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Abstract. Lafforgue and Genestier-Lafforgue have constructed the global and (semisim-
plified) local Langlands correspondences for arbitrary reductive groups over function
fields. We establish various properties of these correspondences regarding functoriality
for cyclic base change: For Z/pZ-extensions of global function fields, we prove the exis-
tence of base change for mod p automorphic forms on arbitrary reductive groups. For
Z/pZ-extensions of local function fields, we construct a base change homomorphism for
the mod p Bernstein center of any reductive group. We then use this to prove existence
of local base change for mod p irreducible representation along Z/pZ-extensions, and
that Tate cohomology realizes base change descent, verifying a function field version of
a conjecture of Treumann-Venkatesh.

The proofs are based on equivariant localization arguments for the moduli spaces of
shtukas. They also draw upon new tools from modular representation theory, including
parity sheaves and Smith-Treumann theory. In particular, we use these to establish a
categorification of the base change homomorphism for mod p spherical Hecke algebras,
in a joint appendix with Gus Lonergan.
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1. Introduction

In this paper we prove several results on cyclic base change in the Langlands correspon-
dence over function fields. To set the context for our results, let us recall some history.
Global cyclic base change functoriality for reductive groups over number fields, established
over many years in increasing generality by work of Saito [Sai77], Shintani [Shi79], Lang-
lands [Lan80], Arthur-Clozel [AC89], Labesse [Lab99], Harris-Labesse [HL04] and others for
cuspidal automorphic representations with characteristic zero coefficients (under some tech-
nical assumptions for general groups), is one of the major triumphs of Langlands’ program
thus far. In addition to its initial applications towards Artin’s Conjecture, it plays a crucial
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role in much subsequent work, such as in automorphy lifting arguments following in the
tradition of Wiles, Taylor, etc.

Our main progress in the present paper is on understanding cyclic base change in the
Local Langlands correspondence, which was constructed (in a semisimplified form) for all
reductive groups over local function fields by Genestier-Lafforgue [GL]. The proof (over
number fields) of global cyclic base change is founded upon the twisted trace formula, a tool
which does not seem to apply to our (local and mod p) context, and is in any case currently
unavailable over function fields due to non-trivial analytic difficulties. We introduce a new
strategy, which we use to prove the first general existence results for local base change
of all irreducible representations of arbitrary reductive groups over local function fields.
Furthermore, we establish descent theorems for cyclic base change that were conjectured
by Treumann-Venkatesh; these are new even for specific groups such as GLn where the full
Local Langlands correspondence (hence in particular the existence of local base change) is
already known. These advances involve the construction of a base change homomorphism
for Bernstein centers, as has been envisaged by Haines in the case of characteristic zero
coefficients. En route to the local results we establish new global results as well: we prove
the first general existence theorem for cyclic base change of mod p automorphic forms
on arbitrary reductive groups over global function fields, again without any trace formula
arguments. A major novelty of these results is their applicability to completely general
groups and representations.

The proofs assemble a diverse selection of tools ranging from topology (particularly
equivariant localization and Tate cohomology) to arithmetic geometry (of moduli stacks
of shtukas) to p-adic groups (exploiting new constructions with Hecke algebras and Bern-
stein centers) to modular representation theory (using crucially the recent inventions of
parity sheaves and Treumann-Smith theory).

We now proceed to give more precise descriptions of our results.

1.1. Local results. Genestier-Lafforgue have constructed a semi-simplified form of the Lo-
cal Langlands correspondence over function fields [GL]. More precisely, let Fv be a local
field of positive characteristic not equal to p and Wv the Weil group of Fv. Let k be an
algebraic closure of Fp.1 For any reductive group G over Fv, [GL] constructs a map{

irreducible admissible representations
π of G(Fv) over k

}
/ ∼ −→

{
semi-simple L-parameters

ρπ : Wv → LG(k)

}
/ ∼ .

(1.1)

Here LG is Langlands’ L-group, regarded over k.
Langlands’ principle of functoriality predicts that given two reductive groups H and G

over Fv, and a map of L-groups ϕ : LH → LG, every L-packet of irreducible representations
of H(Fv) should admit a “transfer” to G(Fv) compatible with ϕ. In this paper we are
concerned with a specific type of functoriality: base change functoriality, arising from the
case where H is any reductive group over Fv, and G = ResEv/Fv

(HEv
) for a cyclic p-

extension Ev/Fv. The relevant map ϕBC :
LH → LG is characterized by the property that

it is admissible and induces the diagonal embedding on their underlying identity connected
components (i.e., the respective Langlands dual groups). We emphasize that it is crucial
for our results that the degree of the extension coincides with the characteristic of our

1In this paper our varieties are over fields of characteristic not equal to p while our coefficients are of
characteristic p. This is to adhere to standard notational conventions for Smith theory; unfortunately, it is
at odd with standard notational conventions in arithmetic geometry.
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representations. In this situation, let us say that an irreducible representation Π of G(Fv)
is a base change of an irreducible representation π of H(Fv) if ϕBC ◦ ρπ ∼= ρΠ.

Theorem 1.1 (Existence of local base change). Let π be any irreducible representation of
H(Fv) over k. Then a base change of π to G(Fv) exists.

For H = GLn, a full Local Langlands correspondence has been established by Vignéras
[Vig01], giving a much more precise result than Theorem 1.1. It seems reasonable to ex-
pect that Vignéras’ methods could (eventually) be extended to some classical groups, after
the stabilization of the twisted trace formula for automorphic forms over function fields is
achieved. The novelty of Theorem 1.1 is that it applies uniformly to all reductive groups,
and all irreducible representations. A motivation for Theorem 1.1 is a program of the author
to compute explicitly the Genestier-Lafforgue parameters of explicit supercuspidal represen-
tations, such as those arising in [CO]; this depends on the residue field being “large enough”,
so is convenient to be able to make an unramified base change.

We also prove a descent result for the above base change situation which was conjectured
by Treumann-Venkatesh, and is new even for H = GLn whenever n > 1. Let σ be a
generator2 of Gal(Ev/Fv); it acts on G and its induced action on G(Fv) = H(Ev) is the
Galois action. It is expected that if the isomorphism class of a k-representation Π of G(Fv)
is preserved by σ, then it should come from base change. For any irreducible admissible
representation Π of G(Fv) whose isomorphism class is fixed by σ, there is a unique σ-
action on Π compatible with the G(Fv)-action (Lemma 6.16). Hence we can form the Tate
cohomology groups T 0(Π), T 1(Π) with respect to the σ-action (cf. §3.4), which retain actions
of H(Fv) = G(Fv)

σ, and are conjecturally admissible H(Fv)-representations. We prove:

Theorem 1.2 (Tate cohomology realizes cyclic base change). Assume p is an odd good
prime3 for Ĝ. Let Π be an irreducible representation of G(Fv) whose isomorphism class
is fixed by σ, and Π(p) := Π ⊗k,Frob k the Frobenius twist of Π. Let π be any irreducible
admissible subquotient of T 0(Π) or T 1(Π) as an H(Fv)-representation and ρπ : Wv → LH(k)
be the corresponding L-parameter constructed by Genestier-Lafforgue. Then ϕBC◦ρπ ∼= ρΠ(p) .

This verifies, for the Genestier-Lafforgue construction of the semi-simplified Local Lang-
lands correspondence, a Conjecture of Treumann-Venkatesh [TV16, Conjecture 6.3] that
“Tate cohomology realizes functoriality”. It had previously been proved for certain depth-
zero supercuspidal representations of GLn(Fv) by Ronchetti [Ron16], by direct calculation
of the Tate cohomology and comparison to Vignéras’ work. The difficulty of the calcula-
tions, even in those special cases, made them inaccessible to generalization. By contrast,
our proof applies uniformly for all groups and all representations under only a very mild
condition on p, and is completely conceptual; in particular, it avoids any computations with
specific models of representations, for example as compact inductions of Deligne-Lusztig
representations.

Remark 1.3. In [BFH+], we will compute Tate cohomology for an interesting class of
supercuspidal representations (of arbitrary depth) studied by Chan-Oi [CO], which provides
many examples where Theorem 1.2 can be made very concrete.

2The choice of generator is made for convenience of notation; all constructions involving it will be
manifestly independent of the choice.

3Explicitly, this means that we require p > 2 if Ĝ has simple factors of type A,B,C or D; p > 3 if Ĝ has
simple factors of type G2, F4, E6, E7; and p > 5 if Ĝ has simple factors of type E8.
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We now proceed to describe our third main local result. Recall that the Bernstein center
(with coefficients in k) of G(Fv), denoted Z(G), is the ring of endomorphisms of the identity
functor on the category of smooth G(Fv)-representations (on k-vector spaces). Informally
speaking, an element of Z(G) is represented by a system of compatible endomorphisms of
all smooth G(Fv)-representations (commuting with the G(Fv)-action). In particular, Z(G)
acts on any irreducible smooth G(Fv)-representation Π through a character χΠ : Z(G) →
k. Furthermore, the correspondence (1.1) turns out to assign isomorphic L-parameters to
irreducible representations inducing the same character of Z(G). The ideas used to establish
the preceding theorems also allow us to construct a base change homomorphism between the
Bernstein centers of G(Fv) and H(Fv) with the property detailed in the following Theorem.

Theorem 1.4 (Base change homomorphism for Bernstein centers). Assume p is an odd
good prime for Ĝ. Then there is a homomorphism

Z(G)
ZTV−−−→ Z(H)

such that for each irreducible H(Fv)-representation π, the character χπ ◦ ZTV : Z(G)
ZTV−−−→

Z(H)
χπ−−→ k has the property that for any irreducible G(Fv)-representation Π on which Z(G)

acts through χπ ◦ZTV, there is an isomorphism of semi-simple L-parameters ρΠ ∼= ϕBC ◦ρπ.

A base change homomorphism for Bernstein centers, with characteristic zero coefficients,
has been sought by Haines [Hai14], and was constructed in some low-depth cases [Hai09,
Hai12] (cf. also [Fen20] for the function field case). Haines also constructed a base change
homomorphism for the stable Bernstein center of general groups, which in the case of GLn

coincides with the Bernstein center; since the stable Bernstein center is defined directly in
terms of Galois representations, this is rather more direct. Our Theorem 1.4 is somewhat
different since it concerns characteristic p, but it is the first such construction that applies
to general groups and depth. Its generality and provable connection to the Local Langlands
correspondence make it rather new and compelling evidence for Haines’ vision.

Remark 1.5. The construction of the map ZTV applies equally well for local fields of char-
acteristic 0 having residue characteristic distinct from p. However, our argument for proving
that it has the “correct” effect in terms of the Local Langlands correspondence only works
for function fields. The future work [Fen] aims to prove analogous results with respect to
Fargues-Scholze’s construction [FS] of the (semisimplified) local Langlands correspondence
for arbitrary local fields.

1.2. Global results. Although our most striking progress is on the local Langlands corre-
spondence, we also obtain new results in the global Langlands correspondence. In fact, the
local results mentioned above are themselves deduced from analysis of Lafforgue’s machine
for constructing the global Langlands correspondence.

Now let G be a reductive group over a global function field F , of characteristic not equal to
p. Vincent Lafforgue has constructed in [Laf18, §13] a global “mod p” Langlands correspon-
dence, decomposing the space of cuspidal automorphic functions C∞

cusp(G(F )\G(AF ), k)

into summands indexed by semi-simple L-parameters, which are certain Ĝ(k)-conjugacy
classes of continuous homomorphisms ρ : Gal(F s/F )→ LG(k). Work of Cong Xue [Xue20,
Xuea, Xueb] extends Lafforgue’s theory to the space of all compactly supported automor-
phic functions, C∞

c (G(F )\G(AF ), k). See §5.2.4 for a more precise discussion. Let us call
an L-parameter ρ automorphic if it arises from Lafforgue(-Xue)’s construction.

Let H be a reductive group over F , and G = ResE/F (HE) for a cyclic p-extension E/F .
The relevant map ϕBC :

LH → LG is the diagonal on the identity connected components.
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Theorem 1.6 (Existence of global base change). Assume p is an odd good prime for Ĝ. If
ρ : Gal(F s/F )→ LH(k) is automorphic, then ϕBC◦ρ : Gal(F s/F )→ LG(k) is automorphic.

We comment on the relation of Theorem 1.6 to other base change theorems known in
global contexts. To appreciate this it is important to highlight the distinction between
“weak base change”, which is determined Hecke eigensystems at almost all places of the
global function, and “strong base change” as provided by Theorem 1.6, which concerns the
entire L-parameter. These notions are equivalent for H = GLn, but for general groups
“strong base change” is a strictly stronger notion. Indeed, Lafforgue’s correspondence can
assign different Langlands parameters to Hecke eigenfunctions with the same unramified
eigensystem; in fact, it can even assign different parameters to different automorphic forms
generating isomorphic automorphic representations4, with examples occurring already for
SLn when n ≥ 3 [Bla94, Lap99]. The reason for this is the failure of local conjugacy to
imply global conjugacy; see [Laf18, §0.7] for more discussion of this phenomenon.

Remark 1.7. The distinction between weak and strong base change can be quite impor-
tant in applications. For example, recent work of Sawin-Templier [ST21] shows that the
Ramanujan Conjecture for cuspidal automorphic forms satisfying appropriate local condi-
tions is implied by a strong form of cyclic base change, but weak base change does not suffice
for their argument.

