Fq)(p),

Sq = completed group algebra of T (Qq)
tame
(p) .

We can write this explicitly in coordinates if we choose an isomorphism T ≈ Gr
m. Let pN be the

highest power of p dividing q − 1, so

T (Qq)
ur
(p) ≈ Ẑr,

T (Fq)(p) ≈ (Z/pNZ)r,

T (Qq)
tame
(p) ≈ Ẑr × (Z/pNZ)r.

Then we have

Sur
q ≈ O[[X1, . . . , Xr]],

S◦q ≈ O[[Y1, . . . , Yr]]〈(1 + Yi)
pN − 1〉 ∼←− O[Y1, . . . , Yr]〈(1 + Yi)

pN − 1〉,

Sq ≈ O[[X1, . . . , Xr]][Y1, . . . , Yr]/〈(1 + Yi)
pN − 1〉.

Since Sq and Sur
q are already homotopy discrete, we can calculate “the” derived tensor product

using Sur
q and Sq:

Sur
q

L
⊗Sq Sur

q
∼−→ Sur

q

L
⊗Sq Sur

q
∼= Sur

q

L
⊗O (O

L
⊗O[T (Fq)(p)] O),

where the last isomorphism follows from the fact that Sur
q is already free over O. Hence we find

SHk
q ≈ Sur

q ⊗O (O
L
⊗O[T (Fq)(p)] O). (3.3.1)
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Denote Tq := T (Fq)(p). The underlying simplicial Λ-module of Λ
L
⊗Λ[Tq ] Λ is exactly what is used

to compute to compute the group homology of Tq:

TorΛ[Tq ]
∗ (Λ,Λ) = H∗(Tq; Λ).

Hence (3.3.1) implies:

Corollary 3.4. We have

π∗(S
Hk
q

L
⊗O Λ) ∼= Sur

q ⊗O H∗(Tq; Λ).

3.4. The tangent complex. Let Λ a coefficient ring of the form O/pm for some m ≥ 1. Suppose
we are given an unramified deformation

ρΛ : π1(Zq)→ Ĝ(Λ).

We may then consider the deformation functors FZq,ρΛ
and FQq,ρΛ

of ρΛ on Λ-augmented Artinian
rings.

For any functor F on Λ-augmented Λ-rings, equipped with a given 0-simplex of F(Λ), we may
consider the tangent complex tF in the sense of [GV18, Proof of Lemma 15.1]. This has homotopy
groups ti(F) := π−i(tF) being the homotopy classes of maps F(Λ ⊕ Λ[i]) lying over the given
0-simplex of F(Λ).

Remark 3.5. Note that by the strong regularity assumption on ρ(Frobq), our initial choice of lift

ρT̂ (Frobq) ∈ T̂ (k) induces a lifting

π1(Zq) T̂ (Λ)

Ĝ(Λ)

ρT̂Λ

ρΛ

That is, we automatically get a lift ρT̂Λ(Frobq) ∈ T̂ (Λ), without making any additional auxiliary
choices.

3.4.1. A fibration sequence. Our fixed representation ρΛ gives a basepoint

Spec Λ
pt−→ FZq,ρΛ

→ FQq,ρΛ
.

Let Fibq,Λ denote the homotopy fiber of the map FZq,ρΛ
→ FQq,ρΛ

over pt:

Fibq,Λ = Spec Λ×hFQq ,ρΛ
FZq,ρΛ

.

Remark 3.6. The lift ρT̂Λ(Frobq) ∈ T̂ (Λ) induces, as in [GV18, eqn. (8.2)], a cartesian diagram
with compatible basepoints:

FZq,ρΛ
F T̂ ,�Zq,ρΛ

FQq,ρΛ
F T̂ ,�Qq,ρΛ

giving a natural weak equivalence

Fibq,Λ
∼−→ Spec Λ

h
×
F T̂ ,�Qq,ρΛ

F T̂ ,�Zq,ρΛ
. (3.4.1)
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3.4.2. Then tangent complex preserves homotopy pullbacks [GV18, Lemma 4.30(iv)], giving us the
long exact sequence of André-Quillen cohomology with coefficients in Λ:

. . .→ t0(Fibq,Λ)→ t0(FZq,ρΛ
)→ t0(FQq,ρΛ

)

→ t1(Fibq,Λ)→ t1(FZq,ρΛ
)→ t1(FQq,ρΛ

)

→ t2(Fibq,Λ)→ t2(FZq,ρΛ)→ t2(FQq,ρΛ)→ . . .

As in [GV18, Example 5.6] and [GV18, Lemma 15.1], we have

ti(FZq,ρΛ
) = Hi+1(Zq; Ad ρΛ),

ti(FQq,ρΛ
) = Hi+1(Qq; Ad ρΛ).

Splicing this in above, we get

. . .→ t0(Fibq,Λ)→ H1(Zq; Ad ρΛ)→ H1(Qq; Ad ρΛ)

→ t1(Fibq,Λ)→ H2(Zq; Ad ρΛ)︸ ︷︷ ︸
=0

→ H2(Qq; Ad ρΛ)

→ t2(Fibq,Λ)→ 0→ 0→ . . .

3.4.3. Calculation of t0(Fibq,Λ). Since H1(Zq; Ad ρΛ) ↪→ H1(Qq; Ad ρΛ), we find that t0(Fibq,Λ) =
0.

3.4.4. Calculation of t1(Fibq,Λ). The long exact sequence gives an isomorphism

t1(Fibq,Λ)
∼−→ H1(Qq; Ad ρΛ)/H1(Zq; Ad ρΛ). (3.4.2)

This is the “ramified part” of the deformation space for ρ. The fact that ρ is unramified forces any
such deformations to be tamely ramified. Then [GV18, Lemma 8.3] shows that the deformation

functor into Ĝ is weakly equivalent to the deformation functor into T̂ , and in particular:

H1(Qq; Ad ρΛ)

H1(Zq; Ad ρΛ)
∼=
H1(Qq; Lie(T̂ )⊗ Λ)

H1(Zq; Lie(T̂ )⊗ Λ)
∼= Hom(Iq,Lie(T̂ )⊗ Λ),

where Iq is the tame inertial subgroup of Gal(Qp/Qp)
ab. As Lie(T̂ ) = X∗(T̂ )⊗O, we have by class

field theory

Hom(Iq,Lie(T̂ )⊗O Λ) ∼= Hom(F×q , X∗(T̂ )⊗O Λ)

∼= Hom(F×q ⊗X∗(T ),Λ) ∼= Hom(Tq,Λ).

Hence we conclude that
t1(Fibq,Λ) ∼= H1(Tq; Λ) ∼= H1(Tq; Λ)∗,

where H1(Tq; Λ)∗ := HomΛ(H1(Tq; Λ),Λ).

3.4.5. Calculation of t2(Fibq,Λ). The long exact sequence immediately shows that t2(Fibq,Λ) ∼=
H2(Qq; Ad ρΛ), but we want to write this in another way. Again by [GV18, Lemma 8.3], the
map

H2(Qq; Lie(T̂ )⊗ Λ)→ H2(Qq; Lie(Ĝ)⊗ Λ)

is an isomorphism. By Tate local duality,

H2(Qq; Lie(T̂ )⊗ Λ) ∼= H0(Qq; (Lie(T̂ )⊗ Λ)∗(1))∗

where ∗ denotes the Pontrjagin dual (i.e. dual over Λ, in our situation) and (1) denotes the Tate
twist. Let pm be the smallest power of p which is is 0 in Λ; our assumption implies q ≡ 1 (mod pm).
Now, we have canonical identifications

(Lie(T̂ )⊗O Λ)∗(1)
∼−→ X∗(T̂ )Λ ⊗Z/pmZ µpm

= X∗(T )⊗O Λ⊗Z/pmZ µpm
∼−→ T (Fq)[p

m]⊗Z/pmZ Λ.
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Hence we have constructed an isomorphism

H2(Qq; Lie(T̂ )⊗O Λ) ∼= Hom(T (Fq)[p
m],Λ) ∼= H2(Tq; Λ)∗prim (3.4.3)

where H2(Tq; Λ)prim is the subspace of primitives elements in H2(Tq; Λ) with respect to the co-
product on H∗(Tq,Λ) dual to the cup product on H∗(Tq; Λ). In other words, H2(Tq; Λ)prim is dual

to the indecomposable quotient of H2(Tq; Λ). Non-canonically, if we choose Tq
∼−→ (F×q )r, then

H2(Tq; Λ)prim
∼−→ H2(F×q ; Λ)⊕r.

4. Co-action on the global derived Galois deformation ring

4.1. Analogies and metaphors. The “categorical trace of Frobenius” formalism [Gai15], [GKRV]
can be used to turn categorical statements into function-theoretic statements in a systematic way.
The Galois deformation ring looks like the categorical trace of Frobenius on (the category of quasi-
coherent sheaves on) the formal completion of LocSysĜ at a point, and our spectral Hecke algebra
looks like the trace of Frobenius on (the category of quasicoherent sheaves on) the formal comple-

tion of Hk(Ĝ, spec)loc
x at the corresponding point. Therefore, trying to take the categorical trace of

Frobenius of the action in §2.4 would lead one to expect an action of the spectral Hecke algebra on
the global Galois deformation ring.