Our proof of Theorem 1.6 is inspired by work of Treumann-Venkatesh [TV16], which
establishes existence of “weak base change” for the cohomology of locally symmetric spaces.
The analogue of [TV16] in the function field context would guarantee the existence of a
“weak base change” for mod p automorphic forms. The work of Treumann-Venkatesh is
about Hecke operators, but in the function field context it is possible to go beyond Hecke
operators to Lafforgue’s excursion operators, and this is necessary to obtain “strong base
change”; it is also what provides our handhold on the Local Langlands correspondence.

Over number fields, weak base change results with characteristic zero coefficients are
known using the twisted trace formula, for all cuspidal automorphic representations of GLn

[AC89] or, on more general groups, cuspidal automorphic representations satisfying certain
local conditions [Lab99]. Over function fields the analogous results are known for H =
GLn because the full global Langlands correspondence is already known in that case, again
using the trace formula. But there are analytic difficulties in the theory of the twisted
trace formula over function fields, which prevent parallel results from being known more
generally. Instead, forthcoming work [BFH+] will combine Theorem 1.6 with automorphy
lifting theorems, generalizing those of [BHKT19], in order to obtain existence of cyclic
order p base change for automorphic forms on split semisimple groups with characteristic
0 coefficients, for sufficiently large p and under a “large image” assumption (the latter is
needed to make the notions of weak and strong base change coincide).

1.3. Remarks on the proofs. We emphasize at the outset that our arguments make no
use of the traditional tool for analyzing cyclic base change, namely the twisted trace formula
(which is in any case unavailable in our situation). Any serious discussion of the proofs of our
main results would require an explanation of the construction of Lafforgue’s and Genestier-
Lafforgue’s correspondences, in addition to a number of other ideas and definitions. To
prevent this introduction from becoming overly technical, we confine ourselves to vague
hints here.

4This implies that there is a difference between strong base change and an intermediate notion of base
change which demands compatibility with local base change at every place (not just the unramified ones).
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The Genestier-Lafforgue correspondence is characterized by local-global compatibility, so
the main input to the local results comes from an analysis of the global situation. The
Global Langlands parametrization is extracted from the cohomology of moduli stacks of
shtukas. This idea goes back to Drinfeld [Dri87], who introduced it to establish the global
Langlands correspondence for GL2 over function fields, later extended to GLn by Laurent
Lafforgue [Laf02]. For general groups, the role that Langlands’ L-group LG should play
presented a puzzle that was definitively resolved by Vincent Lafforgue: via the Geometric
Satake equivalence, the category Rep(LG) naturally indexes perverse sheaves that lives on
the moduli stacks of G-shtukas, called ShtG.

Summarizing roughly, the global Langlands correspondence involves two major inputs:

(1) A “topological” input, wherein the p-adic cohomology of spaces ShtG supplies inter-
esting Gal(F s/F )-representations.

(2) A representation-theoretic input, wherein L-parameters into LG are extracted using
that the coefficient sheaves for these cohomology groups are indexed functorially by
Rep(LG).

This will be explained more in §5. For now it is enough to appreciate that in order to
produce a functorial transfer from H to G, we then need to address both of these aspects
of Lafforgue’s construction. More precisely, we need to:

(1) Show that cohomology classes on ShtH can be “transferred” to cohomology classes
on ShtG.

(2) Give a geometric interpretation of the restriction functor Rep(LG) → Rep(LH) at
the level of perverse sheaves.

The immediate difficulty of (1) is that in general there is not so much as a non-trivial map
relating ShtH and ShtG. In the base change situation there is a natural map, but it is
not even Hecke-equivariant, nor is it clear a priori that the map is not too destructive to
cohomology groups. Ultimately, we solve (1) in our situation by looking at Tate cohomology
instead of cohomology, and using a form of equivariant localization that relates the Tate
cohomology of a space and its fixed points under a Z/pZ-action. Here we were inspired by
work of Treumann-Venkatesh [TV16], where it was shown that such equivariant localization
for locally symmetric spaces realized functoriality in that context.

For (2), the obvious difficulty in general is again that we are seeking to transport sheaves
between two spaces that are not connected by any visible non-trivial geometric maps. In
the base change situation there is a map, but the obvious functors it induces on sheaves do
not come close to having the desired effect. In some sense, the problem is a categorified and
local version of the problem in the previous paragraph. Our solution to this problem passes
through certain “exotic” localizations of categories of sheaves called Tate categories, which
can be seen as a categorification of Tate cohomology. The point is, vaguely speaking, that
the desired relations of functoriality are satisfied in the relevant Tate categories. However,
this does not interface well with Lafforgue’s construction because localization to the Tate
category does not interact well with the theory of perverse sheaves; our second main idea
here is that this can be fixed by reworking the theory in terms of parity sheaves invented by
Juteau-Mautner-Williamson [JMW14]. Here we were inspired by work of Leslie-Lonergan
[LL21], which used these tools to give a geometric interpretation of the Frobenius contraction
functor in modular representation theory. (The key idea that parity sheaves play well with
localization to the Tate category is also at the heart of recent work of Riche-Williamson
[RW22].) Ultimately, we are able to construct a “base change functor” that categorifies the
base change homomorphism for spherical Hecke algebras, and which is suitable for input into
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the global setup. The construction is completed in the joint Appendix with Gus Lonergan.
To complete the proofs of the local results, we also need to exploit some new constructions

with local Hecke algebras, in particular the base change homomorphism ZTV for Bernstein
centers. A key insight in [TV16] is that the base change homomorphism for spherical Hecke
algebras admits a more “geometric” description when the field extension is cyclic of order p
and the coefficients also have characteristic p. We generalize this observation to the centers
of higher depth Hecke algebras, and then to the Bernstein center, by an analysis of Hecke
algebras with respect to the subgroups coming from the Moy-Prasad filtration at a special
vertex of the Bruhat-Tits building of G.

1.4. Organization of the paper. The outline of this paper is as follows.
In §2, we define excursion algebras and recall their relation to Langlands parameters. We

explain functoriality from the perspective of excursion algebras.
In §3, we generalize the basic framework of sheaf-theoretic Smith theory from [Tre19,

RW22], which worked for topological spaces and finite type schemes respectively, to locally
finite type schemes. This is needed because our spaces of interest are not of finite type.
More specifically, we introduce the notion of Tate categories, the Smith functor Psm and its
properties, Tate cohomology, and explain the relation to classical equivariant localization
theorems for Z/pZ-actions.

In §4, we recall the fundamentals of parity sheaves due to Juteau-Mautner-Williamson,
and the analogous notion of “Tate-parity sheaves” due to Leslie-Lonergan. We explain
how to combine these with the functor Psm to construct a base change functor for parity
objects in the Satake category. This functor plays the categorified role of the base change
homomorphism for Hecke algebras.

In §5, we prove a collection of global results, including Theorem 1.6. First we recall
background on moduli spaces of shtukas and Lafforgue’s global Langlands correspondence
in terms of actions of the excursion algebra on the cohomology of shtukas. Then we es-
tablish certain equivariant localization isomorphisms for the Tate cohomology of shtukas in
the setting of Z/pZ-base change, which gives relations between excursion operators in the
context of functoriality. These are used later in the local applications, and Theorem 1.6 is
also deduced as an application.

In §6 we prove our local results. We review the relevant aspects of the Genestier-Lafforgue
correspondence. After analyzing the Brauer homomorphism for Hecke algebras with respect
to subgroups arising from the Moy-Prasad filtration, we are able to construct the map
ZTV from Theorem 1.4, which we then establish using the global theory and local-global
compatibility. Finally, we deduce Theorem 1.1 and Theorem 1.2.

1.5. Acknowledgments. We thank Jean-François Dat, David Helm, Gus Lonergan, Si-
mon Riche, Gordan Savin, David Treumann, Marie-France Vignéras, Geordie Williamson,
Zhiwei Yun, and Xinwen Zhu for helpful correspondence related to this work. We thank
Laurent Clozel, Jesper Grodal, Tom Haines, and Michael Harris for comments on a draft.
We especially thank Michael Harris for many stimulating questions, which led us to dis-
cover several new results and applications after the initial version of this paper. The paper
benefited immensely from many comments and corrections by the incisive referee, who in
particular suggested a big simplification of the proof of Proposition 6.3. During the writing
of this paper, the author was supported by an NSF Postdoctoral Fellowship under grant
No. 1902927, as well as the Friends of the Institute for Advanced Study.

1.6. Notation.
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• (Coefficients) We let k be an algebraic closure of Fp (considered with the discrete
topology).

In general we will consider geometric objects over fields of characteristic ̸= p, and
étale sheaves over p-adically complete coefficients.

• (σ-actions) Throughout the paper, σ denotes a generator of a group isomorphic to
Z/pZ. When we say that a widget has a “σ-action”, what we mean is that the
widget has an action of a cyclic group of order p with chosen generator σ.

Let N := 1 + σ + . . . + σp−1 ∈ Z[σ]. We will also denote by N the induced
operation on any Z[σ]-module.5

If A is a ring or module for Z[σ], then Aσ denotes the σ-invariants in A.
• (Reductive groups) For us, reductive groups are connected by definition. The Lang-

lands dual group Ĝ is considered as a split reductive group over k. For our conven-
tions on the L-group, see §2.1.

For any group, 1 denotes the trivial representation (with the group made clear
by context).

• (Derived categories of sheaves) If Y is a locally finite type stack and Λ is a coef-
ficient ring in which the characteristic of Y is invertible, we let Db

c(Y ; Λ) denote
the bounded constructible derived category of étale sheaves over Λ; by this we
mean complexes whose restriction to any quasi-compact open substack U ⊂ Y lie
in Db

c(U ; Λ).
We shall also have occasional to consider larger categories of sheaves, where the

constructibility condition is weakened. We let Db(Y ; Λ) denote the bounded derived
category of étale sheaves over Λ that are ind-constructible. In other words, it is the
full subcategory of the (co-complete) category D(Y ; Λ), of ind-constructible étale
sheaves over Λ, spanned by the bounded objects.

If S = {Yλ} is a stratification of Y , then we denote by Db
S(Y ; Λ) the full subcat-

egory of Db(Y ; Λ) consisting of complexes constructible with respect to the stratifi-
cation S.

• (Equivariant derived categories) If a (pro-)algebraic group Σ acts on Y , then we de-
note by Db

c,Σ(Y ; Λ) or Db
c(X; Λ)BΣ the Σ-equivariant bounded derived category of

constructible sheaves with coefficients in Λ. We denote by Db
Σ(Y ; Λ) or Db(X; Λ)BΣ

the analogous categories with the constructibility condition replaced by ind-constructibility,
as above.

When Λ = k we may suppress it from the notation, writing instead Db
c(Y ) :=

Db
c(Y ; k), etc.

• Functors between derived categories, e.g. f!, f∗, f !, f∗, will always denote the derived
functors.

2. Functoriality and the excursion algebra

In this section we formalize the abstract excursion algebra Exc(Γ, LG), a device used to
decomposable a space into pieces indexed by Langlands parameters. This notion appears
implicitly in [Laf18], but there it is the image6 of the abstract excursion algebra in a certain
endomorphism algebra which is emphasized.

5This is to be contrasted with the operation Nm, which will mean Nm(a) = a ∗ σ(a) ∗ . . . ∗ σp−1(a) in
the context where there is a monoidal operation ∗.

6This image is denoted B in [Laf18].
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Since we work with non-split groups, we first clarify in §2.1 our conventions regarding
L-groups. This is a bit subtle, as one finds (at least) two natural versions of the L-group
in the literature: the “algebraic L-group” LGalg, following Langlands, and the “geometric
L-group” LGgeom, derived from the Geometric Satake equivalence. The difference between
them is parallel to the difference between L-algebraicity and C-algebraicity emphasized in
[BG14].

We emphasize that the unadorned notation LG denotes the algebraic L-group, to be con-
sistent with [Laf18], although the geometric L-group is really what appears more naturally
in our arguments.

We introduce two explicit presentations for the excursion algebra in §2.2 and §2.4. The
first presentation is more natural for making the connection to Langlands parameters, which
we recall in 2.3. The second presentation is more amenable to constructing actions of the
excursion algebra, which makes it more convenient for our purposes, and it is the only one
that will be used in the sequel.

Finally in §2.5 we explain how functoriality is interpreted in terms of excursion algebras.

2.1. Conventions on L-groups and Langlands parameters. For a reductive group G

over a field F with separable closure Fs, we regard its Langlands dual group Ĝ as a split
reductive group over k. The L-group is a certain semi-direct product LG = Ĝ⋊Gal(Fs/F).
Actually, in the case where F is a local field we shall instead work with the “Weil form”
Ĝ⋊Weil(Fs/F). (This is just for consistency with [GL]; because we consider representations
over k, in our case it would make no difference to work with the Galois form.)

2.1.1. Algebraic L-group. In fact there are at least two conventions for the definition of the
L-group. The one which is more traditionally used in the literature is what we shall call
the algebraic L-group, denoted LGalg, defined as in [TV16, §2.5]. The root datum Ψ(G) of
GFs determines a pinning for Ĝ, which in turns gives a splitting Out(Ĝ) → Aut(Ĝ) and
an identification Aut(Ψ(G)) ∼= Out(Ĝ). The Gal(Fs/F)-action on Ψ(G) transports to an
action actalg of Gal(Fs/F) on Ĝ, and we define LGalg to be the semidirect product

LGalg := Ĝ⋊actalg Gal(Fs/F).