Note however that by the discussion of §2.4, the algebra structure for this action should not be for
the multiplication of functions, which would be the trace of the monoidal structure given by tensor

product on QCoh(Hk(Ĝ, spec)loc
x ). In the context of the analogy between QCoh and functions, there

is also a loose analogy between IndCoh and “measures” [GR17, Preface §1.3], which suggests that
we should instead be considering a ring structure that comes from a “convolution of measures” with
respect to the map

Hk(Ĝ, spec)loc
q ×LocSysĜ,Zq

Hk(Ĝ, spec)loc
q → Hk(Ĝ, spec)loc

q . (4.1.1)

We don’t see how to make sense of this formally, so we change the game: the diagram (4.1.1) induces a
co-algebra structure on rings of functions via pullback, which would be dual to a convolution product
on measures if that actually existed. Therefore, we will define a co-action of the spectral Hecke
algebra on the global derived deformation ring. Then the local-global compatibility of §2.5 suggests
that this action should look dual to the action of the derived Hecke algebra on the cohomology of
arithmetic groups.

This seems to be justified by the global picture: [GV18, §15] explains that (under favorable
assumptions) the global derived Galois deformation ring and the global derived Hecke algebra are
dual, and act in a dual manner on the cohomology of arithmetic groups. In some sense our results
give a local “explanation” for the appearance of this duality.

4.2. Groupoids arising from Hecke-type constructions. In the hope of putting the forthcom-
ing constructions in a broader context, we begin with a brief discussion of the underlying “pattern”
of groupoids and groupoid actions arising from Hecke-type constructions. This subsection is some-
what motivational, and can safely be skipped. The point of presenting it is to clarify the relevant
structure in an idealized situation, whereas we will later be studying a more homotopy-theoretic
situation where the discussion would be muddled by concerns related to homotopy coherence.

4.2.1. Groupoid actions. We recall the formalism of groupoid actions [Sta19, Tag 0230]. A groupoid
G in a category C (with fibered products) consists of the following data:

(1) A pair of objects Arr,Ob ∈ C with two maps (“source” and “target”) s, t : Arr⇒ Ob.
(2) (“Identity”) A map e : Ob→ Arr.
(3) (“Inverse”) A map i : Arr→ Arr.
(4) (“Composition”) A partially defined composition law

µ : Arr×s,Ob,t Arr→ Arr.

https://stacks.math.columbia.edu/tag/0230
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These must satisfy: associativity of µ, an “identity axiom”, and an “inverse axiom”. In this situation
we say that “Arr is a groupoid over Ob”.

Let G = (Arr,Ob, s, t, e, i, µ) be a groupoid in C, and E ∈ C be an object. An action of G on E
is defined by the data of:

(1) a map π : E → Ob, and
(2) a map a : Arr×s,Ob,π E → E

satisfying for all g, h ∈ Arr and e ∈ E: π(a(g, e)) = t(g) when this is defined, and a((gh), e) =
a(g, a(h, e)) when this is defined.

4.2.2. Hecke-type constructions. Now suppose X,Y, Z are objects in a category C that admits fibered
products, and we have maps f : X → Z and g : Y → Z. Then Y ×Z Y has the structure of a groupoid
over Y , and that there is a natural action of Y ×Z Y on Y ×Z X.

• The maps s, t : Y ×Z Y → Y are the obvious projections.
• The map e : Y → Y ×Z Y is the diagonal.
• The map i : Y ×Z Y → Y ×Z Y is the “swap” of the two factors of Y .
• The composition

(Y ×Z Y )×Y (Y ×Z Y ) ' Y ×Z Y ×Z Y → Y ×Z Y

is the projection to the outer two factors of Y (alternatively interpreted, “convolution over
middle coordinate”).

The action of Y ×Z Y on Y ×Z X specified by:

(1) π : Y ×Z X → Y is projection to the first factor.
(2) a : (Y ×Z Y )×Y (Y ×Z X)→ Y ×Z X is projection to the outer factors.

For psychological comfort, we give a few examples of how the preceding formalism is familiar in
algebraic geometry.

Example 4.1. Suppose that Y → Z is a G-torsor in schemes for a group scheme G/Z. Then
Y ×Z Y ∼= G× Y , and the Y ×Z Y -action on Y is equivalent to the given G-action on Y .

Example 4.2. Suppose Y → Z is a faithfully flat map of schemes. Then G := Y ×Z Y is a
groupoid over Y . If F is a sheaf on Y , then a G-equivariant structure on F is equivalent to the
usual notion of descent datum for the cover Y → Z, which induces an equivalence of categories
QCoh(Z) ∼= QCohG(Y ).

4.3. The derived Galois deformation ring. We now review the setup of the Galatius-Venkatesh

derived Galois deformation ring, in preparation for the definition of the co-action. Let Ĝ be a split
adjoint group with trivial center over O = W (k).

Suppose we are given a Galois representation ρ : Gal(Q/Q)→ Ĝ(k) satisfying the assumptions in
[GV18, Conjecture 6.1]: in particular, we suppose ρ is Fontaine-Laffaille at p and has “large image”,

i.e. image(ρ) ⊃ image(Ĝsc(k) → Ĝ(k)). Let S be a finite set of places of Q, containing p and the
ramified places of ρ.

There is a derived Galois deformation functor Fcrys
Z[1/S],ρ, which sends an Artinian SCR A aug-

mented over k to

“the space of representations of Gal(Q/Q)→ Ĝ(A) unramified outside S, and crys-
talline at p, which reduce to ρ”.

This is actually rather delicate to define precisely; we will sketch it below. Galatius-Venkatesh show
that it is pro-representable, and we denote by RS a representing pro-ring (suppressing the depen-
dence on ρ). By [GV18, Lemma 7.1], π0(RS) recovers the usual (underived) ring pro-representing
the usual crystalline deformation functor of ρ.

Now we briefly sketch the definition of Fcrys
Z[1/S],ρ. First we define a version without the crystalline

condition, denoted FZ[1/S],ρ. To do this we view π1(Z[1/S]) = π1(X) where X is the étale homotopy
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type of Spec Z[1/S] in the sense of Friedlander, which is a pro simplicial set; we write X = (Xα)
for a presentation of X as a pro-system of simplicial sets. [GV18] considers the derived deformation
functor FZ[1/S],ρ whose value on an SCR A is the simplicial set obtained by taking the homotopy
fiber of map (of simplicial sets)

lim−→
α

Hom(Xα, BG(A))→ lim−→
α

Hom(Xα, BG(k))

over the zero-simplex ρ in the codomain. Here BG(A) is defined by mapping a (cofibrant replacement
of) the bar construction for OG to A (and not, as one might näıvely guess, as B(G(A))). See [GV18,
§5 and §7.3] for the details. Restriction induces a map Fcrys

Z[1/S],ρ → FQv,ρ where FQv,ρ is an analogous

local deformation functor. Locally one defines a crystalline deformation functor Fcrys
Qp,ρ

by imposing

the crystalline condition on π0(A), and the global crystalline deformation functor Fcrys
Z[1/S],ρ is then

obtained by taking the homotopy fibered product of FZ[1/S],ρ and Fcrys
Qp,ρ

over FQp,ρ; see [GV18, §9]

for the details.

4.4. Hecke co-action on derived deformation rings. Now we will essentially explicate the
construction of §4.2 in the category of derived schemes. However, the preceding discussion needs to
be modified because this is a homotopy-theoretic situation, e.g. fibered product needs to become
homotopy fibered product, etc. We will just forget the axiomatic framework and explicitly give the
constructions for simplicial commutative rings.

Let A,B,C be SCRs, and C → A and C → B be homomorphisms of SCRs. Assume that C → A
and C → B are both cofibrations. Then we have the following structure on B ⊗C B:

• Homomorphisms s, t : B ⇒ (B ⊗C B) into the first and second factors.
• An augmentation e : B ⊗C B → B given by multiplication.
• A “swap” i : B ⊗C B → B ⊗C B.
• A coproduct

B ⊗C B → (B ⊗C B)⊗B (B ⊗C B). (4.4.1)

sending b1 ⊗ b2 7→ b1 ⊗ 1⊗ b2.

We also have a co-action of B ⊗C B on B ⊗C A as B-algebras, given by the map

B ⊗C A→ (B ⊗C B)⊗B (B ⊗C A)

sending b⊗ a 7→ (b⊗ 1)⊗ (1⊗ a).
We let RS be the global deformation ring of ρ discussed above in §4.3, and RSq the global

deformation ring allowing additional ramification at q, i.e. the same construction but with S replaced
by S ∪ {q}. By [GV18, §8] we have

Fcrys
S,ρ

∼−→ Fcrys
Sq,ρ ×

h
FQq,ρ

FZq,ρ
∼−→ Fcrys

Sq,ρ ×
h

F T̂ ,�Qq,ρ

F T̂ ,�Zq,ρ
. (4.4.2)

Note that the first equality expresses the intuition that the space of deformations ramified at S
can be obtained from the space of deformations ramified at Sq by imposing a local unramifiedness
condition at q. At the level of representing (pro-)rings, this means that

RSq
L
⊗SqS

ur
q ≈ RS . (4.4.3)

Now we apply the preceding discussion with C = Sq, A a cofibrant replacement ofRSq as a C-algebra,
and B a cofibrant replacement of Sur

q as a C-algebra, getting in particular a co-multiplication (not
a priori co-commutative) over Sur

q ,

SHk
q → SHk

q

L
⊗Sur

q
SHk
q

and a co-action over Sur
q ,

RS → RS
L
⊗Sur

q
SHk
q .
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5. Comparison with the derived Hecke algebra

We will now explain the local comparison between the derived Hecke algebra and the spectral
Hecke algebra at Taylor-Wiles primes. This step is analogous to the role of the derived Geometric
Satake equivalence in §2.5.

5.1. The local derived Hecke algebra. We briefly review the theory of derived Hecke algebra
from [Ven].

We keep the setup of §4.3, so in particular G is a split reductive group Q. Let U ⊂ G(Qq) be
a compact open subgroup. (For our purposes, we can take U = Kq to be the maximal compact
subgroup.)