Since the action actalg factors through a finite quotient, we may regard LGalg as a pro-
algebraic group over k.

2.1.2. Geometric L-group. We now make a different construction of the L-group, using the
Tannakian theory, following [RZ15, Appendix A] and [Zhu17, §5.5]. We begin with the
Geometric Satake equivalence,

PL+GFs (GrG,Fs ; k) ∼= Repk(Ĝ).

The Galois group Gal(Fs/F) acts on GrG,Fs , inducing an action on the neutralized Tan-
nakian category (PL+GFs (GrG,Fs ; k), H∗(−)︸ ︷︷ ︸

fiber functor

). By [RZ15, Lemma A.1] this in turn in-

duces an action actgeom of Gal(Fs/F) on Ĝk. We define

LGgeom := Ĝk ⋊actgeom Gal(Fs/F).

In the case at hand we shall see that actgeom also factors through a finite quotient of
Gal(Fs/F), so we may also regard LGgeom as a pro-algebraic group.
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2.1.3. Relation between the two L-groups. The relation between these two actions is as fol-
lows. We let ρ be the half sum of positive coroots of Ĝ, and we denote by ρ : Gm → Ĝad the
corresponding cocharacter. With cycp : Gal(Fs/F) → F×

p denoting the mod p cyclotomic
character, let χ denote the composite

Gal(Fs/F)
cycp−−−→ F×

p ↪→ k×
ρ−→ Ĝad(k).

This induces a homomorphism Adχ : Gal(Fs/F)→ Aut(Ĝ).

Proposition 2.1. We have actgeom = actalg ◦Adχ.

Proof. When Ĝ is over Qp, this is [RZ15, Proposition 1.6]. More generally, it is established
in [FS, §VI.11] over any p-adic ring. □

Given a choice of lift χ̃ : Gal(Fs/F)→ Ĝ(k) of χ, which could for example come from a
square root of the mod p cyclotomic character, we get an isomorphism LGalg ∼−→ LGgeom by

(g, γ) 7→ (gχ̃(γ−1), γ). (2.1)

By [Zhu17, Remark 5.5.8], a square root of the cyclotomic character exists whenever char(F) >
0. (However, in general it can happen that LGalg and LGgeom are not isomorphic; for an
example see [Zhu17, Example 5.5.9].)

At different points we will want to consider both versions of L-groups. If we write LG
without a superscript, then by default we mean the algebraic L-group LGalg.

2.1.4. Representation categories. For any Galois extension F′/F such that GF′ is split, the
analogous construction to §2.1.1 gives a “finite form” algebraic L-group Ĝ⋊actalg Gal(F′/F).
We define the category of (k-linear) algebraic representations of LGalg to be

Repk(
LGalg) := lim−→

F′

Repk(Ĝ⋊actalg Gal(F′/F)).

Let Repk(LGgeom) := Repk(Ĝ)BGal(Fs/F),geom denote the category of continuously Gal(Fs/F)-
equivariant objects in Repk(Ĝ) with respect to the geometric action. The Geometric Satake
equivalence induces by descent an equivalence

PL+G(GrG; k) ∼= Repk(Ĝ)BGal(Fs/F),geom (2.2)

where the action of Gal(Fs/F) on Repk(Ĝ) on the RHS is via actgeom, and on the LHS, GrG
is considered over F. By definition, on the right side we take are taking objects on which
Gal(Fs/F) acts continuously with its Krull topology. Since k is algebraic over Fp, in this
case Repk(Ĝ)BGal(Fs/F),geom can be identified with lim−→F′/F

Repk(Ĝ)BGal(F′/F),geom where
the limit runs over finite Galois extensions F′/F over which the geometric action factors.

An isomorphism (2.1) gives an embedding Repk(
LGalg) ↪→ Repk(Ĝ)Gal(Fs/F),geom, which

as just remarked is an equivalence for our choice of k. See [RZ15, Proposition A.10] for a
description of the essential image in general.

2.1.5. L-parameters.

Definition 2.2. Let Γ be a topological group and Γ be a quotient of Γ acting on Ĝ. An
L-parameter from Γ to Ĝ(k) ⋊ Γ is a Ĝ(k)-conjugacy class of continuous homomorphisms
ρ : Γ → Ĝ(k) ⋊ Γ, which has the property that the composite map Γ → Ĝ ⋊ Γ → Γ is the
given quotient Γ↠ Γ.
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Equivalently, we may view ρ as an element of the continuous cohomology group H1
cts(Γ, Ĝ(k)),

where the action of Γ on Ĝ(k) is the given one (via Γ→ Γ) in the semi-direct product.
We will consider L-parameters with Ĝ(k)⋊Γ being either LĜalg(k) or LĜgeom(k), and Γ

being either Gal(F s/F ) for a global field F or Weil(F s
v /Fv) for a local field Fv.

Note that the algebraic Γ-action on Ĝ(k) factors through a finite quotient Γ↠ Gal(F′/F).
It is clear that L-parameters into LGalg(k) are in bijection (under restriction) with L-
parameters into Ĝ(k)⋊Gal(F′/F) for any such F′; indeed, the set of all such L-parameters
is identified with H1

cts(Γ, Ĝ(k)).
We say that a homomorphism ρ : Γ → LGalg(k) is semisimple7 if whenever it factors

though a parabolic LP alg(k) ⊂ LGalg(k), it also factors through a Levi LMalg(k) ⊂ LP alg(k)
(see [Bor79, §3] for the notion of parabolic and Levi subgroups of an L-group).

2.2. Presentation of the excursion algebra. Let Γ be a group, which is either Gal(F s/F )
for a global field F or Weil(F s/F ) for a local field F . Let G be a reductive group over F
and LGalg the algebraic L-group as defined in §2.1.1.

We will define the excursion algebra Exc(Γ, LGalg) to be the commutative algebra over k
presented by explicit generators and relations given below. (The topology on Γ will not be
relevant for the definition of Exc(Γ, LGalg).) For a more conceptual perspective see [Zhu,
§2], wherein the excursion algebra is denoted k[RΓ,LGalg//Ĝ].

2.2.1. Generators. We define O(LGalg
k ) := lim−→F ′/F

O(Ĝk⋊Gal(F ′/F )) where the limit runs

over finite extensions F ′/F over which the Γ-action on Ĝk factors.
Generators of Exc(Γ, LGalg) will be denoted SI,f,(γi)i∈I

, where the indexing set (I, f, (γi)i∈I)
consists of:

(i) I is a finite (possibly empty) set,
(ii) f ∈ O(Ĝk\(LGalg

k )I/Ĝk) := O((LGalg
k )I)Ĝk×Ĝk , where the quotient is for the actions

of Ĝk by diagonal left and right translation, respectively, and
(iii) γi ∈ Γ for each i ∈ I.

2.2.2. Relations. Next we describe the relations. (Compare [Laf18, §10].)
(i) S∅,f,∗ = f(1G), an element of k ⊂ Exc(Γ, LGalg).
(ii) The map f 7→ SI,f,(γi)i∈I

is a k-algebra homomorphism in f , i.e.

SI,f+f ′,(γi)i∈I
= SI,f,(γi)i∈I

+ SI,f ′,(γi)i∈I
,

SI,ff ′,(γi)i∈I
= SI,f,(γi)i∈I

· SI,f ′,(γi)i∈I
,

and
SI,λf,(γi)i∈I

= λSI,f,(γi)i∈I
for all λ ∈ k.

(iii) For all maps of finite sets ζ : I → J , all f ∈ O(Ĝk\(LGalg
k )I/Ĝk), and all (γj)j∈J ∈ ΓJ ,

we have
SJ,fζ ,(γj)j∈J

= SI,f,(γζ(i))i∈I

where fζ ∈ O(Ĝk\(LGalg
k )J/Ĝk) is defined by fζ((gj)j∈J) := f((gζ(i))i∈I).

(iv) For all f ∈ O(Ĝk\(LGalg
k )I/Ĝk) and (γi)i∈I , (γ

′
i)i∈I , (γ

′′
i )i∈I ∈ ΓI , we have

SI⊔I⊔I,f̃ ,(γi)i∈I×(γ′
i)i∈I×(γ′′

i )i∈I
= SI,f,(γi(γ′

i)
−1γ′′

i )i∈I
,

7Also called “completely reducible” in [BHKT19].
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where f̃ ∈ O(Ĝk\(LGalg
k )I⊔I⊔I/Ĝk) is defined by

f̃((gi)i∈I × (g′i)i∈I × (g′′i )i∈I) = f((gi(g
′
i)

−1g′′i )i∈I).

(v) If f is inflated from a function on ΓI , then SI,f,(γi)i∈I
equals the scalar f((γi)i∈I). More

generally, if J is a subset of I and f is inflated from a function on (Ĝk\(LGalg
k )J/Ĝk)×

ΓI\J , then we have
SI,f,(γi)i∈I

= SJ,f̌ ,(γj)j∈J

where f̌((gj)j∈J) := f((gj)j∈J , (γi)i∈I\J). (Compare [Laf18, p. 164].)

Definition 2.3. The excursion algebra Exc(Γ, LGalg) is the k-algebra with generators and
relations specified as above.

2.3. Constructing Galois representations. The following result of Lafforgue (general-
ized to modular coefficients by Böckle-Harris-Khare-Thorne) explains how to obtain Lang-
lands parameters from characters of Exc(Γ, LGalg).

Proposition 2.4 ([BHKT19, Theorem 4.5], [Laf18, §13]). For any character ν : Exc(Γ, LGalg)→
k, there is a semisimple L-parameter ρν : Γ → LGalg(k) (for the discrete topology on Γ),
unique up to conjugation by Ĝ(k), which is characterized by the following condition:

For all n ∈ N, f ∈ O(Ĝk\(LGalg
k )n+1/Ĝk), and (γ0, . . . , γn) ∈ Γn+1, we have

ν(S{0,...,n},f,(γ0,γ1,...,γn)) = f((ρν(γ0γn), ρν(γ1γn), . . . , ρν(γn−1γn), ρν(γn))). (2.3)

Remark 2.5. See also [FS, Corollary VIII.4.3] for more perspectives on, and generalizations
of, this statement.

Remark 2.6. In Proposition 2.4, the datum of ρν up to conjugation is equivalent to that
of a cohomology class [ρν ] ∈ H1(Γ, Ĝ(k)) where Γ is given the discrete topology.

2.4. Another presentation for the excursion algebra. We will now describe a sec-
ond presentation of Exc(Γ, LGalg), following [Laf18, Lemma 0.31], which is more useful for
constructing actions of Exc(Γ, LGalg) in practice.

2.4.1. Generators. We take a set of generators indexed by tuples of data of the form
(I,W, x, ξ, (γi)i∈I), where:

(i) I is a finite set,
(ii) W ∈ Repk((

LGalg)I) (cf. §2.1.4),
(iii) x ∈W is a vector invariant under the diagonal Ĝk-action,
(iv) ξ ∈W ∗ is a functional invariant under the diagonal Ĝk-action,
(v) γi ∈ Γ for each i.

The corresponding generator of Exc(Γ, LGalg) will be denoted by SI,W,x,ξ,(γi)i∈I
∈ Exc(Γ, LGalg).

2.4.2. Relations. Next we describe the relations.
(i) S∅,x,ξ,∅ = ⟨x, ξ⟩, an element of k ⊂ Exc(Γ, LGalg).
(ii) For any morphism of (LGalg

k )I -representations u : W → W ′ and functional ξ′ ∈ (W ′)∗

invariant under the diagonal Ĝk-action, we have

SI,W,x,u∗(ξ′),(γi)i∈I
= SI,W ′,u(x),ξ′,(γi)i∈I

, (2.4)

where u∗ : (W ′)∗ →W ∗ denotes the dual to u.
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(iii) For two tuples (I1,W1, x1, ξ1, (γ
1
i )i∈I1) and (I2,W2, x2, ξ2, (γ

2
i )i∈I2) as in §2.4.1, we

have

SI1⊔I2,W1⊠W2,x1⊠x2,ξ1⊠ξ2,(γ1
i )i∈I1

×(γ2
i )i∈I2

= SI1,W1,x1,ξ1,(γ1
i )i∈I1

◦ SI2,W2,x2,ξ2,(γ2
i )i∈I2

. (2.5)

Also,

SI1⊔I2,W1⊕W2,(x1,x2),ξ1⊕ξ2,(γ1
i )i∈I1

×(γ2
i )i∈I2

= SI1,W1,x1,ξ1,(γ1
i )i∈I1

+SI2,W2,x2,ξ2,(γ2
i )i∈I2

. (2.6)

Furthermore, the assignment (I,W, x, ξ, (γi)i∈I) 7→ SI,W,x,ξ,(γi)i∈I
∈ Exc(Γ, LGalg) is

k-linear in x and ξ.
(iv) Let ζ : I → J be a map of finite sets. Suppose W ∈ Rep((LG)I), x ∈ W∆(Ĝ),

ξ : (W ∗)∆(Ĝ), and (γj)j∈J ∈ ΓJ . Letting W ζ be the restriction of W under the functor
Rep((LG)I)→ Rep((LG)J) induced by ζ, we have

SJ,W ζ ,x,ξ,(γj)j∈J
= SI,W,x,ξ,(γζ(i))i∈I

. (2.7)

(v) Let δW : 1 → W ⊗ W ∗ and evW : W ∗ ⊗ W → 1 be the natural counit and unit.
Conflating x with a Ĝ-invariant map 1→W |∆(Ĝ) and similarly for ξ, we have

SI,W,x,ξ,(γi(γ′
i)

−1γ′′
i )i∈I

= SI⊔I⊔I,W⊠W∗⊠W,δW⊠x,ξ⊠evW ,(γi)i∈I×(γ′
i)i∈I×(γ′′

i )i∈I
. (2.8)

(vi) For J ⊂ I, if W is inflated from a representation of (LGalg)J × ΓI\J , then we have

SI,W,x,ξ,(γi)i∈I
= SJ,W |

(LGalg)J
,((1j)j∈J ,(γi)i∈I\J )·x,ξ,(γj)j∈J

.

2.4.3. Relation between the presentations. The two presentations in §2.2 and §2.4 are re-
lated as follows. The generator SI,W,x,ξ,(γi)i∈I

corresponds to SI,fx,ξ,(γi)i∈I
where fx,ξ is the

function on (LGk)
I given by (gi)i∈I 7→ ⟨ξ, (gi)i∈I · x⟩. The assumptions on ξ and x imply

that fx,ξ is invariant under the left and right diagonal Ĝk-actions. The relations in §2.4.2
imply that SI,W,x,ξ,(γi)i∈I

depends only on fx,ξ (and not on the choice of x, ξ) by [Laf18,
Lemme 10.6].

2.5. Functoriality for excursion algebras. A homomorphism of L-groups ϕ : LHalg →
LGalg is admissible if it lies over the identity map on Γ, i.e. the diagram below commutes.

LHalg LGalg

Γ Γ

ϕ

Id

Lemma 2.7. Let ϕ : LHalg → LGalg be an admissible homomorphism. Then there is a
homomorphism ϕ∗ : Exc(Γ, LGalg) → Exc(Γ, LHalg) which in terms of the description of
k-points of their corresponding spectra given in Proposition 2.4, sends ρ ∈ H1(Γ, Ĥ(k)) to
ϕ ◦ ρ ∈ H1(Γ, Ĝ(k)).

Proof. The map ϕ induces Resϕ : Repk(
LGalg)→ Repk(

LHalg). At the level of generators,
the map ϕ∗ sends

SV,x,ξ,{γ}i∈I
7→ SResϕ(V ),Resϕ(x),Resϕ(ξ),{γi}i∈I

.

We verify by inspection that this map sends relations to relations. To see that this indeed
induces composition with ϕ at the level of Langlands parameters, use (2.3). □
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Definition 2.8 (Base change). In the base change situation, where H is a reductive group
over F and G = ResE/F (HE), the relevant morphism of L-groups ϕBC :

LHalg → LGalg

is defined by the formula (h, γ) 7→ (∆(h), γ). In fact this same formula also defines the
corrresponding map of geometric L-groups ϕgeom

BC : LHgeom → LGgeom, so ϕgeom
BC and ϕBC are

compatible with (2.1) if we use the same choice of square root of the cyclotomic character
in the latter to define isomorphisms LHalg ≃ LHgeom and LGalg ≃ LGgeom. We denote

ϕ∗
BC : Exc(Γ, LGalg)→ Exc(Γ, LHalg)

the induced map of excursion algebras.

3. Smith theory in locally finite type

Classical Smith theory concerns a type of equivariant localization that relates the mod
p cohomology of a topological space with the mod p cohomology of its fixed points under
a Z/pZ-action. Treumann proposed in [Tre19] that this could be understood in terms of
a “sheaf-theoretic Smith theory” formalism, which he developed at least in the context of
complex algebraic varieties in the analytic topology. An algebraic version of this theory
was built in [RW22] for p-adic étale sheaves on finite type schemes (over fields where p is
invertible). We will need generalizations of this theory from finite type to locally finite type.
This is because we will want to apply the theory to the moduli spaces of shtukas, which are
of not of finite type, but are locally of finite type.

Let us comment on some of the technical issues that arise in doing so. Because the
cohomology of locally finite type schemes is not necessarily finite-dimensional, already the
basic formalism of constructible sheaves and perfect complexes from [Tre19, RW22] does
not apply. For example, we will have to enlarge the notion of “Tate category” to encompass
the objects of interest.

We do not strive for the maximum possible generality, but our theory at least encompass
all examples of interest that will show up in this paper. In particular, we will use tricks to
avoid discussing Smith theory for stacks, which presents an interesting problem that could
potentially refine our applications. For steps that are very similar to the case of finite type
schemes as treated already in [RW22], we will only sketch the proofs.

3.1. The Tate category. Let Λ be a p-adic coefficient ring; we will be interested in the
cases where Λ = k or W (k). We will denote by Λ[σ] the group ring of ⟨σ⟩ with coefficients
in Λ. Our geometric objects will be over a field of characteristic ̸= p and we will consider
Λ-adic sheaves.

Let Y be a separated, locally finite type scheme over a field. We let Perf(Y ; Λ[σ]) ⊂
Db

c(Y ; Λ[σ]) be the full subcategory consisting of complexes whose stalks at all geometric
points of Y are perfect over Λ[σ].

Definition 3.1. We define Flatb(Y ; Λ[σ]) ⊂ Db(Y ; Λ[σ]) to be the full subcategory con-
sisting of bounded complexes whose stalks at all geometric points of Y are represented by
bounded complexes of flat (but not necessarily finite) Λ[σ]-modules.

The following Lemma will not be used essentially in the rest of the paper, but it may
help to clarify the nature of Flatb(Y ; k[σ]). We thank Jesper Grodal for pointing out a gap
in the original argument and also for suggesting its fix.

Lemma 3.2. The subcategory Flatb(Y ; k[σ]) ⊂ Db(Y ; k[σ]) coincides with the full subcate-
gory of objects which locally have finite tor-amplitude over k[σ].
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Proof. For any commutative ring A, a complex of A-modules has finite tor-amplitude if
and only if it is represented by a bounded complex of flat A-modules [Sta20, Tag 08G1].
This shows that any object of Db(Y ; k[σ]) with locally finite tor-amplitude over k[σ] lies in
Flatb(Y ; k[σ]).

For the converse direction, note that a complex has tor-amplitude in [a, b] if and only if
all its stalks at geometric points have tor-amplitude in [a, b] by [Sta20, Tag 0DJJ]. Hence it
suffices to show that if K ∈ Db(Y ; k[σ]) has finite tor-amplitude at all stalks, then its tor-
amplitude is uniformly bounded. The key observation is: if K ∈ Db(Y ; k[σ]) is represented
by a global complex concentrated in degrees [a, b] and all its stalks at geometric points have
finite tor-amplitude, then in fact all of its stalks at geometric points have tor-amplitude in
[a, b]. Given this observation, we may conclude by using [Sta20, Tag 0DJJ].

Next we prove the observation. It suffices to show that if K is a complex over k[σ]
supported in degrees [a, b] which has finite tor-amplitude, then K has tor-amplitude [a, b].
Since k is Artinian, k[σ] is also Artinian. For a module over an Artinian local ring, the
properties of being flat and projective coincide [Sta20, Tag 051E]. Therefore K also has finite
projective dimension [Sta20, Tag 0A5M]. Furthermore, since k[σ] has finitistic dimension
zero, the projective amplitude of K lies in [a, b]. Hence K is represented by a complex
of projective k[σ]-modules supported in degrees [a, b], and therefore has tor-amplitude in
[a, b]. □

Definition 3.3. The (constructible) Tate category of Y (with respect to Λ) is the Verdier
quotient category Db

c(Y ; Λ[σ])/Perf(Y ; Λ[σ]).
This is the construction considered under the name “Tate category” in [Tre19], at least

when Y is a complex-analytic variety. According to [Tre19, Remark 4.1], the category
Db

c(Y ; Λ[σ])/Perf(Y ; Λ[σ]) can be regarded as a derived category of perfect complexes over
a certain “E∞-ring spectrum” TΛ. So we will denote the corresponding Tate categories by
Perf(Y ; TΛ). For our purposes TΛ can be thought of as just a notational device.

We will require the following enlargement of the constructible Tate category. We define
the (bounded ind-constructible) Tate category of Y (with respect to Λ) to be the Verdier
quotient category

Shv(Y ; TΛ) := Db(Y ; Λ[σ])/Flatb(Y ; Λ[σ]).

We denote the tautological projection maps from Db
c(Y ; Λ[σ]) to Perf(Y ; TΛ), and from

Db(Y ; Λ[σ]) to Shv(Y ; TΛ) by

T∗ : Db(Y ; Λ[σ])→ Shv(Y ; TΛ), and T∗ : Db
c(Y ; Λ[σ])→ Perf(Y ; TΛ).

Note that the fully faithful embedding Db
c(Y ; Λ[σ]) → Db(Y ; Λ[σ]) carries Perf(Y ; Λ[σ])

into Flatb(Y ; Λ[σ]) and so induces a functor

Perf(Y ; TΛ)→ Shv(Y ; TΛ), (3.1)

which is conservative (e.g., because Perf(Y ; Λ[σ]) ⊂ Db
c(Y ; Λ[σ]) can also be characterized

as the full subcategory of objects locally having finite tor-amplitude over Λ[σ], according to
Lemma 3.2).

Example 3.4 ([Tre19, Proposition 4.2]). The (bounded ind-constructible) Tate category
over a point (meaning the spectrum of a separably closed field) is Db(Λ[σ])/Flatb(Λ[σ]).
In this category the shift-by-2 functor is isomorphic to the identity functor, as one sees by
considering the nullhomotopic complex

0→ V → V ⊗ Λ[σ]
1−σ−−−→ V ⊗ Λ[σ]→ V → 0
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whose middle two terms project to 0 in the Tate category.

3.2. The Smith operation. Let Y be a separated, locally finite type scheme with a σ-
action that is admissible in the sense of [SGA1, Exposé 5, Définition 1.7]. By [RW22,
Remark 2.2], this is automatic if Y is exhausted by quasi-projective schemes over a field.

There is an equivariant bounded derived category Db
σ(Y ; Λ). We distinguish this from

the equivariant bounded constructible derived category Db
c,σ(Y ; Λ), a full subcategory of

Db
σ(Y ; Λ) that will also be of interest to us. Note that since σ acts trivially on the σ-fixed

subscheme Y σ ⊂ Y , we have an equivalence of derived categories

Db
σ(Y

σ; Λ) ∼= Db(Y σ; Λ[σ]), and Db
c,σ(Y

σ; Λ) ∼= Db
c(Y

σ; Λ[σ]). (3.2)

Then the “Smith operation” (cf. [Tre19, Definition 4.2]) is the functor

Psm := T∗ ◦ i∗ : Db
c,σ(Y ; Λ)→ Perf(Y σ; TΛ) (3.3)

defined as the composition of i∗ : Db
c,σ(Y ; Λ) → Db

c,σ(Y
σ; Λ)

(3.2)∼= Db
c(Y

σ; Λ[σ]) with the
projection T∗ to Perf(Y σ; TΛ).

We extend this definition to bounded ind-constructible Tate categories in the analogous
manner, defining

Psm := T∗ ◦ i∗ : Db
σ(Y ; Λ)→ Shv(Y σ; TΛ). (3.4)

Remark 3.5. For F ∈ Db
c,σ(Y ; Λ), there is potential confusion about whether “Psm(F)”

denotes the result of applying (3.3) or (3.4). But there is a natural isomorphism between
the functors

Db
c,σ(Y ; Λ)

Psm−−−→ Perf(Y σ; TΛ)
(3.1)−−−→ Shv(Y σ; TΛ)

and

Db
c,σ(Y ; Λ)

(3.1)−−−→ Db
σ(Y ; Λ)

Psm−−−→ Shv(Y σ; TΛ),
so the meaning is unambiguous once the ambient category is specified. When the distinction
is important, we will take care to specify the ambient category.

The following properties are used to prove that our extended version of Psm retains the
good behavior enjoyed by the constructible version.

Lemma 3.6. Retain the notation and assumptions above. Assume that the σ-action on Y is
free. Let q : Y → Y/σ denote the quotient (which exists as a map of schemes by admissibility
of the σ-action on Y ). Then for any F ∈ Db(Y ; Λ[σ]), we have q∗F ∈ Flatb(Y/σ; Λ[σ]) ⊂
Db(Y/σ; Λ[σ]).

Proof. The same argument as [RW22, Lemma 2.3] works here. To summarize it: for any
geometric point y → Y/σ, and x→ Y lifting it, we have

(q∗F)y ∼= Fx ⊗Λ Λ[σ],

which is visibly in Flatb(y; Λ[σ]). □

Lemma 3.7. Retain the notation and assumptions above. Let U := Y \ Y σ be the open
complement of the σ-fixed locus of Y , and j : U ↪→ Y be its inclusion into Y . Then for any
F ∈ Db(U ; Λ[σ]), and any geometric point y of Y σ, the stalk (Rj∗F)y lies in Flatb(y; Λ[σ]) ⊂
Db(y; Λ[σ]).
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Proof. A similar argument as in [RW22, Proposition 2.5] works here. Since the map q : Y →
Y/σ is totally ramified at y, we have a σ-equivariant identification (Rj∗F)y ∼= (q∗Rj∗F)q(y).
Then by the commutativity of the diagram

U Y

U/σ Y/σ

j

qU q

j

we have (q∗Rj∗F)q(y) ∼= (Rj∗qU∗F)q(y). Now Lemma 3.6 implies that qU∗F has finite tor-
amplitude, and combining [Sta20, Tag 0F10] with [SGA4-3, Exposé XVII, Théorème 5.2.11]
implies that Rj∗ preserves finiteness of tor-amplitude, so their composition has locally finite
tor-amplitude. □

The good properties of Psm come from the following Lemma, which was proved for finite
type schemes in [RW22, Lemma 3.5] (following [Tre19, Theorem 4.7] in the topological
situation).