Denoting Λ[G(Qq)/U ] for the compact-induction of the trivial representation from U to G(Qq),
we can present the usual Hecke algebra for the pair (G(Qq), U) as

H(G(Qq), U ; Λ) := HomG(Qq)(Λ[G(Qq)/U ],Λ[G(Qq)/U ]).

This presentation suggests the following generalization.

Definition 5.1. The derived Hecke algebra for (G(Qq), U) with coefficients in a ring Λ is

H(G(Qq), U ; Λ) := Ext∗G(Qq)(Λ[G(Qq)/U ],Λ[G(Qq)/U ]),

where the Ext is formed in the category of smooth G(Qq)-representations. For U = Kq, we abbre-
viate Hq(G(Qq); Λ) := H(G(Qq), U ; Λ).

We next give a couple more concrete descriptions of the derived Hecke algebra [Ven, §2].

5.1.1. Function-theoretic description. Let x, y ∈ G(Qq)/U and Gxy ⊂ G be the stabilizer of the pair
(x, y). We can think of H(G(Qq), U ; Λ) as consisting of functions

G(Qq)/U ×G(Qq)/U 3 (x, y) 7→ h(x, y) ∈ H∗(Gxy; Λ)

satisfying the following constraints:

(1) The function h is “G-invariant” on the left. More precisely, we have

[g]∗h(gx, gy) = h(x, y)

where [g]∗ : H∗(Ggx,gy; Λ)→ H∗(Gx,y; Λ) is pullback by Ad(g).
(2) The function h has finite support modulo G.

The multiplication is given by a convolution formula, where one uses the cup product to define
multiplication on the codomain, and restriction/inflation to shift cohomology classes to the correct
groups [Ven, eqn. (22)].

5.1.2. Double coset description. For x ∈ G/U , let Ux = StabU (x). Explicitly, if x = gxU then
Ux := U ∩Ad(gx)U .

We can also describe H(G(Qq), U ; Λ) as functions

x ∈ U\G(Qq)/U 7→ h(x) ∈ H∗(Ux; Λ)

which are compactly supported, i.e. supported on finitely many double cosets. (However, it is harder
to describe the multiplication in this presentation.)

5.1.3. The derived Hecke algebra of a torus. Let T be a split torus. Let’s unravel the derived
Hecke algebra of the torus T (Qq), using now the double coset model. We set T ◦ = T (Zq) for
its maximal compact subgroup. Since T is abelian we simply have T ◦x = T ◦ for all x. We have
T (Qq)/T

◦ ∼= X∗(T ). Identify

X∗(T ) = T (Qq)/T
◦ ↪→ G/Kq (5.1.1)

by the map X∗(T ) 3 χ 7→ χ($q) ∈ G/Kq, where $q is a uniformizer of Qq.
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Next, writing Tq := T (Fq)(p) as in §3.4, there is a canonical splitting Tq → T ◦ that splits the
reduction map, and induces an isomorphism on cohomology (since we assume that q is distinct from
the residue characteristic p of λ)

H∗(Tq; Λ)
∼←− H∗(T ◦; Λ).

The upshot is that H(T (Qq); Λ) simply consists of compactly supported functions

X∗(T )→ H∗(Tq; Λ)

with the multiplication given by convolution; in other words,

H(T (Qq); Λ) ∼= Λ[X∗(T )]⊗Λ H
∗(Tq; Λ),

5.1.4. The derived Satake isomorphism. We henceforth assume that q ≡ 1 ∈ Λ. Let U = G(Zq) be
a hyperspecial maximal compact subgroup of G(Qq). We consider an analog of the classical Satake
transform for the derived Hecke algebra Hq(G(Qq); Λ), which takes the form

“Derived Hecke algebra for G
∼−→ (Derived Hecke algebra for maximal torus)W .”

More precisely, let T be a split maximal torus of G such that U ∩ T (Qq) is the maximal compact
subgroup T (Qq). We define the derived Satake transform

H(G(Qq); Λ)→ H(T (Qq); Λ) (5.1.2)

simply by restriction (in the function-theoretic model §5.1.1) along the map (T (Qq)/T
◦)2 → (G/Kq)

2

from (5.1.1). In more detail, let h ∈ Hq(G; Λ) be given by the function

(Gv/Kv)
2 3 (x, y) 7→ h(x, y) ∈ H∗(Gx,y; Λ).

Then (5.1.2) takes h to the composition

(T (Qq)/T
◦)2 (G(Qq)/Kq)

2 H∗(Gx,y; Λ) H∗(Tx,y; Λ)h res

Remark 5.2. It may be surprising that this is the right definition, since the analogous construction
in characteristic 0, on the usual underived Hecke algebra, is far from being the usual Satake trans-
form. It is only because of our assumptions on the relation between the characteristics (namely, that
q ≡ 1 ∈ Λ) that this “näıve” definition turns out to be correct.

Theorem 5.3 ([Ven, Theorem 3.3]). Let W be the Weyl group of T in G. Under the assumptions
of this section, the map (5.1.2) induces an isomorphism

dSatq : H(G(Qq); Λ)
∼−→ H(T (Qq); Λ)W .

Remark 5.4. Technically [Ven, Theorem 3.3] is phrased only for O = Zp and Λ = Z/pmZ, but the
more general version stated above follows immediately from that version by flat base change.

5.2. The derived Hecke algebra vs. the spectral Hecke algebra.

5.2.1. Localization of the derived Hecke algebra. Recall that the definition of Taylor-Wiles datum at

q includes a specification of FrobT̂q ∈ T̂ (k). This datum is equivalent to that of a homomorphism of
abelian groups

X∗(T ) = X∗(T̂ )→ k×,

which is in turn equivalent to a character

χ
FrobT̂q

: Λ[X∗(T )]→ k.

Let mχ be the kernel of χFrobTq
, which is a maximal ideal of Λ[X∗(T )].

To compare the automorphic and Galois sides, we need to a Hecke eigensystem which is compatible
with our representation. Recall that G is a split semisimple simply connected group over Q. Let
K be a level structure for G(A) and Y (K) the associated locally symmetric space. Fix a pro-p
coefficient ring E with an augmentation E � k, and let TK be the Hecke algebra (generated by
Hecke operators at “good primes”) acting on C∗(Y (K), E) in the derived category (cf. [GV18, §6.6]).
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Fix a Hecke eigensystem TK � k, say with maximal ideal m. This pulls back to a maximal ideal mq
of the local underived Hecke algebra H(G(Qq); Λ), and we let Hq(Λ) be the completed local ring of
H(G(Qq); Λ) at mχ. By combining Theorem 5.3 with [Ven, eqn. (147)], we find an isomorphism

Hq(Λ)
∼−→ Λ[X∗(T )]mχ ⊗Λ H

∗(Tq; Λ) (5.2.1)

where on the right hand side, Λ[X∗(T )]mχ denotes the completed local ring of Λ[X∗(T )] at mχ.

Remark 5.5. Said geometrically, we are localizing the finite map of schemes corresponding to
Theorem 5.3 at points where it is totally split by the strong regularity assumption, hence we obtain
an isomorphism of completed local rings.

Definition 5.6. We denote Hq(Λ) := Λ[X∗(T )]mχ , the degree 0 part of Hq(Λ).

5.2.2. Homotopy groups of derived tensor products. Let R be a simplicial commutative ring, and A
and B be simplicial R-algebras.

Recall the spectral sequence for homotopy groups of a tensor product [Qui70, eqn. (5.2)]:

E2
ij = Tor

π∗(R)
i (π∗(A), π∗(B))j =⇒ πi+j(A

L
⊗R B). (5.2.2)

Here the j-grading comes from the grading on π∗(A), π∗(B) as modules over π∗(R).
In particular, we always have an edge map

π∗(A
L
⊗R B)→ π∗(A)⊗π∗(R) π∗(B).

Example 5.7. If R happens to be homotopy discrete with R := π0(R), and π∗(A) or π∗(B) is flat
over R, then (5.2.2) degenerates on E2 and this edge map is an isomorphism:

π∗(A
L
⊗R B)

∼−→ π∗(A)⊗R π∗(B). (5.2.3)

5.2.3. Comparison with the spectral Hecke algebra. In §4 we equipped the spectral Hecke algebra
SHk
q with a coproduct over Sur

q . By Corollary 3.4 we have

π∗(SHk
q

L
⊗O Λ) ∼= Sur

q ⊗O H∗(Tq; Λ).

If q ≡ 1 ∈ Λ, then H∗(Tq; Λ) is actually free over Λ. In this case π∗(SHk
q ⊗O Λ) is free over Λ. Hence

Example 5.7 applies in our case with R = Sur
q and A = B = SHk

q , implying that

π∗(SHk
q

L
⊗Sur

q
SHk
q

L
⊗O Λ)

∼−→ π∗(SHk
q

L
⊗O Λ)⊗Sur

q ⊗OΛ π∗(SHk
q

L
⊗O Λ).

Hence the coproduct on SHk
q

L
⊗O Λ induces a coproduct on π∗(SHk

q

L
⊗O Λ).

To compare this to the derived Hecke algebra, we dualize. Define

π∗(SHk
q

L
⊗O Λ)∨ := HomSur

q ⊗OΛ(π∗(SHk
q

L
⊗O Λ),Sur

q ⊗O Λ).

Since π∗(SHk
q

L
⊗O Λ) is free over Sur

q ⊗O Λ, the Sur
q -co-algebra structure on π∗(SHk

q

L
⊗O Λ) induces a

Sur
q

L
⊗O Λ-algebra structure on π∗(SHk

q

L
⊗O Λ)∨.

By (3.3.1) we can also present

SHk
q

L
⊗O Λ

∼−→ Sur
q ⊗O (Λ

L
⊗Λ[Tq ] Λ).