Lemma 3.8. Retain the notation and assumptions above. Let i : Y σ ↪→ Y . Then for any
F ∈ Db

σ(Y ; Λ), the cone of i!F → i∗F belongs to Flatb(Y σ; Λ[σ]).

Proof. Let j : Y \Y σ ↪→ Y . Consider the exact triangle i∗i!F → F → j∗j
∗F on Y . Applying

i∗ to it yields the exact triangle in Db(Y σ; Λ[σ]):

i!F → i∗F → i∗Rj∗j
∗F .

By Lemma 3.7, i∗Rj∗j
∗F ∈ Flatb(Y σ; Λ[σ]). □

Lemma 3.9. Suppose f : Y → S is a locally finite type and separated σ-equivariant mor-
phism between locally finite type schemes, of bounded dimension. Then Rf! : D

b(Y ; Λ[σ])→
Db(S; Λ[σ]) carries Flatb(Y ; Λ[σ]) to Flatb(S; Λ[σ]).

Proof. We may write Y as a filtered colimit of open subschemes Yα of finite type. Then
for F ∈ Db(Y ; Λ[σ]), we have an identification of Rf!F with the colimit over Rf!(F|Yα).
Since filtered colimits preserve flatness, we are reduced to the same statement in the finite
type situation (where one can also replace “Flatb” by Perf), which is obtained by combining
[Sta20, Tag 0F10] and [SGA4-3, Exposé XVII, Théorème 5.2.10]. □

Remark 3.10. Note that Lemma 3.9 would not have been true with “Flatb” replaced by
“Perf”. This is why we need to consider ind-constructible sheaves when not in a finite type
situation.

Corollary 3.11. Suppose f : Y → S is a locally finite type and separated morphism between
locally finite type schemes, of bounded dimension. Suppose σ acts trivially on S and freely on
Y , and f is σ-equivariant. Then Rf! : D

b(Y ; Λ[σ])→ Db(S; Λ[σ]) lands in Flatb(Y ; Λ[σ]).

Proof. By the hypotheses, we may factor f as the composition

Y
q−→ Y/σ

f−→ S.

Then apply Lemma 3.6 to q! and Lemma 3.9 to f !. □

3.3. Functors on Tate categories. Throughout this subsection we let f : Y → S denote
a σ-equivariant locally finite type morphism of locally finite type schemes with admissible
σ-action, of bounded dimension.
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3.3.1. Pullback. Since f∗ : Db
σ(S

σ; k) → Db
σ(Y

σ; k) preserves stalks, it preserves flat and
perfect complexes, and so descends to the Tate category to induce f∗ : Shv(Sσ; TΛ) →
Shv(Y σ; TΛ) and f∗ : Perf(Sσ; TΛ)→ Perf(Y σ; TΛ).

3.3.2. Proper pushforward. By Lemma 3.9, Rf! : D
b(Y σ; Λ[σ])→ Db(Sσ; Λ[σ]) descends to

Rf! : Shv(Y σ; TΛ)→ Shv(Sσ; TΛ).

Proposition 3.12. The following diagram commutes:

Db
σ(Y ; Λ) Db

σ(S; Λ)

Shv(Y σ; TΛ) Shv(Sσ; TΛ)

Psm

Rf!

Psm

Rf!

Proof. We may as well replace S by Sσ and thus assume that the σ-action on S is trivial.
Let F ∈ Db

σ(Y ; Λ). Denoting i : Y σ ↪→ Y and j the inclusion of the open complement, we
have a distinguished triangle in Db

σ(Y ; Λ):

j!j
∗F → F → i∗i

∗F .

Abbreviate fσ := f ◦ i : Y σ → S. By definition σ acts freely on U , which implies that
Rf! ◦ (j!j∗F) ∈ Flatb(S; Λ[σ]) by Corollary 3.11. Hence the cone of Rf!F → Rfσ

! (i
∗F) lies

in Flatb(S; Λ[σ]), and therefore becomes 0 in Shv(S; TΛ). Hence we have

T∗(Rf!F) ∼= T∗(Rfσ
! (i

∗F)) ∼= Rf! Psm(F) ∈ Shv(S; TΛ),

which exactly expresses the desired commutativity. □

3.4. Tate cohomology. For a Λ[σ]-module M , its Tate cohomology groups are

T 0(M) :=
Mσ

N ·M
, T 1(M) :=

ker(N : M →M)

(1− σ) ·M
,

(Recall that N := 1+σ+ . . .+σp−1.) We will generalize this to complexes and then sheaves.

3.4.1. Tate cohomology of complexes. The exact sequence of Λ[σ]-modules

0→ Λ→ Λ[σ]
1−σ−−−→ Λ[σ]→ Λ→ 0

induces a morphism
Λ→ Λ[2] ∈ Db(Λ[σ]). (3.5)

Given a bounded-below complex of Λ[σ]-modules C•, we define its Tate cohomology as

T i(C•) = lim−→
n→∞

HomD(Λ[σ])(Λ, C
•[i+ 2n])

where the transition maps are those induced by (3.5).
Evidently T i(C•) is 2-periodic in i. It is clear that this construction descends to the

derived category, so we can view Tate cohomology as a collection of functors

T i : Db(Λ[σ])→ Mod/T 0(Λ).

Now we specialize to the case where Λ = k. Note that by [Sta20, Tag 051E], a module over
k[σ] is flat if and only if it is free. Since Tate cohomology of free k[σ]-complexes vanishes
(by inspection), this construction further factors through the Tate category, inducing

T i : Shv(pt; Tk)→ Vect/k.
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Remark 3.13. If C• is a bounded k[σ]-module, which will always be the case for us in
practice, then we may regard C• ∈ D(pt; k[σ]) and the argument of [LL21, Proposition
4.5.1] gives a natural isomorphism

T i(C•) ∼= HomShv(pt;Tk)(k,T
∗C•[i]).

The following is obvious from the definition but important enough to record.

Lemma 3.14. Suppose C• ∈ Db(k[σ]) is inflated from Db(k), i.e. σ acts trivially on C•.
Then T ∗C• ∼= H∗(C•)⊗T ∗(k), where k is equipped with the trivial σ-action in the formation
of T ∗(k).

3.4.2. Tate cohomology sheaves. If S has the trivial σ-action, then Shv(S; TΛ) is defined.
Given F ∈ Db(S; Λ[σ]), we define Tate cohomology sheaves

T iF := lim−→
n→∞

HomD(S;Λ[σ])(Λ,F [i+ 2n])

where the transition maps are induced by the map Λ→ Λ[2] ∈ D(S; Λ[σ]) pulled back from
(3.5). The T iF are étale sheaves of T 0Λ-modules, where T 0Λ is the 0th Tate cohomology
of Λ viewed as a trivial σ-module.

For Λ = k, we also have the description

T iF ∼= HomShv(S;Tk)(k,T
∗F [i])

on S, which is an étale sheaf of T 0(k) = k-modules.

3.4.3. Tate cohomology for a morphism. For F ∈ Db
σ(Y ; k), we have Rf!F ∈ Db

σ(S; k).
If S has the trivial σ-action, then we can form T iRf!F , which we call the “relative Tate
cohomology of F”.

If S is the spectrum of a separably closed field equipped with the trivial σ-action, then
we will abbreviate T i(Y ;F) := T i(Rf!F), and call it the “Tate cohomology of Y with
coefficients in F”.

Remark 3.15. Note that if σ acts trivially on Y and on S, then the construction F 7→ Rf!F
factors over Shv(Y ; Tk) by Lemma 3.9. In this situation we will also regard T iRf! as a functor
on Shv(Y ; Tk).

3.4.4. The long exact sequence for Tate cohomology. Given a distinguished triangle F ′ →
F → F ′′ ∈ Db

σ(Y ; k), we have a long exact sequence

. . . T−1Rf!(F ′′)

T 0Rf!(F ′) T 0Rf!(F) T 0Rf!(F ′′)

T 1Rf!(F ′) T 1Rf!(F) T 1Rf!(F ′′)

T 2Rf!(F ′) . . .

3.4.5. Equivariant localization. We explain that Proposition 3.12 encompasses the classical
equivariant localization theorems of “Smith theory”, e.g., [Qui71, Theorem 4.2]. Proposition
3.12 says that for F ∈ Db

σ(Y ; k) we have

Psm(Rf!F) ∼= (Rf |Y σ )! Psm(F) ∈ Shv(Sσ; Tk).
In particular, if L is the spectrum of a separably closed with the trivial action of σ, we get

T∗RΓc(Y ;F) ∼= RΓc(Y
σ; Psm(F)). (3.6)
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4. Parity sheaves and the base change functor

We begin by indicating where this section is headed.
The Geometric Satake equivalence PL+G(GrG; k) ∼= Repk(Ĝ) provides the link between

G and its Langlands dual group. In the situation of functoriality, we have a map Ĥ → Ĝ

and we would like to describe the induced restriction operation Repk(Ĝ) → Repk(Ĥ) on
the other side of the Geometric Satake equivalence, as a geometric operation on perverse
sheaves.

In the context of base change it is even the case that there is an embedding GrH ↪→ GrG,
and when seeking to describe functoriality it is natural to look to the Smith operation.
(One motivation is that the papers [Tre19, TV16] verify that the function-theoretic Smith
operation is indeed related to functoriality for Hecke algebras.) However, the Smith oper-
ation lands in a Tate category, and in Example 3.4 we saw that in the Tate category, the
shift-by-2 functor is isomorphic to the identity functor. This makes it seem unlikely that
one can capture the notion of “perverse sheaf” in the Tate category.

Juteau-Mautner-Williamson invented the theory of parity sheaves, which have seen signif-
icance in modular representation theory. Parity sheaves are cut out in the derived category
by constraints on the parity of cohomological degrees, and can therefore make sense in a
context where cohomological degrees are only defined modulo 2. The notion of Tate-parity
sheaves was introduced in [LL21] as an analog of parity sheaves for the Tate category, and
was found to enjoy analogous properties.

After briefly reviewing the notions of parity and Tate-parity sheaves in §4.1 and §4.2, we
will establish that the Smith operation respects the parity property, at least under certain
conditions satisfied in our application of interest. Using “coefficient lifting” properties of
parity sheaves, this will allow us to ultimately define a functor BC from parity sheaves on
GrG to parity sheaves on GrH , which realizes base change functoriality on the geometric
side. We note that in this section, we will only need the “constructible” version of Smith
theory for schemes, and not the generalizations developed in §3.

4.1. Parity sheaves. We begin with a quick review of the theory of parity sheaves. We
will take coefficients in a ring Λ which is a complete local PID, i.e., a field or complete DVR;
in our applications of interest will be either k or O := W (k).

Let Y be a stratified variety over a separably closed field of characteristic ̸= p, with
stratification S = {Yλ}. For the theory of parity sheaves to work, we need to assume that
the (induced) stratification on Y is JMW, meaning:

• for any two finite Λ-free local systems L,L′ on a stratum Yλ, we have Exti(L,L′) is
free over Λ for all i, and vanishes when i is odd.

This holds for Kac-Moody flag varieties over separably closed fields, and in particular for
affine flag varieties over separably closed fields [JMW14, §4.1].

Fix a pariversity † : S → Z/2Z. In this paper we will always take the dimension pariver-
sity †(Yλ) := dimYλ mod 2, so we will sometimes omit the pariversity from the discussion.
Recall that [JMW14] define even complexes (with respect to the pariversity †) to be those
F ∈ Db

S(Y ; Λ) such that for all iλ : Yλ ↪→ Y , for Yλ ∈ S, i∗λF and i!λF have cohomology
sheaves which are Λ-free and supported in degrees congruent to †(Yλ) modulo 2, and odd
complexes analogously. They define parity complexes to be direct sums of even and odd
complexes. The full subcategory of (S-constructible) parity complexes (with coefficients in
Λ) is denoted ParityS(Y ; Λ).
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Theorem 4.1 ([JMW14, Theorem 2.12]). Let F be an indecomposable parity complex.
Then:

• F has irreducible support, which is therefore of the form Y λ for some Yλ ∈ S,
• i∗λF is a shifted Λ-free local system L[m], and
• Any indecomposable parity complex supported on Y λ and extending L[m] is isomor-

phic to F .

A parity sheaf (with respect to †) is an indecomposable parity complex (with respect
to †) with Yλ the dense stratum in its support and extending L[dimYλ]. Given L[dimYλ],
it is not clear in general that a parity sheaf extending it extends exists. If it does exist,
then Theorem 4.1 guarantees its uniqueness, and we denote it by E(λ,L). The existence is
guaranteed for GrG with the usual stratification by L+G-orbits; E(λ,L) can moreover be
promoted to a L+G-equivariant complex if p is not a torsion prime for G [JMW16, Theorem
1.4]. If E(λ,L) exists for all λ and L, we will say that “all parity sheaves exist”.

4.2. Tate-parity sheaves. As we have seen, the cohomological grading in the Tate category
is only well-defined modulo 2, so it does not seem to make sense to talk about perverse
sheaves in the Tate category. However, elements of the Tate category have Tate cohomology
sheaves (§3.4.2), which are indexed by Z/2Z, so it could make sense to talk about an analog of
parity sheaves in the Tate category. As Leslie-Lonergan [LL21] observed, for this to work we
must take coefficients in the integral version of the Tate category, meaning Λ = O = W (k),
because then we have (say by [LL21, Proposition 4.6.1])

Ext∗Perf(TO)
(T∗(O),T∗(O)) =

⊕
i∈Z

k[2i] (4.1)

is supported in even degrees. This is necessary for the assumption of non-vanishing odd
Exts in the definition of the JMW stratification.

For a stratification S on Y , we define PerfS(Y ; TO) ⊂ Perf(Y ; TO) to be the full subcate-
gory generated by images of objects in Db

S(Y ;O[σ]). Letting PerfS(Y ;O[σ]) ⊂ Perf(Y ;O[σ])
be the full thick subcategory of S-constructible objects, we have by [LL21, Corollary 4.5.2]
that

Db
S(Y ;O[σ])/PerfS(Y ;O[σ])

∼−→ PerfS(Y ; TO).

Definition 4.2 ([LL21, Definition 5.3.1]). Let F ∈ PerfS(Y ; TO). Fix a pariversity † : S →
Z/2Z.

(1) For ? ∈ {∗, !}, we say F is ?-Tate-even (with respect to †) if for each Yλ ∈ S, we
have

T †(Yλ)+1(i?λF) = 0.

(2) For ? ∈ {∗, !}, we say F is ?-Tate-odd (with respect to †) if F [1] is ?-Tate-even.
(3) We say F is Tate-even (resp. Tate-odd) if F is both ∗-Tate even (resp. odd) and

!-Tate even (resp. odd).
(4) We say F is Tate-parity complex (with respect to †) if it is isomorphic within

PerfS(Y ; TO) to the direct sum of a Tate-even complex and a Tate-odd complex.8

The full subcategory of (S-constructible) Tate-parity complexes (with coefficients in TO) is
denoted ParityS(Y ; TO). If S arises from the orbits of a group G, then the corresponding
stratification is denoted with a subscript (G).

Parallel to Theorem 4.1, we have the following result in this context:

8This is to be distinguished from the (upcoming) notion of Tate-parity sheaf, which is more restrictive.
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Proposition 4.3 ([LL21, Theorem 5.5.6]). Let F be an indecomposable Tate-parity complex.
(1) The support of F is of the form Y λ for a unique stratum Yλ.
(2) Suppose G and F are two indecomposable Tate-parity complexes such that supp(G) =

supp(F). Letting jλ : Yλ ↪→ Y be the inclusion of the unique stratum open in this
support, if j∗λG ∼= j∗λF then G ∼= F .

Proof. The same argument as in [JMW14, Theorem 2.12] works. □

We define ϵ∗ : Db
c(Y ;O)→ Db

c(Y ;O[σ]) for the inflation through the augmentation ϵ : O[σ]↠
O. Recall that T∗ : Db

c(Y ;O[σ])→ Perf(Y ; TO) denotes projection to the Tate category. We
are interested in Tate complexes that come from the composite functor

T∗ϵ∗ : Db
S(Y ;O)

ϵ∗−→ Db
S(Y ;O[σ])

T∗

−→ PerfS(Y ; TO).

Definition 4.4. A Tate-parity sheaf F ∈ PerfS(Y ; TO) is an indecomposable Tate-parity
complex with the property that its restriction to the unique stratum Yλ which is dense in
its support is of the form T∗ϵ∗L[dimYλ] for an indecomposable O-free local system L on Yλ.
If such an F exists then it is unique, and we denote it by ET (λ,L).

If ET (λ,L) exists for all Yλ ∈ S and all L, we will say that “all Tate-parity sheaves exist”
(for Y, S).

4.3. Modular reduction. We now explain that the functor T∗ has good properties that
one would expect from “base change of coefficients” functors for categories of sheaves in
classical rings. We will suppress mention of the pariversity †.

Proposition 4.5 ([LL21, Proposition 5.6.3, Theorem 5.6.4]).
(1) If F ∈ Db

S(X;O) is even/odd, then T∗ϵ∗F ∈ PerfS(X; TO) is Tate-even/odd.
(2) If the parity sheaf E = E(λ,L) exists and satisfies HomDb

S(Y ;O)(E , E [n]) = 0 for all
n < 0 (this holds for example if E is perverse9) then ET (λ,L) exists and we have

T∗ϵ∗E(λ,L) ∼= ET (λ,L).

Remark 4.6. The Proposition (and its proof) are analogous to the following results of
parity sheaves [JMW14, §2.5]. Let F denote the base change functor

F = k
L
⊗O (−) : Db

S(Y ;O)→ Db
S(Y ; k).

The functor F enjoys following properties.
(1) F ∈ Db

S(X;O) is a parity sheaf if and only if F(E) ∈ Db
S(X; k) is a parity sheaf.

(2) If E(λ,L) exists, then E(λ,FL) exists and we have

FE(λ,L) ∼= E(λ,FL).

Proof of Proposition 4.5. We reproduce the proof from [LL21] because it brings up certain
ideas that will be needed later. The operation T∗ϵ∗ is compatible with formation of i∗λ
or i!λ. Hence to prove (1) we reduce to examining T iϵ∗L for a local system L of free O-
modules, with the trivial σ-action. This reduces to the fact that the Tate cohomology of O
is supported in even degrees, which is (4.1).

9In fact this is both necessary and sufficient by [MR18, Lemma 6.6], which we thank Simon Riche for
pointing out to us.
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For (2), we just need to check that T∗ϵ∗E(λ,L) is indecomposable. Since ParityS(Y ; TO)
is Krull-Remak-Schmidt by [LL21, Proposition 5.5.2], it suffices to check that the endo-
morphism ring of T∗ϵ∗E(λ,L) is local. According to [LL21, Proposition 4.6.1], for F ,G ∈
Db

S(Y ;O) we have

HomPerf(Y ;TO)(T
∗ϵ∗F ,T∗ϵ∗G) ∼=

⊕
i∈Z

HomDb
S(Y ;k)(FF ,FG[2i]). (4.2)

We apply this to F = G = E(λ,L). Since E(λ,L) is parity, [JMW14, (2.13)] applies to show
that

HomDb
S(Y ;k)(FE(λ,L),FE(λ,L)) = F⊗HomDb

S(Y ;O)(E(λ,L), E(λ,L)).

By indecomposability of E(λ,L), the ring HomDb
S(Y ;O)(E(λ,L), E(λ,L)) is local, so F ⊗

HomDb
S(Y ;O)(E(λ,L), E(λ,L)) is also local. This shows that the subalgebra on the RHS

of (4.2) indexed by i = 0 is local, and the assumption implies that the summands of
(4.2) indexed by negative i vanish. This implies the desired locality of the graded algebra
(4.2). □

What we have seen can be summarized by the slogan:
If all parity sheaves exist and have vanishing negative self-Exts, then all
Tate-parity sheaves exist and T∗ ◦ ϵ∗ induces a bijection between parity
sheaves and Tate-parity sheaves.

4.4. The lifting functor. We will now define a functor lifting Tate-parity sheaves to parity
sheaves. In fact the preceding slogan already tells us what to do about objects, so we just
need to specify what happens on morphisms.

Definition 4.7. A normalized (Tate-)parity complex is a direct sum of (Tate-)parity sheaves
with no shifts. Hence, under our assumptions, an indecomposable (Tate)-parity complex
is normalized if and only if its restriction to the dense open stratum in its support Yλ

is isomorphic to L[dimYλ] (resp. T∗ϵ∗L[dimYλ]) for an indecomposable local system L.
We denote the full subcategory of normalized (Tate)-parity complexes by Parity0S(Y ;O) ⊂
ParityS(Y ;O) (resp. Parity0S(Y ; TO) ⊂ ParityS(Y ; TO)), and called them the categories of
normalized (Tate)-parity sheaves.

Under the assumption that all parity sheaves exist and have vanishing negative self-Exts,
Proposition 4.5 implies that E(λ,L) 7→ T∗ϵ∗E(λ,L) ∼= ET (λ,L) induces a bijection between
normalized parity sheaves and normalized Tate-parity sheaves. We then have a “lifting
functor” [LL21, Theorem 5.6.6]

L : Parity0S(Y ; TO)→ Parity0S(Y ; k)

sending ET (λ,L) to E(λ,L ⊗O k) on objects, and on morphisms inducing projection to
the summand indexed by i = 0 under identification (4.2). It can be thought of as an
“intermediate” reduction between O and k in the sense that the following diagram commutes:

Parity0S(Y ;O) Parity0S(Y ; TO)

Parity0S(Y ; k)

T∗ϵ∗

F L (4.3)
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4.5. Parity sheaves on the affine Grassmannian and tilting modules. We now con-
sider the preceding theory in the context of the affine Grassmannian GrG over a separably
closed field F, with the stratification by L+G-orbits. Since this is a special case of a Kac-
Moody flag variety, the stratification is JMW by [JMW14, §4.1].

If p is a good prime for Ĝ, [MR18, Corollary 1.6] implies that all parity sheaves exist,
and that all normalized parity sheaves are perverse. Therefore, the category of normalized
parity sheaves corresponds under the Geometric Satake equivalence to some subcategory
of Repk(Ĝ), and it is natural to ask what this is. The answer is given in terms of tilting
modules for Ĝ (recall that these are the objects of Repk(Ĝ) having both a filtration by
standard objects, and a filtration by costandard objects). The tilting property is preserved
by direct sum and tensor products (the latter assertion is a non-trivial theorem). Let
Tiltk(Ĝ) ⊂ Repk(Ĝ) denote the full subcategory of tilting modules.

Theorem 4.8 ([MR18, Corollary 1.6]). If p is good for G, then the Geometric Satake
equivalence restricts to an equivalence10

Parity0L+G(GrG; k) ∼= Tiltk(Ĝ).

Proof. The proof in [MR18] is written for the affine Grassmannian over the complex numbers
but adapts to our situation with some small modifications. First, one takes GrG over F
instead of over C as in [MR18]. The proof of Theorem 4.8 follows formally as in [MR18,
§6.5] from an equivalence of categories, between the category of Iwahori-equivariant parity
sheaves with coefficients in k on GrG, and the category of tilting objects in the heart of
Bezrukavnikov’s exotic t-structure on Ǧ ×Gm-equivariant tilting objects on the Springer
resolution Ñ . This equivalence is in turn proved by a Soergel bimodule argument. The
analysis of the “coherent side” in [MR18, §4,5] is literally the same as in our situation.
The analysis of the “constructible side” in [MR18, §3] applies verbatim to GrG over F
except at one point: in [MR18, Proof of Lemma 3.6, p.22] the property that “the map
O(t∗/W × t∗/W )→ H∗

L+G(GrG;R) factors through O(∆)” is proved using the “loop group
presentation” of the complex affine Grassmannian; an alternate argument for this fact, that
works in arbitrary characteristic, is provided in [Zhu17, Lemma 5.2.4]. □

Remark 4.9. A much shorter argument for Theorem 4.8, but with a slightly worse bound
on p, is given in [JMW16, Theorem 1.8].

We need a few facts about the representation theory of tilting modules. For our arithmetic
applications, the key point is that there are “enough” tilting modules to generate the derived
category of Repk(Ĝ), as articulated by the statement below (which in fact applies to general
highest weight categories).

Proposition 4.10 ([Ric, Proposition 7.17]). The natural projection from the bounded ho-
motopy category Kb(Tiltk(Ĝ)) to Db(Repk(Ĝ)) is an equivalence.

4.6. Base change functoriality for the Satake category. We now consider a specific
geometric situation relevant to Langlands functoriality for p-cyclic base change. Let F be a
field of characteristic ̸= p. We will consider reductive groups, and their affine Grassmanni-
ans, over F.

10Strictly speaking, the cited references employ the trivial pariversity instead of the dimension pariversity.
Since dimensions of Schubert strata in GrG have constant parity on connected components, the trivial
pariversity and dimension pariversity lead to the same notion of parity complexes in this case, so the only
difference is in the notion of “normalization”. We follow [LL21] in the use of the dimension pariversity so
that perverse sheaves are †-even.
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4.6.1. The base change setup. We now specialize the situation a bit further: H is any
reductive group over F and G = Hp. We let σ act on G by cyclic rotation, sending the ith
factor to the (i + 1)st (mod p) factor. Then it is clear that the stratification on GrG by
L+G-orbits induces by restriction the stratification on GrH by L+H-orbits.

Evidently the “diagonal” embedding H ↪→ G realizes H as the fixed points of G under
the automorphism σ. This map H ↪→ G also induces a diagonal map GrH → GrG.

Lemma 4.11. The diagonal map induces an isomorphism GrH ∼= GrσG as subfunctors of
GrG.

Proof. We have GrG ∼= (GrH)p, with σ acting by cyclic rotation of the factors, from which
the claim is clear. □

Henceforth we assume that p is odd and good for Ĝ, so that the results of §4.5 apply.
We aim to give a “geometric” description of the corresponding functor under the Geomet-

ric Satake equivalence, ParityL+G(GrG; k)→ ParityL+H(GrH ; k), in terms of Smith theory.
(Of course, one could give an “ad hoc” description using that G = Hp. The point is to
define a functor that does not make reference to this, which will then generalize well, using
descent, to the situation where G = ResE/F(H) for a non-trivial field extension E/F.)