This implies that

HomSur
q

(π∗(SHk
q

L
⊗O Λ),Sur

q ) ∼= HomΛ(π∗(Λ
L
⊗Λ[Tq ] Λ),Λ⊗O Sur

q )

∼= Sur
q ⊗O HomΛ(H∗(Tq; Λ),Λ).

Since T (Fq) ∼= (Z/(q − 1)Z)r and q ≡ 1 ∈ Λ, the term HomΛ(H∗(Tq; Λ),Λ) is canonically identified
with the group cohomology H∗(Tq; Λ), and the coproduct on homology dualizes to the usual cup
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product on cohomology, by the general relation between the coproduct on Tor and the Yoneda
product on Ext [Eis95, p. 648]. Hence we have an identification of algebras

π∗(SHk
q

L
⊗O Λ)∨ ∼= Sur

q ⊗O H∗(Tq; Λ). (5.2.4)

The classical Satake isomorphism gives an identification

H(G(Qq),Z[q±1/2])
∼−→ R(Ĝ)⊗ Z[q±1/2],

where R(Ĝ) the latter is the representation ring of Ĝ, i.e. the Grothendieck group of the category

of finite-dimensional complex Ĝ-representations, equipped with multiplication induced by tensor
product. Since the assumption q ≡ 1 ∈ Λ equips Λ with a canonical square root of q, we get an
isomorphism

Hq := H(G(Qq),Λ)
∼−→ RΛ(Ĝ) := R(G)⊗Z Λ. (5.2.5)

Hence we may also view mχ as a maximal ideal of RΛ(Ĝ), which we denote by the same name. We

have a finite map R(G) ⊗Z Λ → Λ[X∗(T̂ )], which induces an isomorphism between the completion

of RΛ(Ĝ) at mχ and Sur
q ⊗O Λ for the same reason as in Remark 5.5. Composing this with (5.2.5)

gives an isomorphism

Sur
q ⊗O Λ

∼−→ Hq(Λ). (5.2.6)

Combining (5.2.6) with (5.2.4) and (5.2.1), we have constructed an isomorphism of graded rings

π∗(SHk
q

L
⊗O Λ)∨

∼−→ Hq(G(Qq); Λ) (5.2.7)

extending (5.2.6) on π0. Informally, this says that the “dual of the spectral Hecke coalgebra is the
derived Hecke algebra” on the level of homotopy groups.

6. Derived local-global compatibility

6.1. The automorphic side. We now return to the global situation. Recall that G was a split
semisimple group over Q.

6.1.1. Cohomology of locally symmetric spaces. Let Y (K) be the locally symmetric space associated
with level structure K. Let TK , χ, and m be as in §5.2.1. Hence χ : TK → E for some finite
extension E/Z. We pick a prime p and a place p of E above p, on which we’ll shortly impose various
conditions.

We now assume that χ is a tempered Hecke eigensystem. Then H∗(Y (K); C)m is supported
degrees [j0, j0 + δ] where δ = rankG(R) − rankK∞, and 2j0 + δ = dimY (K), as established in
[BW00, III §5.1, VII Theorem 6.1], [Bor81, 5.5]. We impose the assumptions of [GV18, §13.1], and
pick a prime p such that

(1) H∗(Y (K); Z) is p-torsion free.
(2) p > #W , where W is the Weyl group of G.
(3) O := Ep is unramified over Zp.
(4) (“no congruences) The map (TK)m → Op induced by completing χ is an isomorphism.
(5) H∗(Y (K);O)m vanishes outside [j0, j0 + δ].

(These assumptions should all be satisfied for all sufficiently large p.)

6.1.2. Global derived Hecke algebra. For any open compact subgroup Uq ⊂ Gq, the local derived
Hecke algebra H(G(Qq), Uq;O/pnO) acts on the cohomology of a locally symmetric space with level
structure at q corresponding to Uq (see [Ven, §2.6]).

We consider the action of the local derived Hecke algebra H(Gq, Uq;O/pnO) for all q ≡ 1
(mod pn) such that K is hyperspecial at q, and take Uq to be a hyperspecial maximal compact
subgroup. These actions generate an algebra

T̃K,n ⊂ End(H∗(Y (K);O/pnO)).
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Venkatesh defines the global derived Hecke algebra to be the subalgebra T̃K ⊂ End(H∗(Y (K);O))

consisting of endomorphisms of the form lim←− tn for tn ∈ T̃K,n [Ven, §2.13]. Note that endomor-
phisms do not come from any particular local derived Hecke algebra, but are glued from such in a
trancendental way.

6.2. The Galois side.

6.2.1. Global derived deformation ring. Let k = O/p be the residue field of O, and let S be a finite
set of primes containing p and the places at which K is not hyperspecial. We sometimes identify S
with an integer which is the product of the primes it contains. Conjecturally, there should exist a
global Galois representation

ρ : Gal(Q/Q)→ G(k)

corresponding to m, which enjoys the properties listed in [GV18, Conjecture 6.1] and [GV18,
§13.1(8)]. We assume the existence of such a ρ, which furthermore satisfies the assumptions of
[GV18, §10]. In particular,

(1) ρ is unramified outside S and odd at ∞.

(2) The residual representation into Ĝ(k) has “big image”.
(3) ρ is Fontaine-Laffaille above p, and has trivial deformation theory at the other primes in S.
(4) ρ enjoys local-global compatibility.
(5) ρ admits a lift

ρO : Gal(Q/Q)→ Ĝ(O).

Let RS be the derived Galois deformation ring for ρ from §4.3.

6.2.2. Compatibility with the global derived Hecke algebra. We now discuss the relationship between

RS and (T̃K)m. The traditional Taylor-Wiles method aims to prove an “R = T” theorem of the form

RS
∼−→ (TK)m. However the derived versions RS and (T̃K)m are not even the same type of object,

the former being homologically graded and the latter being cohomologically graded. In contrast
to the global derived Hecke algebra, which naturally acts by degree-increasing endomorphisms on
the cohomology H∗(Y (K); Zp), π∗(RS) naturally acts by degree-increasing endomorphisms on the
homology H∗(Y (K); Zp).

To state the comparison between RS and (T̃K)m, we use the cap product (and the assumptions
we are imposing, which force H∗(Y (K); Zp) to be torsion-free), the derived Hecke algebra also acts
in a degree-decreasing manner on H∗(Y (K); Zp).

Definition 6.1. For a module M over Λ = O or O/pmO, we let M∗ := HomΛ(M,Λ). (We will
only apply this to free modules over Λ.)

We define V = H1
f (Z[1/S]; Ad∗ ρO(1))∗; this is a free module over O of rank δ by [Ven, Lemma

8.8]. We denote V∗ := HomO(V,O). (More generally, for a finite free module M over a coefficient
ring Λ we will denote M∗ := HomΛ(M,Λ).)

It is shown in [Ven, Theorem 8.5] that, under our assumptions, the action of the local derived
Hecke algebra on H∗(Y (K); Zp) can be “patched” in the sense of Taylor-Wiles to an action of V on

H∗(Y (K);O)m. This induces an identification V
∼−→ T̃1

m (the degree 1 part of the global derived
Hecke algebra completed at m), and [Ven, Theorem 8.5] shows moreover that V freely generates

an exterior algebra in End(H∗(Y (K);O)m), which coincides with T̃m. In particular, we get an
isomorphism

∧∗V ∼−→ T̃m.

On the other hand, [GV18, §15] constructs an isomorphism (under our running assumptions)

π∗(RS)
∼−→ ∧∗(V∗) (6.2.1)

and [GV18, Theorem 14.1] constructs a natural action of π∗(RS) on Hj0+∗(Y (K);O)m, realizing the
latter as a free module of rank one over π∗(RS) ∼= ∧∗(V∗).
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It is also established in [GV18, Theorem 15.2] that these two actions are compatible in the natural
way [GV18, §15.2]. To articulate this precisely, we frame it more abstractly. Suppose V is a finite
free Λ-module and V∗ is its Λ-linear dual. If M is a finite free Λ-module with actions of ∧∗V and
∧∗V∗, we say that the two actions are compatible if for all v∗ ∈ V∗ and v ∈ V and m ∈M we have

v · v∗ ·m+ v∗ · v ·m = 〈v, v∗〉 ·m.

6.2.3. Hurewicz map. Let us describe the map π1(RS)
∼−→ V∗ from (6.2.1). It comes from a

“Hurewicz-like” construction.
Let R be a simplicial commutative ring, and suppose a map ε : R → Λ is given. For an augmented

simplicial commutative ring A over Λ, define Liftε(R, A) to be the group of homotopy classes of lifts
R → A lying over the given map ε.

For any discrete Λ-module M , we can take A to be the square-zero extension Λ⊕M [i]. (We remind
the reader what this is: first, Λ[i] is the free simplicial Λ-module on the simplicial set Si = ∆i/∂∆i.
Tensoring with M gives a simplicial Λ-module M [i], and then the simplicial Λ-algebra Λ ⊕M [i] is
obtained by forming the square-zero extension level-wise.) There is a bilinear pairing

πi(R)× Liftε(R,Λ⊕M [i])→M (6.2.2)

defined as follows: any u ∈ Liftε(R,Λ⊕M [i]) induces

π∗(u) : π∗(R)→ π∗(Λ⊕M [i]) = Λ⊕M [i]

and (6.2.2) takes (x ∈ πi(R), u) to π∗(u)(x) ∈ M . Note that Liftε(R,Λ ⊕M [i]) coincides with the
André-Quillen homology group DZ

i (R;M), where M is made an R-module via ε.
Let Λ∨ be the Pontrjagin dual to Λ. For Λ = O, this can be canonically identified with Frac(O)/O.

The Galois representation ρO induces a map ρ : π0(RS) → O since π0(RS) = RS is the usual
Galois deformation ring. Taking Λ = O, [GV18, Lemma 15.1] identifies Liftρ(RS ,Λ ⊕ Λ[1]) with
H2
f (Z[1/S]; Ad ρO) ∼= V∗. Hence we get a map

π1(RS)→ H2
f (Z[1/S]; Ad ρO ⊗ Λ∨)∗. (6.2.3)

Finally, composing (6.2.3) with the identification of Poitou-Tate duality

H2
f (Z[1/S]; Ad ρO ⊗ Λ∨)∗ ∼= H1

f (Z[1/S]; Ad ρO(1)) = V∗

gives the desired map π1(RS)→ V∗; it is shown in [GV18, Lemma 15.3] that this is an isomorphism.
If we take Λ = O/pmO for some m ≥ 1, then the representation ρΛ obtained by reducing ρO into

Ĝ(Λ) induces a map RS → Λ. For the same reason as before, we obtain a map

π1(RS
L
⊗ Λ)→ H2

f (Z[1/S]; Ad ρΛ ⊗ Λ∨)∗ ∼= V∗ ⊗O Λ

which is an isomorphism, by the case Λ = O and our torsion-freeness assumptions.

6.3. Formulation of derived local-global compatibility. We now formulate a derived local-
global compatibility statement which is analogous to §2.5.

• The global automorphic object is T̃m
∼= ∧∗V, where this identification is the one from [Ven,

Proposition 8.6].
• The global spectral object is π∗(RS) ∼= ∧∗V∗, where this identification is the one from [GV18,

Proposition 15.4]. Letting π∗(RS)∗ be the O-dual of π∗(RS), combining these identifications
gives

π∗(RS)∗
∼−→ T̃m. (6.3.1)

Remark 6.2. The eventual local-global compatibility assertion in Theorem 6.3 does not depend on
these choices.

The local actions that we want to compare are:

• (Automorphic) The action of a local derived Hecke algebra Hq(G(Qq); Λ) on T̃m ⊗O Λ

through the algebra homomorphism Hq(G(Qq); Λ)→ T̃m ⊗O Λ.
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• (Galois) The co-action of π∗(SHk
q

L
⊗O Λ) on π∗(RS

L
⊗O Λ), where the maps coming from the

co-action of SHk
q on RS and the fact that π∗(SHk

q

L
⊗O Λ) is free over Sur

q ⊗O Λ (so that the
co-action descends to homotopy groups).

To state the comparison, it is convenient to dualize the co-action on the spectral side. By (3.3.1)
we have that

SHk
q

L
⊗Sur

q
RS

∼−→ (O
L
⊗O[Tq ] O

L
⊗O Sur

q )
L
⊗Sur

q
RS

∼−→ (O
L
⊗O[Tq ] O)

L
⊗O RS .

If q ≡ 1 ∈ Λ, then Example 5.7 applies above with R = Λ, A = Λ
L
⊗Λ[Tq ] Λ, and B = RS

L
⊗O Λ,

giving

π∗(RS
L
⊗O Λ)

co−act−−−−→π∗(SHk
q

L
⊗Sur

q
RS

L
⊗O Λ)

∼=π∗(Λ
L
⊗Λ[Tq ] Λ)⊗Λ π∗(RS

L
⊗O Λ).

Dualizing over Λ, we then get an action

H1(Tq; Λ)⊗O π∗(RS)∗ → π∗(RS)∗,

where π∗(RS
L
⊗O Λ)∗ = HomO(π∗(RS),Λ). To present this more symmetrically to the derived

Hecke algebra, we use (3.4) to write

H1(Tq; Λ)⊗Λ π∗(RS
L
⊗O Λ)∗ = π∗(SHk

q

L
⊗O Λ)∗ ⊗Sur

q ⊗OΛ π∗(RS
L
⊗O Λ)∗,

where the homomorphism Sur
q → π∗(RS)∗ corresponds to the character χ. This is rather artificial of

course: the usual (underived) local-global compatibility already intertwines the action on π0(SHk
q

L
⊗O

Λ)∗ = Sur
q ⊗OΛ and Hq(Λ) through the (underived) Satake isomorphism (5.2.6). Anyway, the upshot

is that we dualize the co-action to an action

π∗(SHk
q

L
⊗O Λ)∗ ⊗Sur

q ⊗OΛ π∗(RS
L
⊗O Λ)∗

act−−→ π∗(RS
L
⊗O Λ). (6.3.2)

Abbreviate Hq(Λ) := H(G(Qq),Λ). We will compare (6.3.2) to the derived Hecke action

Hq(Λ)∗ ⊗Hq(Λ) (T̃m ⊗O Λ)
act−−→ (T̃m ⊗O Λ) (6.3.3)

where Hq(Λ) ∼= Λ[X∗(T )]m is as in §5.2.1.

Theorem 6.3. Under the identifications (6.3.1) and (5.2.7), the two actions (6.3.3) and (6.3.2)
coincide for all q congruent to 1 modulo a sufficient large (depending on Λ) power of p.4 In other
words, for all q congruent to 1 modulo a sufficient large (depending on Λ) power of p, the following
diagram commutes (compare §2.5):

π∗(SHk
q

L
⊗O Λ)∗ Hq(Λ)

(6.3.2) x x (6.3.3)

π∗(RS
L
⊗O Λ)∗ (T̃m ⊗O Λ)

∼
(5.2.7)

∼
(6.3.1)

4As we shall see in the proof, the restriction to sufficiently large q comes from our use of Venkatesh’s Reciprocity
Law [Ven, Theorem 8.5]. We expect that [Ven, Theorem 8.5] in fact holds for all Taylor-Wiles primes; if this were the

case, then our proof would apply for all Taylor-Wiles primes as well.
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Remark 6.4. In defining Sur
q , we made an auxiliary choice of an element ρT̂ (Frobq) ∈ T̂ (k). Since

the derived Hecke algebra and its action do not depend such an auxiliary choice, Theorem 6.3 shows
that Sur

q and its action are similarly independent of this choice.

We now make some initial reductions for the proof of Theorem 6.3.

6.3.1. Reduction to degrees 1 and 2. Since (5.2.1) and Theorem (5.2.7) imply thatHq and π∗(SHk
q

L
⊗O

Λ)∗ are generated in degrees 1 and 2 over their degree 0 subrings, it suffices to check that Theorem
6.3 is correct in degrees 1 and 2. In other words, we need to check that

• The map

Hq(Λ)1 ⊗Hq(Λ) (T̃0
m ⊗O Λ)→ (T̃1

m ⊗O Λ) (6.3.4)

agrees under (6.3.1) with

π1(SHk
q

L
⊗O Λ)∗ ⊗Sur

q ⊗OΛ π∗(RS
L
⊗O Λ)∗

act−−→ π∗+1(RS
L
⊗O Λ)∗. (6.3.5)

• The map

Hq(Λ)2 ⊗Hq(Λ) (T̃0
m ⊗O Λ)→ (T̃2

m ⊗O Λ) (6.3.6)

agrees under (6.3.1) with

π2(SHk
q

L
⊗O Λ)∗ ⊗Sur

q ⊗OΛ π∗(RS
L
⊗O Λ)∗

act−−→ π∗+2(RS
L
⊗O Λ)∗. (6.3.7)

6.3.2. Reduction to the cohomology of the torus. We already know that “underived”, i.e. degree 0,

part of Hq(Λ) ⊂ Hq(Λ) acts on (T̃m ⊗O Λ) through the character χΛ, and that π0(SHk
q

L
⊗O Λ) =

Sur
q ⊗O Λ also acts through χΛ, and that the two actions are intertwined by (5.2.6).

Also, (5.2.1) shows that the degree-i part Hq(Λ)i is generated over Hq(Λ) by Hi(Tq; Λ). Similarly,

(5.2.4) shows that πi(SHk
q

L
⊗O Λ)∗ is generated over Sur

q by Hi(Tq; Λ).
Hence it suffices to show that

• The map

H1(Tq; Λ)⊗Λ (T̃0
m ⊗O Λ)→ (T̃1

m ⊗O Λ)

agrees under (6.3.1) with

H1(Tq; Λ)⊗Λ π∗(RS
L
⊗O Λ)∗

act−−→ π∗+1(RS
L
⊗O Λ)∗.

• The map

H2(Tq; Λ)⊗Λ (T̃0
m ⊗O Λ)→ (T̃2

m ⊗O Λ)

agrees with

H2(Tq; Λ)⊗Λ π∗(RS
L
⊗O Λ)∗

act−−→ π∗+2(RS
L
⊗O Λ)∗.

6.3.3. Reduction to the action on the cyclic vector. We claim that it suffices to check that the actions
agree on the given cyclic vector in Hj0(Y (K); Λ)m. Indeed, the action of the local derived Hecke
algebras Hq(Λ), as q varies over Taylor-Wiles primes, generates all of Hj0+∗(Y (K); Λ)m by [Ven,

Theorem 8.5]. Hence the same holds for the action of π∗(SHk
q

L
⊗O Λ)∗ once we verify that the two

actions agree on the cyclic vector. Furthermore, Theorem 5.3 and (5.2.6) show that Hq(Λ) actions

commute with each other, and similarly for (SHk
q

L
⊗O Λ)∗.