Definition 4.12. Given F ∈ PL+G(GrG; Λ), we define

Nm(F) := F ⋆ σF ⋆ . . . ⋆ σp−1

F ∈ PL+G⋊σ(GrG; Λ),

equipped with the σ-equivariant structure coming from the commutativity constraint for
(PL+G(GrG; Λ), ⋆):

σ Nm(F) = σF ⋆ . . . ⋆ σp−1

F ⋆ F ∼−→ F ⋆ σF ⋆ . . . ⋆ σp−1

F = Nm(F). (4.4)

Using the realization functor PL+G⋊σ(GrG; Λ) → DL+G⋊σ(GrG; Λ), we view Nm(F) ∈
DL+G⋊σ(GrG; Λ) (so that we may apply the Smith functor, for example). Equipping a
general object of DL+G(GrG; Λ) with a σ-equivariant structure is much more involved than
just specifying isomorphisms (4.4) (satisfying cocycle conditions), so we emphasize that we
construct Nm(F) first as a σ-equivariant perverse sheaf, and then apply the realization
functor to get a σ-equivariant object of DL+G(GrG; Λ).

Remark 4.13. In our applications we will assume that p is large enough so that all parity
sheaves are perverse. The properties of being L+G-constructible and L+G-equivariant are
equivalent for perverse sheaves on GrG. Therefore, we will not need to worry about any
extra complications coming from the equivariance.

Lemma 4.14. Let i : GrH ∼= GrσG ↪→ GrG. For F ∈ PL+G(GrG;O), regard Nm(F) ∈
Pb
L+G⋊σ(GrG;O) as in Definition 4.12 above. Suppose that all the cohomology sheaves of F

have O-free stalks and costalks.
(i) The stalks of the cohomology sheaves of i∗ Nm(F) have an O[σ]-stable filtration with

associated graded a direct sum of either trivial or free O[σ]-modules.
(ii) The costalks of the cohomology sheaves of i! Nm(F) have an O[σ]-stable filtration

with associated graded a direct sum of either trivial or free O[σ]-modules.

Proof. If F has a finite L+G-equivariant filtration whose associated graded satisfies the
hypotheses of the Lemma, then the statement of Lemma for F can be checked on the
associated graded. Since Gr

λ
G is a product of homogeneous spaces for (a finite type quotient

of) L+H, there is a finite L+G-equivariant filtration of F with associated graded of being
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a direct sum of sheaves of the form F1 ⊠ . . . ⊠ Fp where each Fi ∈ PL+H(GrH ;O). Hence
we reduce to the case where F is itself of this form. Then

Nm(F) ≈ (F1 ⋆ F2 ⋆ . . . ⋆ Fp)⊠ (F2 ⋆ . . . ⋆ Fp ⋆ F1)⊠ . . .⊠ (Fp ⋆ F1 ⋆ . . . ⋆ Fp−1),

with σ acting by rotating the tensor factors, and the σ-equivariant structure coming from
the commutativity constraint.

Write F ′ := F1⋆F2⋆. . .⋆Fp ∈ PL+H(GrH ;O). Since i may be identified with the diagonal
embedding GrH ↪→ GrpH , we have i∗(NmF) ≈ (F ′)⊗p, with σ-equivariant structure given
by cyclic rotation of the tensor factors. In particular, the stalk of i∗(NmF) at x ∈ GrH
is the tensor-induction of the stalk of F ′

x from O to O[σ]. Hence it suffices to prove that
any cohomology sheaf of such a tensor induction has an O[σ]-equivariant filtration by either
trivial or free O[σ]-modules. This is verified by explicit inspection: choosing a basis for
Hj(F ′

x), the induced basis of Hj(F ′
x)

⊗p is grouped into either trivial or free orbits under
the σ-action.

The argument for (ii) is completely analogous (alternatively, we could deduce it simply
by applying Verdier duality to (i)). □

4.6.2. Smith theory for parity sheaves. We return momentarily to the general setup for
Smith theory: Y is a variety over F with an admissible σ-action and Z = Y σ. We assume
that F is separably closed and the stratification S on Y satisfies the JMW condition.

Proposition 4.15 (Variant of [LL21, Theorem 6.1.1]). Assume that each stratum Yλ is
smooth. Suppose E ∈ Db

S,σ(Y ;O) is a parity complex satisfying the condition:
(*) all ∗ and !-stalks of cohomology sheaves of E at fixed points y ∈ Y have an O[σ]-stable

filtration with associated graded being a direct sum of trivial or free O[σ]-modules.
Then Psm(E) ∈ PerfS(Z; TO) is Tate-parity with respect to the induced stratification Zλ =
Yλ ∩ Z and the induced pariversity †Z(λ) := †Y (λ).

Proof. This theorem is closely related to [LL21, Theorem 6.1.1], but loc. cit. imposes
the stronger condition that the σ-action on all stalks is trivial. This is satisfied in their
application (to the loop-rotation action), but not in ours, so we need to re-do the argument
in the requisite generality.

Let Z = Y σ and take the induced stratification on Z. Let i : Z → Y , iYλ : Yλ ↪→ Y ,
iZλ : Zλ ↪→ Z, iλ : Zλ ↪→ Yλ. Without loss of generality suppose E is an even complex on Y .
We are given that (iYλ )

?E has O-free cohomology sheaves supported in degrees congruent to
†Y (λ) mod 2, where ? ∈ {∗, !}; we want to show that (iZλ )

? Psm(E) has Tate-cohomology
sheaves supported in degrees congruent to †Z(λ) mod 2. Unraveling the definitions, we have

(iZλ )
∗ Psm(E) = (iZλ )

∗T∗i∗E ∼= T∗(iZλ )
∗i∗E ∼= T∗(iλ)∗(iYλ )

∗E .
Similarly, using Lemma 3.8 we have

(iZλ )
! Psm(E) ∼= T∗(iλ)!(iYλ )

!E . (4.5)

By hypothesis, (iYλ )
∗E has its cohomology sheaves supported in degrees congruent to †Y (λ)

(mod 2). So the stalks of (iλ)∗(iYλ )
∗E are supported in degrees congruent to †Y (λ) (mod 2),

and we must verify that their Tate cohomology groups are also supported in degrees of a
single parity.

By assumption (*), all the stalks have an O[σ]-stable filtration with associated graded
being a direct sum of trivial or free O[σ]-modules. For trivial O[σ]-modules the odd Tate
cohomology groups vanish by (4.1), while for free O[σ]-modules all the Tate cohomology
groups vanish. Hence all odd Tate cohomology groups vanish by the long exact sequence
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for Tate cohomology (§3.4.4). This shows that the Tate cohomology sheaves of (iλ)∗(iYλ )
∗E

are supported in degrees congruent to †Y (Yλ) (mod 2).
To show that (iλ)!(iYλ )

!E also has Tate cohomology sheaves supported in degrees congruent
to †Y (λ) (mod 2), we make a similar analogous argument using (4.5) instead. This shows
that T∗(iλ)∗(iYλ )

!E lies in degrees congruent to †Y (Yλ) (mod 2), and then we conclude by
observing that (iλ)∗(iYλ )

!E differs from (iλ)!(iYλ )
!E by an even shift (and twist) by the Gysin

isomorphism, which applies because the strata are assumed to be smooth (noting that the
smoothness of Zλ follows from the smoothness of Yλ by [CGP15, Proposition A.8.11], so
Zλ ↪→ Yλ is a regular embedding). □

For an O-linear abelian category C, with all Hom-spaces being free O-modules, we ab-
breviate

C⊗O k := C⊗O−Mod (k −Mod).

Lemma 4.16. Suppose that all the strata Yλ are simply connected and all parity sheaves
E(λ,L) exist, for all Yλ ∈ S. Then we have that

Parity0S,σ(Y ;O)⊗O k
∼−→ Parity0S,σ(Y ; k).

Proof. To see that the functor is well-defined, we note:
• The Hom-spaces of Parity0S,σ(Y ;O) are all free O-modules by [JMW14, Remark 2.7],

so that the domain is well-defined.
• The functor lands in parity sheaves since the modular reduction of a O-parity sheaf

is a k-parity sheaf by Remark 4.6.
It is essentially surjective because every k-parity sheaf lifts to a O-parity sheaf under our
assumption that all parity sheaves exist and all strata are simply connected (which implies
that all k-local systems on strata lift to O, since they are trivial). The fact that the functor
is fully faithful follows from [JMW14, (2.39)]. □

4.6.3. The base change functor. We return now to the base change setup of §4.6.1, with F
separably closed. Let F ∈ Parity0L+G(GrG;O). Then F ∈ PL+G(GrG;O) is perverse since
p is good for Ĝ (this is a part of Theorem 4.8), and Nm(F) ∈ Parity0L+G⋊σ(GrG;O) is a
parity sheaf by [JMW16, Theorem 1.5]. Furthermore, the σ-equivariant structure on Nm(F)
satisfies the assumption (*) of Proposition 4.15 by Lemma 4.14.

The Schubert cells of GrG are indexed by tuples λ := (λ1, . . . , λp) ∈ X∗(G)+, with each
λi ∈ X∗(H)+, and we have{

GrλG ∩GrH = Grλ1

H λ = (λ1, . . . , λ1),

GrλG ∩GrH = ∅ otherwise.

We claim that as long as p > 2, the induced pariversity coincides with the dimension
pariversity on GrH , i.e., for λ = (λ1, . . . , λp) ∈ X∗(G)+, we have

dimGrλ1

H ≡ dimGrλG (mod 2).

This will imply that:
(1) We may apply Proposition 4.15 to deduce that Psm(Nm(F)) ∈ Parity(L+H)(GrH ; TO)

is Tate-parity with respect to the dimension pariversity on GrH .
(2) Psm(Nm(F)) ∈ Parity0(L+H)(GrH ; TO), i.e., is normalized.

To prove the claim, we may focus on the case where λ1 = . . . = λp or else the statement
is vacuous. By [Zhu17, Proposition 2.1.5] we have dimGrλG = ⟨2ρG, λ⟩. So we just have
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to verify that ⟨2ρG, (λ1, . . . , λ1)⟩ ≡ ⟨2ρH , λ1⟩ (mod 2). Indeed, ρG = (ρH , . . . , ρH), so
⟨2ρG, (λ1, . . . , λ1)⟩ = p⟨2ρH , λ1⟩, and p is odd.

Thanks points (1) and (2) above, we can apply the lifting functor L to Psm(Nm(F)).
By Lemma 4.16, the composite functor L ◦ Psm ◦Nm factors uniquely through a functor
Parity0L+G(GrG; k)→ Parity0L+H(GrH ; k).

Construction 4.17 (Frobenius twist of categories). Let Frob be the absolute Frobenius
of k. Given a k-linear category C, there is another k-linear category C(p) := C ⊗k,Frob k.
Concretely, it is equivalent to the category which has the same objects as C, and morphisms

HomC(p)(x, y) = HomC(x, y)
(p) := HomC(x, y)⊗k,Frob k.

The tautological map HomC(x, y) → HomC(x, y)
(p) is Frob-semilinear over k, and induces

an equivalence FrobC : C
∼−→ C(p) which is Frob-semilinear. The functor FrobC : C → C(p)

is characterized by the universal property that any Frob-semilinear functor F : C → D
(meaning a functor between k-linear categories that is Frob-semilinear over k on morphisms)
factors uniquely through a k-linear functor C(p) → D.

C

C(p) D

FrobC
F

Now, given a presentation

F0 : C ∼= C0 ⊗Fp k := C0 ⊗Vect/Fp
Vect/k (4.6)

for some Fp-linear category C0, then there is another, k-linear equivalence C
∼−→ C(p),

which with reference to (4.6) is the tensor product of IdC0 with the k-linear equivalence
Vect

(p)
/k
∼= Vect/k induced by the k-linear isomorphism k ⊗Frob,k k ∼= k. Therefore (4.6)

induces a Frob-semilinear equivalence FrobF0 : C
∼−→ C.

Definition 4.18. We define

BC(p) : Parity0L+G(GrG; k)→ Parity0L+H(GrH ; k)

to be the functor unique filling in the commutative diagram

Parity0L+G(GrG;O) Parity0(L+H)(GrH ; TO)

Parity0L+G(GrG; k) Parity0L+H(GrH ; k).

Psm ◦Nm

F L

BC(p)

(4.7)

One more step is required to define what we call the base change functor BC. Note that
BC(p) is Frob-semilinear over k; we wish to linearize it. It is evident from the definitions
that the equivalence D(GrG; k) ∼= D(GrG;Fp)⊗Fp

k induces

F0 : Parity0L+G(GrG; k) ∼= Parity0L+G(GrG;Fp)⊗Fp
k.

Let Frobp := FrobF0
: Parity0L+G(GrG; k)

∼−→ Parity0L+G(GrG; k) be the k-semilinear equiv-
alence induced by F0, as explained in Construction 4.17. We define

BC := BC(p) ◦ Frob−1
p : Parity0L+G(GrG; k)→ Parity0L+H(GrH ; k).
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Remark 4.19. The construction of BC was motivated by a similar functor “LL” appearing
in [LL21, §6.2], which gives a partial geometric description of the Frobenius contraction
functor on Ĝ. Another motivation was the “normalized Brauer homomorphism” of [TV16,
§4.3], which our construction categorifies.