In conclusion, to prove Theorem 6.3 we “only” need to check that:

H1(Tq; Λ)→ Hq(Λ)1 → (T̃1
m ⊗O Λ)

[Ven, Proposition 8.6]−−−−−−−−−−−−−−→ V ⊗O Λ is dual to (6.3.8)

V∗ ⊗O Λ
(6.2.1)−−−−→ π1(RS

L
⊗O Λ)→ π1(SHk

q

L
⊗O Λ)⊗Sur

q
π0(RS

L
⊗O Λ)

Cor. 3.4−−−−−→ H1(Tq; Λ),
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and that

H2(Tq; Λ)→ Hq(Λ)2 → (T̃2
m ⊗O Λ)

[Ven, Proposition 8.6]−−−−−−−−−−−−−−→ ∧2V ⊗O Λ is dual to (6.3.9)

∧2(V∗ ⊗O Λ)
(6.2.1)−−−−→ π2(RS

L
⊗O Λ)→ π2(SHk

q

L
⊗O Λ)⊗Sur

q
π0(RS

L
⊗O Λ)

Cor. 3.4−−−−−→ H2(Tq; Λ).

The proofs of (6.3.8) and (6.3.9) occupy the rest of the paper.

6.4. Checking compatibility in degree 1. We check (6.3.8). This amounts to showing that a
certain map H1(Tq; Λ) → V ⊗O Λ to be dual to a certain map V∗ ⊗O Λ → H1(T ; Λ), and we will
now explicate what these maps are.

6.4.1. The automorphic side. We explicate the map H1(Tq; Λ)→ V ⊗O Λ from (6.3.8). Recall that
in §3.4.1 we defined a fiber sequence

Fibq,Λ → FZq → FQq

According to [Ven, Theorem 8.5], there exists n0 depending on Λ such that for all q ≡ 1 (mod n0),
the map H1(Tq; Λ)→ V ⊗O Λ can be described by the following sequence of steps.

(1) The isomorphism H1(Tq; Λ) = Hom(Tq; Λ) ∼= t1(Fibq,Λ) from §3.4.4; this came from class

field theory (describing tame deformations of a homomorphism into T̂ ).

(2) The isomorphism t1(Fibq,Λ)
∼−→ H1(Qq; Ad ρΛ)/H1(Zq; Ad ρΛ) from (3.4.2).

(3) The pairing

H1
f (Z[1/S]; Ad∗ ρΛ(1))︸ ︷︷ ︸

(V⊗OΛ)∗

×H
1(Qq; Ad ρΛ)

H1(Zq; Ad ρΛ)
→ Λ

given by restricting H1
f (Z[1/S]; Ad∗ ρΛ(1)) → H1(Qq; Ad∗ ρΛ(1)) and then applying Tate

local duality.

This is summarized in the diagram

H1(Tq; Λ) t1(Fibq,Λ; Λ) H1(Qq; Ad ρΛ)/H1(Zq; Ad ρΛ)

(H1
f (Z[1/S]; Ad∗ ρΛ(1)))∗ = V ⊗O Λ.

§3.4.4

∼
(3.4.2)

local duality

6.4.2. The Galois side. We describe the map V∗ ⊗O Λ→ H1(Tq; Λ) from (6.3.9). It comes from the
sequence of steps:

(1) The identification V∗
∼−→ π1(RS) obtained by inverting §6.2.3.

(2) The co-action map

π1(RS
L
⊗O Λ)

π1(co−act)−−−−−−−→ π1(SHk
q

L
⊗Sur

q
RS

L
⊗O Λ).

(3) The projection map

π1(SHk
q

L
⊗Sur

q
RS

L
⊗O Λ)

project−−−−→ π1(SHk
q

L
⊗O Λ)⊗Sur

q ⊗OΛ π0(RS
L
⊗O Λ).

(4) The identification π1(SHk
q )⊗Sur

q ⊗OΛ π0(RS
L
⊗ Λ) = H1(Tq; Λ) coming from Corollary 3.4 and

the assumption π0(RS) = O.



THE SPECTRAL HECKE ALGEBRA 25

This is summarized in the diagram

V∗ ⊗O Λ π1(RS
L
⊗O Λ) π1(SHk

q ⊗Sq RS
L
⊗O Λ)

π1(SHk
q

L
⊗O Λ)⊗Sur

q ⊗OΛ π0(RS
L
⊗O Λ) H1(Tq; Λ).

∼ co-act

project Cor. 3.4
∼

6.4.3. Transfer to André-Quillen cohomology. As discussed in §6.2.3, for any simplicial commutative
ring R with an augmentation to Λ, and a discrete Λ-module M , we have a pairing

πi(R)×Di
Z(R;M)→M

which induces a map

πi(R)→ Di
Z(R;M)∗ := HomΛ(Di

Z(R;M),Λ).

This is functorial in R, so we get a commutative diagram:

V∗ ⊗O Λ

π1(RS
L
⊗O Λ) D1

Z(RS ; Λ)∗

π1(RS ⊗Sur
q
SHk
q

L
⊗O Λ) D1

Z(RS
L
⊗Sur

q
SHk
q ; Λ)∗

π1(SHk
q

L
⊗Sur

q
π0RS

L
⊗O Λ) D1

Z(SHk
q

L
⊗Sur

q
π0RS ; Λ)∗

π1(Λ
L
⊗Λ[Tq ] Λ) D1

Z(Λ
L
⊗Λ[Tq ] Λ; Λ)∗ t1(Fibq,Λ)∗

H1(Tq; Λ) H1(Tq; Λ) H1(Tq; Λ)

co-act co-act

project project

∼ (3.3.1) ∼ (3.3.1)

Cor. 3.4∼ ∼ ∼ §3.4.4

(6.4.1)

Here:

• The reason for commutivity for the second square is that it is actually obtained from a ring
homomorphism

SHk
q

L
⊗Sur

q
RS

project−−−−→ SHk
q

L
⊗Sur

q
π0RS .

• We used (3.4.1) to see that Λ
L
⊗Λ[Tq ] Λ represents Fibq,Λ.

• We need to justify why the bottom left square in (6.4.1) commutes. By Proposition A.3

the map π1(Λ
L
⊗Λ[Tq ] Λ) → D1

Z(Λ
L
⊗Λ[Tq ] Λ; Λ)∗ is an isomorphism, but we have produced

separate identifications of each with H1(Tq; Λ), and it is not entirely obvious that they are
compatible. This is checked in §A.2.

Upshot: since the bottom row in (6.4.1) is an isomorphism, and the top row is an isomorphism
by [GV18, Lemma 15.3], the map of interest in (6.2.2) is the same as the vertical composition along
the right column in (6.4.1).
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6.4.4. Some maps of tangent complexes. We will now describe the dashed map in (6.4.1) in terms
of a more general framework.

Let X,Y, Z be functors on artinian SCRs augmented over Λ, whose value on Λ is contractible.
We then have the theory of the tangent complex t∗ for such functors [GV18, §4 and Proof of Lemma
15.1]. For an augmented simplicial commutative ring R → Λ, the ti of the functor SCR/Λ(R,−)

that R represents coincides with the André-Quillen cohomology Di
Z(R; Λ). So we will also use t∗(R)

to denote Di
Z(R; Λ) = t∗(SCR/Λ(R,−)).

Suppose we are given maps X → Z and Y → Z. Let F be the homotopy fiber of Y → Z, i.e.
F = Spec Λ×hZ Y . Then we have a diagram with all squares homotopy cartesian:

F Y ×Z X Y

Spec Λ X Z

Hence we get a map

t∗(F )→ t∗(Y ×Z X). (6.4.2)

To describe this a little more explicitly, recall that the formation of tangent complexes preserves
homotopy pullbacks (cf. §3.4), i.e.

t∗(Y ×Z X) = hofib(t∗Y ⊕ t∗X → t∗Z). (6.4.3)

With respect to (6.4.3), the map t∗(F )→ t∗Y ⊕ t∗X induced by (6.4.2) is 0 in the second coordinate
and the tautological map induced by Y → F in the first coordinate.

Example 6.5. If we apply this discussion with Y = F T̂ ,�Zq,ρΛ
, Z = F T̂ ,�Qq,ρΛ

, and X = π0Fcrys
Z[1/S],ρΛ

,

then we get a map

t∗(Fibq)→ t∗(Y ×Z X)
∼−→ t∗((Y ×Z Y )×Y π0Fcrys

Z[1/S]).

Dualizing this recovers the map

t1(SHk
q

L
⊗Sur

q
π0RS)∗

(6.4.2)−−−−→ t1(Fibq,Λ)∗, (6.4.4)

which is the dashed arrow in (6.4.1).

6.4.5. Where are we? We summarize the discussion with the diagram below. The map H1(Tq; Λ)→
V ⊗O Λ obtained by tracing along the right vertical edge of the diagram is the “automorphic side”

of (6.3.8), while the map π1(RS
L
⊗O Λ) → H1(Tq; Λ) obtained by tracing along the left is “Galois

side” of (6.3.8).

t1(RS
L
⊗O Λ)∗ V∗ ⊗O Λ H1

f (Z[1/S]; Ad∗ ρΛ(1))∗ = V ⊗O Λ

t1(RS
L
⊗Sur

q
SHk
q

L
⊗O Λ)∗ H1(Qq; Ad ρΛ)/H1(Zq; Ad ρΛ)

t1(SHk
q

L
⊗Sur

q
π0(RS)

L
⊗O Λ)∗ t1(Fibq,Λ)∗ t1(Fibq,Λ)

H1(Tq; Λ) H1(Tq; Λ)

co-act

project

local duality

(6.4.4)

∼ CFT

(3.4.2)

CFT∼

The dotted arrows connect spaces that are dual.
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6.4.6. Final steps. So we have reduced the content of the theorem to showing that the natural map

t1(RS
L
⊗O Λ)∗ ∼= V∗ ⊗O Λ→ t∗1(Fibq,Λ),

which ultimately came a general property of the structural setup, is dual to a map t1(Fibq,Λ) →

t1(RS
L
⊗O Λ) given by computing both in terms of Galois cohomology and then writing down a

pairing using Tate local duality.
This second map seems to have a more “ad hoc” description, but in the proof of [GV18, Lemma

15.3] another description of it is given. Specifically, it is explained on [GV18, p. 125] that this map
pulls back to the map β in [GV18, eqn. (11.14)], which means that it is the specialization of the

map t1(F )→ t1(X ×Z Y ) from (6.4.2) to X = Fcrys
Z[1/Sq],ρΛ

, Z = F T̂ ,�Qq,ρΛ
, and Y = F T̂ ,�Zq,ρΛ

.

This observation reduces us to showing that in the situation of §6.4.4, the map t1(F )→ t1(Y ×ZX)
from (6.4.2) is dual to the one coming from the co-action:

t1(Y ×Z X)∗ t1((Y ×Z Y )×Y (Y ×Z X))∗

t1(Y ×Z Y ×Z π0X)∗ t1(F )∗

co-act

project (6.4.2)

Here the last map t1(Y ×Z Y ×Z π0X)∗ → t1(F )∗ is an instance of (6.4.2) but with the role of X in
(6.4.2) played by Y ×Z π0X.

In other words, we’ve reduced to the claim that the following diagram commutes.

t1((Y ×Z Y )×Y (Y ×Z X))

t1(Y ×Z X) t1(Y ×Z Y ×Z π0X)

t1(F )

co−act∗ project∗

(6.4.2)(6.4.2)

This is verified by a direct inspection, using the explicit description of tangent complex of a fibered
product (6.4.3), and that (6.4.2) is given by the “tautological map into the first factor of Y ”.

6.5. Checking compatibility in degree 2. We next need to check (6.3.9). Fortunately for us,
this is more degenerate than the degree 1 case.

The cup product furnishes a map ∧2H1(Tq; Λ)→ H2(Tq; Λ), and let H2(Tq; Λ)ind be the quotient.
The quotient map splits canonically by identifying H2(Tq; Λ)ind as the primitive subspace of H2(T ′qΛ)
for the coproduct induced by the group structure on Tq, inducing a direct sum decomposition

H2(Tq; Λ) ∼= ∧2H1(Tq; Λ)⊕H2(Tq; Λ)ind.

Similarly we have

H2(Tq; Λ) ∼= ∧2H1(Tq; Λ)⊕H2(Tq; Λ)prim.

The compatibility in degree 1, which we just checked in §6.4, reduces us to checking (6.3.9) for the
primitive/indecomposable parts:

H2(Tq; Λ)ind → Hq(Λ)2 → (T̃2
m ⊗O Λ)

[Ven, Proposition 8.6]−−−−−−−−−−−−−−→ ∧2V ⊗O Λ is dual to (6.5.1)

∧2(V∗ ⊗O Λ)
(6.2.1)−−−−→ π2(RS

L
⊗O Λ)→ π2(SHk

q

L
⊗O Λ)⊗Sur

q
π0(RS

L
⊗O Λ)

Cor 3.4−−−−→ H2(Tq; Λ)prim.
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6.5.1. The automorphic side. We unravel the map H2(Tq; Λ)ind → ∧2V ⊗O Λ from (6.5.1). In
fact we claim that this map is 0. In other words, we will argue that H2(Tq; Λ)prim acts by 0 on
H∗(Y (K);O)m.

Remark 6.6. Note that [Ven] actually ignores the part of the local derived Hecke algebra in degree
≥ 2, using only H1 to act on H∗(Y (K);O)m. Our computation shows that in fact there is nothing
to be gained at looking at the rest of the local derived Hecke algebras: all the non-trivial action
comes from H1.

Letting Λ = O/pm, we have
H2(Tq; Λ)ind = β(H1(Tq; Λ))

where β is the Bockstein operator associated to the short exact sequence

O/pmO → O/p2mO → O/pmO. (6.5.2)

Therefore our claim amounts to showing that the action of β(a) on H∗(Y (K); Λ)m is trivial for
all a ∈ H1(Tq; Λ). Denote by Y0(q) the locally symmetric space obtained by adding Γ0(q)-level
structure to Y (K), and let π : Y0(q)→ Y (K) be the projection map.

As defined above, a and β(a) are classes in H∗(Tq; Λ). We will also use the notation a and β(a)
to refer to their image in Hq(Λ). We will use the notation a′ and β(a′) for their realization in
H1(Y0(q); Λ) by pulling back via the map Y0(q) → B(Tq) classifying the Shimura cover Y ∗1 (q) →
Y0(q) (that is, the subcover of Y1(q)→ Y0(q) with Galois group Tq).

The Iwahori Hecke algebra at q with coefficients in Λ acts on H∗(Y0(q); Λ). Recall that as part

of the datum of a Taylor-Wiles prime we have an element FrobT̂q ∈ T̂ (Λ). By [Ven, Lemma 6.6

and the following discussion], we can view the element ρT̂Λ(Frobq) as a character of the monoid
algebra Λ[X∗(T )+] (which acts on H∗(Y0(q); Λ by what are usually called “Uq operators”). Hence

the element FrobT̂q cuts out a particular eigenspace of H∗(Y0(q); Λ).
Recall that we have two different projection maps π1, π2 : Y0(q) ⇒ Y (K). By [Ven, eqn. (144);

cf. §8.16 and Lemma 8.17], the action of β(a) ∈ Hq(Λ)1 on H∗(Y (K); Λ) is given by:

Pullback (via π1) to Y0(q), project to FrobT̂q -eigenspace, cup with β(a′), and push-
down (via π2) to Y (K).

In equations, β(a) ∈ Hq(Λ)1 sends y ∈ H∗(Y (K); Λ)m to

π2∗(β(a′) ^ Θ ? π∗1(y))

where Θ is the idempotent projector onto the FrobT̂q eigenspace (the notation is chosen to match
the Θ in [Ven, Lemma 8.17]). Since the Bockstein β is a derivation with respect to the cup product,
and commutes with finite pullbacks and pushforwards, we have

π2∗(β(a′) ^ x) = π2∗(β(a′ ^ Θ ? π∗1(y))− a′ ^ β(Θ ? π∗1y))

= π2∗(β(a′ ^ Θ ? π∗1y))− π2∗(a
′ ^ Θ ? π∗1β(y)) (6.5.3)

Now, the commutative diagram

O O O/pmO

O/pmO O/p2mO O/pmO

pm

shows that for any space Y , the Bockstein β factors through

H∗(Y ;O/pmO)→ H∗+1(Y ;O)[pm]
reduce−−−−→ H∗+1(Y ;O/pmO).

Hence the first term π2∗(β(a′ ^ Θ ? π∗1y)) in (6.5.3) is the reduction of a class in H∗(Y (K);O)[pm],
but this must vanish by our torsion-freeness assumption in §6.1. Similarly, the second term π2∗(a

′ ^
Θ ? π∗1β(y)) in (6.5.3) vanishes because β(y) already vanishes.
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6.5.2. The Galois side. We unravel the map ∧2V∗ ⊗O Λ → H2(Tq; Λ)prim from (6.5.1). We must
show that it is 0. By definition, it comes from the sequence of steps:

(1) The identification ∧2V∗ ⊗O Λ
∼−→ π2(RS

L
⊗O Λ) obtained by inverting §6.2.3.

(2) The co-action map

π2(RS
L
⊗O Λ)

co−act−−−−→ π2(SHk
q

L
⊗Sur

q
RS

L
⊗O Λ).

(3) The projection map

π2(SHk
q

L
⊗Sur

q
RS

L
⊗O Λ)

project−−−−→ π2(SHk
q

L
⊗O Λ)⊗Sur

q ⊗OΛ π0(RS
L
⊗O Λ).

(4) The identification π2(SHk
q )⊗Sur

q
π0(RS)⊗Λ = H2(Tq; Λ) coming from (3.4) and the assump-

tion π0(RS) = O.
(5) The projection H2(Tq; Λ)→ H2(Tq; Λ)prim.

This is summarized in the diagram

∧2V∗ ⊗O Λ π2(RS
L
⊗O Λ) π2(SHk

q

L
⊗Sq RS

L
⊗O Λ)

π2(SHk
q

L
⊗O Λ)⊗Sur

q
π0(RS) H2(Tq; Λ) H2(Tq; Λ)prim.

∼ co-act

project Cor.3.4
∼

6.5.3. Transfer to Andre-Quillen homology. By the same reasoning as for (6.4.1), we have a com-
mutative diagram

∧2V∗ ⊗O Λ

π2(RS
L
⊗O Λ) D2

Z(RS ; Λ)∗

π2(RS ⊗Sur
q
SHk
q

L
⊗O Λ) D2

Z(RS
L
⊗Sur

q
SHk
q ; Λ)∗

π2(SHk
q

L
⊗Sur

q
π0RS

L
⊗O Λ) D2

Z(SHk
q

L
⊗Sur

q
π0RS ; Λ)∗

π2(Λ
L
⊗Λ[Tq ] Λ) D2

Z(Λ
L
⊗Λ[Tq ] Λ; Λ)∗

H2(Tq; Λ) H2(Tq; Λ)prim

∼§6.2.3

co-act co-act

project project

∼ (3.3.1) ∼ (3.3.1)

Cor. 3.4∼ §3.4.5∼

(6.5.4)

As described above, the map in (6.5.1) is obtained by starting with ∧2V∗ ⊗O Λ and then tracing
downwards along the left edge of the diagram, and then projection to H2(Tq; Λ)prim. By Proposition

A.3, the map π2(Λ
L
⊗Λ[Tq ] Λ) → D2

Z(Λ
L
⊗Λ[Tq ] Λ; Λ)∗ is an isomorphism. Therefore, to show that

(6.5.1) is 0 it suffices to show that tracing downwards along the right edge of the diagram also gives
0. But by [GV18, Lemma 15.1] we have

D2
Z(RS ; Λ) ∼= H3

f (Z[1/S]; Ad ρΛ)
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and the latter vanishes because its Λ-dual is a subspace of H0(Z[1/S]; Ad∗ ρΛ(1)) by global duality
for Galois cohomology [GV18, Theorem B.1], which vanishes by our assumptions that ρ is irreducible,
and G is semisimple.

Appendix A. Some simplicial commutative algebra

A.1. Free simplicial commutative algebras. Recall that the forgetful functor U from simplicial
commutative rings to simplicial sets admits a left adjoint F which fits into a Quillen adjunction.
Given a simplicial set X•, we call FX = Z[X•] the “free simplicial commutative ring on X•”. This
can be described explicitly – see [Iye07, §4.1]. The analogous facts hold for simplicial R-algebras.
Given a discrete ring R, the “free simplicial R-algebra on a generator degree n” is obtained by taking
the free R-algebra on a simplicial set corresponding to the n-sphere Sn, and more generally we can
perform this construction iteratively to form a “free simplicial R-algebra on a set of a generators”.

Lemma A.1. Let R be a discrete ring and R[x1, y2] the free simplicial commutative ring on a
generator x1 in degree 1 and y2 in degree 2. Then

π∗(R) = ∧∗R〈x1〉 ⊗ Γ∗R〈x2〉

where Γ∗R denotes the divided power algebra.

Proof. This follows from [Qui68, Corollary 7.30]. �

Lemma A.2. Assume q ≡ 1 ∈ Λ. Then the algebra SHk
q

L
⊗O Λ is free over Sur

q ⊗OΛ on r generators
in degree 1 and r generators in degree 2, where r = rank(G).

Proof. By (3.3.1) it suffices to show that Λ
L
⊗Λ[G] Λ is free over Λ on generators in degree 1 and 2,

where G = (Z/pn)r, and Λ = Z/pm with m ≤ n.
By the compatibility of the claim with tensor products, we reduce to the case r = 1, so G =

(Z/pnZ). The group homology of cyclic groups is well-known, and in this case we have a Λ-algebra
isomorphism.

H∗(G; Λ) = ∧∗Λ〈x1〉 ⊗ Γ∗Λ〈y2〉. (A.1.1)

The choice of generators x,x2 above induces a map from the free simplicial Λ-algebra on generators
in x′1 in degree 1 and x′2 in degree 2:

Λ[x′1, y
′
2]→ Λ

L
⊗Λ[G] Λ

sending x′1 7→ x1 and x′2 7→ x. This induces an isomorphism on homotopy groups by (A.1.1) and
Lemma A.1, and is therefore a weak equivalence. �

Now we contemplate the Hurewicz map from §6.2.3 for SHk
q . We take our augmentation to be

the composition

ε : SHk
q → π0(SHk

q ) = Sur
q

χ−→ O.
For a discrete O-module M , it gives a pairing

πi(SHk
q

L
⊗O Λ)× Liftε(SHk

q ,O ⊕M [i])→M. (A.1.2)

Note that Liftε(SHk
q ,O ⊕M [i]) can be identified with DZ

i (SHk
q ,M).

Proposition A.3. Assume q ≡ 1 ∈ Λ. Then the map

πi(SHk
q

L
⊗O Λ)→ Di

Z(SHk
q ; Λ)∗︸ ︷︷ ︸

Λ-linear dual of DiZ(SHk
q ; Λ)

,

induced by (A.1.2), is an isomorphism for i = 1, 2.
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Proof. By Lemma A.2 and the fact that Sur
q is free over O, it suffices to check that the analogous

map

πi(Λ[x1, y2])→ Di
Z(Λ[x1, y2]; Λ)∗, (A.1.3)

is an isomorphism for i = 1, 2. Note that

Di
Z(Λ[x1, y2]; Λ) ∼= Hom(Λ[x1, y2]; Λ⊕ Λ[i]).

By freeness, a homomorphism Λ[x1, y2] → Λ ⊕ Λ[i] is determined by where it sends x1, x2. This
shows that (A.1.3) is surjective in degrees i = 1, 2. Since all of these groups are isomorphic to Λ by
inspection, and this is finite, they are necessarily also isomorphisms. �

A.2. Compatibility of two identifications. We will check that the diagram

π1(Λ
L
⊗Λ[Tq ] Λ) D1

Z(Λ
L
⊗Λ[Tq ] Λ; Λ)∗ t1(Fibq,Λ)∗

H1(Tq; Λ) H1(Tq; Λ) H1(Tq; Λ)

§6.2.3

Cor. 3.4∼ ∼ ∼ §3.4.4

commutes. This is the bottom left subdiagram of (6.4.1). (By Proposition A.3 we know that the
upper horizontal arrows are isomorphisms, but we are claiming that they are given by the identity
map under the vertical identifications.)

The point is that we want to show that our identifications

π1(Λ
L
⊗Λ[Tq ] Λ)

Cor. 3.4−−−−−→ H1(Tq; Λ) and D1
Z(Λ

L
⊗Λ[Tq ] Λ; Λ)∗

§3.4.4−−−−→ H1(Tq; Λ)

are intertwined by the map of §6.2.3.

Let us spell out the map D1
Z(Λ

L
⊗Λ[Tq ] Λ; Λ)∗

§3.4.4−−−−→ H1(Tq; Λ) in more detail. Let Λ[δn] = Λ⊕Λ[n]
be the square-zero extension in degree n, as in §6.2.3. Then we have (cf. [GV18, proof of Lemma
3.11])

Λ
h
×Λ[δn] Λ ≈ Λ[δn−1]. (A.2.1)

What was used in §3.4.4 is that D1
Z(Λ

L
⊗Λ[Tq ] Λ; Λ) ∼= D0

Z(Λ[Tq]; Λ), which we now explicate:

D0
Z(Λ[Tq]; Λ) ∼= Liftε(Λ[Tq],Λ[δ0])

[(A.2.1) =⇒ ] ∼= Liftε(Λ[Tq],Λ
h
×Λ[δ1] Λ)

[universal property =⇒ ] ∼= π0(pt
h
×SCRε(Λ[Tq ],Λ[δ1]) pt)

= Liftε(Λ
L
⊗Λ[Tq ] Λ,Λ[δ1])

∼= D1
Z(Λ

L
⊗Λ[Tq ] Λ; Λ)

Writing I ⊂ Λ[Tq] for the augmentation ideal over Λ, we have

Liftε(Λ[Tq],Λ[δ0])
∼−→ Hom(I/I2,Λ)

by restricting an augmented homomorphism Λ[Tq] → Λ[δ0] to I, where it factors through I/I2. In

turn, Hom(I/I2,Λ) is identified H1(Tq; Λ) via the isomorphism I/I2 ∼−→ Tq ⊗Z Λ sending [t]− [e] 7→
t⊗ 1.

Next we recall how we are identifying π1(Λ
L
⊗Λ[Tq ] Λ)∗ = H1(Tq; Λ)

∼−→ I/I2. This comes from
the homotopy fiber sequence of simplicial Λ-modules

I
L
⊗Λ[Tq ] Λ Λ Λ

L
⊗Λ[Tq ] Λ
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which induces

π1(Λ
L
⊗Λ[Tq ] Λ)

∼−→ π0(I
L
⊗Λ[Tq ] Λ)

∼−→ I/I2 ⊗Z Λ
∼−→ Tq ⊗Z Λ.

Finally, we will compare these identifications under the map π1(Λ
L
⊗Λ[Tq ] Λ)

§6.2.3−−−−→ D1
Z(Λ

L
⊗Λ[Tq ]

Λ; Λ)∗. An element of D1
Z(Λ

L
⊗Λ[Tq ] Λ; Λ) is the homotopy class of a Λ-augmented homomorphism

f ′ : Λ
L
⊗Λ[Tq ] Λ→ Λ[δ1]. As discussed above, the computation of D1

Z(Λ
L
⊗Λ[Tq ] Λ; Λ) is based on the

equivalence between the datum of f ′ and the datum of a map f : Λ[Tq]→ Λ[δ0], which is equivalent
to a map I/I2 = Tq ⊗Z Λ→ Λ. We need to compute the effect of the map

π1(f ′) : π1(Λ
L
⊗Λ[Tq ] Λ)→ π1(Λ[δ1]) = Λ. (A.2.2)

For this we can forget the ring structure and compute at the level of simplicial Λ-modules. Then we
have two exact triangles of simplicial Λ-modules:

I
L
⊗Λ[Tq ] Λ Λ Λ

L
⊗Λ[Tq ] Λ

Λ[δ0] Λ Λ[δ1]

and so (A.2.2) is identified with the map

π0(f ′) : π0(I
L
⊗Λ[Tq ] Λ)→ π̃0(Λ[δ0]) = Λ

where π̃ denotes reduced homology (i.e. removing the contribution from π0(Λ)). This map can be

read off from f : identifying π0(I
L
⊗Λ[Tq ] Λ) = I⊗Λ[Tq ]Λ = I/I2, it is simply given by the restriction

of f to I (which then factors through I/I2). After a bit of unwrapping, one finds that this is exactly
the desired compatibility.
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Ind., 1980), Progr. Math., vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 21–55. MR 642850
[BW00] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive

groups, second ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society,
Providence, RI, 2000. MR 1721403

[CG18] Frank Calegari and David Geraghty, Modularity lifting beyond the Taylor-Wiles method, Invent. Math.

211 (2018), no. 1, 297–433. MR 3742760
[DS95] V. G. Drinfeld and Carlos Simpson, B-structures on G-bundles and local triviality, Math. Res. Lett. 2

(1995), no. 6, 823–829. MR 1362973

[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New
York, 1995, With a view toward algebraic geometry. MR 1322960

[Gai15] Dennis Gaitsgory, Outline of the proof of the geometric Langlands conjecture for GL2, Astérisque (2015),
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