Theorem 4.20. Let ResBC : Repk(Ĝ)→ Repk(Ĥ) be restriction along the diagonal embed-
ding. We also denote by ResBC the same functor restricted to the subcategories of tilting
modules.11 The following diagram commutes:

Parity0L+G(GrG; k) Parity0L+H(GrH ; k)

Tiltk(Ĝ) Tiltk(Ĥ)

∼

BC

∼

ResBC

The proof is given in Appendix A.
The triangulated structure on DL+H(GrH ; k[σ]) equips PerfL+H(GrG; Tk) with the notion

of cone (namely, the image of a cone in DL+H(GrH ; k[σ])). We say that a sequenceA → B →
C in DL+H(GrH ; Tk) is exact if the induced map Cone(A → B) → C in PerfL+H(GrH ; Tk)
is an isomorphism.

Lemma 4.21. The composite functor

Repk(Ĝ)
Frob−1

p−−−−→ Repk(Ĝ)
Sat−−→ PL+G(GrG; k)

Nm−−→ PL+G⋊σ(GrG; k)
Psm−−−→ Perf(L+H)(GrH ; Tk)

is exact, i.e., sends exact sequences to exact sequences in the above sense.

The proof requires some notions from Appendix A, and will be postponed to §A.6.

4.6.4. Equivariantization and Galois descent. Assuming Theorem 4.20, let us give a few
variants related to descent to a ground field which is not separably closed. Suppose H base
changed from some subfield F0 ⊂ F, and G = ResE0/F0

(HE0
) for some Galois extension

E0/F0 with Galois group Z/pZ. Then GF ≈ (HF)
p and Aut(F/F0) acts on HF, GF and

therefore also on GrH,F,GrG,F.

Lemma 4.22 (Galois equivariance). In the situation above, the functor

BC : Parity0L+G(GrG,F; k)→ Parity0L+H(GrH,F; k)

is equivariant with respect to the action of Aut(F/F0).

Proof. The constituent functors Nm, i∗, T∗, and L are all Aut(F/F0)-equivariant, as is
Frob−1

p . It remains only to see that the dashed arrow in (4.7) is Aut(F/F0)-equivariant.
This follows because L ◦ Psm ◦Nm and F both have this property, and F is essentially
surjective and full. □

We refer to [DGNO10] for the theory of “equivariantization” and “de-equivariantization” of
categories. Given a group Γ acting on categories C,D and a Γ-equivariant functor F : C→ D,
the Γ-equivariantization of F is the functor FBΓ : CBΓ → DBΓ. If C and D are derived
categories of sheaves and F is induced by geometric operations that are Γ-equivariant, then
the equivariantization construction exists for equivariant derived categories. (We make this

11Note that it is not obvious that ResBC preserves the tilting property, but this follows from the non-
trivial theorem (building on work of many authors – see the discussion around [JMW16, Theorem 1.2]) that
tensor products of tilting modules are tilting.
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remark because if the Γ-equivariantization of a derived category is not the same as the
Γ-equivariant derived category, and it is the latter that we want to consider.)

Thanks to Lemma 4.22, the equivariantization of BC induces

BCBAut(F/F0) : Parity0L+G(GrG,F; k)
BAut(F/F0) → Parity0L+H(GrH,F; k)

BAut(F/F0).

We define Parity0L+G(GrG,F0
; k) := Parity0L+G(GrG,F; k)

BAut(F/F0) and similarly for H
(note that in §4.1 parity sheaves were only defined for varieties over separably closed fields,
since the axioms of a JMW stratification would not otherwise be satisfied). We define
Tiltk(

LG) to be the subcategory of Repk(LG) consisting of representations whose restriction
to Ĝ is tilting, and Tiltk(

LGgeom) to be the full subcategory of Repk(LGgeom) consisting of
representations whose restriction to Ĝ is tilting; then Tiltk(

LGgeom) ∼= Tiltk(Ĝ)Aut(F/F0),geom

and similarly for LH.
Then applying Aut(F/F0)-equivariantization to Theorem 4.20 yields:

Corollary 4.23. The following diagram is commutative.

Parity0L+G(GrG,F0 ; k) Parity0L+H(GrH,F0 ; k)

Tiltk(
LGgeom) Tiltk(

LHgeom)

∼

BCB Aut(F/F0)

∼

ResBC

4.6.5. Let H/F0 and G/F0 be as before. The following compatibility statement will be
needed later.

Lemma 4.24. The cube

Parity0L+G⋊σ(GrG; k) Parity0L+H(GrH ; k)

Parity0L+G⋊σ(GrG;O) Parity0(L+H)(GrH ; TO)

Db
c,L+G⋊σ(GrG; k) Perf(L+H)(GrH ; Tk)

Db
c,L+G⋊σ(GrG;O) Perf(L+H)(GrH ; TO)

T∗ϵ∗
Psm

F L

Psm

Psm

F F

(4.8)
commutes, where L is lifting functor L : Parity0L+H(GrH ; TO) → Parity0L+H(GrH ; k) from
§4.4 and the unlabeled arrow is defined as the one that makes the top face commute. (It
exists by the universal property of the categorical tensor product.)

Proof. The left face commutes by definition of F. It is obvious from the definition that the
front face commutes. The bottom face commutes by compatibility of Psm with tensoring
coefficients. The top face commutes by definition.
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To see that the right face commutes, consider the diagram

Parity0L+G(GrG;O) Parity0(L+H)(GrH ; TO) Parity0(L+H)(GrH ; k)

Db
c,L+H(GrH ;O) Perf(L+H)(GrH ; TO) Perf(L+H)(GrH ; Tk)

T∗ϵ∗ L

T∗ϵ∗

T∗ϵ∗ F

(4.9)

The right square of (4.9) is the right square of the cube (4.8), which we want to show
commutes. Since the middle column is a Verdier quotient of the left column, it suffices to
show that the outer square of (4.9) commutes. Next note that the composite of the upper
horizontal arrows in (4.9) is the modular reduction functor F by definition (4.3), so we can
factor the outer square of (4.9) as the outer quadrilateral in the diagram below.

Parity0L+G(GrG;O) Parity0L+G(GrH ; k)

Db
c,L+H(GrH ;O) Db

c,L+H(GrH ; k)

Perfb(L+H)(GrH ; Tk)

F

F

T∗ϵ∗

Obviously the commutativity of the outer quadilateral follows from the commutativity of
the inner rectangle, which is then immediate from the definition of F.

It remains to show that the back face commutes. Consider juxtaposing the top and back
faces of cube (4.8) to get:

Parity0L+G(GrG;O) Parity0(L+H)(GrH ; TO)

Parity0L+G(GrG; k) Parity0L+H(GrH ; k)

Db
c,L+G(GrG; k) Perf(L+H)(GrH ; Tk)

F

Psm

L

T∗ϵ∗

Psm

(4.10)

We want to show that the lower square commutes. The composite vertical arrows on left and
right columns are both the modular reduction functor F from O-coefficients to k coefficients,
so the outer square commutes. The dashed arrow is defined as the k-linearization of L◦Psm,
noting that Parity0L+G(GrG; k) ∼= Parity0L+G(GrG;O) ⊗O k. Therefore the right-then-down
(resp. down-then-right) composite functor in the lower square is the k-linearization of the
right-then-down (resp. down-then-right) composite functor in the upper square, so the
commutativity of the lower square follows from that of the upper square, completing the
proof.

□

Remark 4.25. Let us try to make some vague remarks about the utility of Lemma 4.24.
The unlabeled arrow in the top face is a priori somewhat mysterious, but the Lemma says
that after projecting to the Tate category, it has a simple description in terms of Psm.
Later, we will take Tate cohomology with coefficients indexed by the type of parity sheaves
constructed in this section. Note that Tate cohomology factors through the projection of
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these sheaves to the Tate category. Therefore, the computation of Tate cohomology is not
so sensitive to the subtleties in the constructions of this section; the purpose of this section
has more to do with the indexing of coefficient sheaves, in terms of the discussion of §1.3.

5. On global base change

In this section we will apply the preceding theory to moduli stacks of shtukas, in the
context of Lafforgue’s construction of the global Langlands parametrization for function
fields. In particular, we will prove Theorem 1.6, among other results.

We briefly review the relevant parts of Lafforgue’s construction in §5.1 and §5.2. Then
in §5.3, where we use a variant of Lafforgue’s ideas to construct and analyze an action of
the excursion action on Tate cohomology of moduli spaces of shtukas. In the situation of
base change, equivariant localization mediates between the Tate cohomology of shtukas for
G and for H, allowing us to relate certain excursion operators for the two groups. This is
then used in §5.6 to establish the existence of base change for mod p automorphic forms;
this relation will also be the crucial input for our local results in the next section.

5.1. Moduli of shtukas. We will use the theory of moduli stacks of shtukas, due to Drinfeld
and generalized by Varshavsky. Here we very briefly recall the relevant definitions in order
to set notation. More comprehensive references include [Var04] and [Laf18].

5.1.1. Shtukas. Fix a smooth projective curve X over a finite field Fℓ of characteristic ̸= p.
Let G be a smooth algebraic group scheme over X. We assume that G is generically
reductive, and let

◦
X↪→ X be the locus where G is reductive. For each finite set I, the stack

ShtG,I has the following functor of points on Fℓ-schemes S:

ShtG,I : S 7→


(xi)i∈I ∈ XI(S)

E = étale G-torsor over X × S

φ : E|X×S−
⋃

i∈I Γxi

∼−→ τE|X×S−
⋃

i∈I Γxi

 ,

where τ is the Frobenius Frobℓ on the S factor in X × S, and τE is the pullback of E under
the map 1× τ : X × S → X × S.

Geometrically, ShtG,I has a Schubert stratification whose strata are Deligne-Mumford
stacks locally of finite type. We regard it as an ind-(locally finite type) Deligne-Mumford
stack.

There is a map
πI : ShtG,I → XI

projecting a tuple ({xi}i∈I , E , φi) to {xi}i∈I . Let
◦

ShtG,I := ShtG,I ×XI (
◦
X)I .

5.1.2. Hecke stack. The Hecke stack HkG,I classifies

HkG,I : S 7→


(xi)i∈I ∈ XI(S)

E , E ′ = étale G-torsors over X × S

φ : E|X×S−
⋃

Γxi

∼−→ E ′|X×S−
⋃

Γxi

 .

Recall that G → X is reductive over
◦
X. Let

◦
HkG,I := HkG,I ×XI (

◦
X)I . The Geometric

Satake equivalence provides a functor Repk((
LG)I) → D(

◦
HkG,I ; k), which we normalize as

in [Laf18, Theorem 0.9].
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5.1.3. Satake sheaves. There is a map ShtG,I → HkG,I sending ({xi}i∈I , E , φ) to ({xi}i∈I , E , τE , φ).
Composing with the ∗-pullback through ShtG,I → HkG,I induces a functor

Satgeom : Repk(Ĝ
I)BGal(F s/F ),geom → Db(

◦
ShtG,I ; k).

Finally, we may identify Repk((
LGalg)I)

∼−→ Repk(Ĝ
I)BGal(F s/F ),geom as in §2.1.4, giving a

functor (cf. [Laf18, Theorem 0.11])

Sat : Repk((
LGalg)I)→ Db(

◦
ShtG,I ; k).

The Schubert stratification is defined by the support of the sheaves in the image of Sat,
with the closure relations corresponding to the Bruhat order. (In particular, Sat lands in
the derived category of sheaves constructible with respect to the Schubert stratification on
◦

ShtG,I .)

5.1.4. Level structures. For D ⊂ X a closed finite subscheme, there are level covers ShtG,D,I →
ShtG,I |(X\D)I which parametrize the additional datum of a trivialization of E over S ×D

compatible with τ and φ. Note that by definition, the “legs” {xi}i∈I ∈ (X \D)(S)I avoid
D.

5.1.5. Iterated shtukas. Let I1, . . . , Ir be a partition of I. We define Sht
(I1,...,Ir)
G,D,I (sometimes

called a moduli stack of iterated shtukas) to be the stack

Sht
(I1,...,Ir)
G,D,I : S 7→


(xi)i∈I ∈ (X −D)I(S)

E0, . . . , Er = étale G-torsors over X × S

φj : Ej−1|X×S−
⋃

i∈Ij
Γxi

∼−→ Ej |X×S−
⋃

i∈Ij
Γxi

j = 1, . . . , r

φ : Er
∼−→ τE0

υ = level structure over D × S

 .

Here by “level structure” we mean a trivialization of the restriction of each Ei over D × S,
compatible with the φj and φ. There is a map ν : Sht

(I1,...,Ir)
G,D,I → ShtG,D,I . A key property of

this morphism is that it is stratified small (with respect to the Schubert stratification), which
is a consequence of the same property of the convolution morphism for Beilinson-Drinfeld
Grassmannians.

Define
◦

ShtG,D,I= ShtG,D,I ×(X\D)I (
◦
X \D)I

and
◦

Sht
(I1,...,Ir)

G,D,I = Sht
(I1,...,Ir)
G,D,I ××(X\D)I (

◦
X \D)I .

5.1.6. Partial Frobenius. There is a partial Frobenius FI1 : Sht
(I1,I2,...,Ir)
G,D,I → Sht

(I2,...,Ir,I1)
G,D,I

sending

xi 7→

{
τxi i ∈ I1

xi otherwise

(E0, . . . , Er) 7→ (E1, . . . , Er, τE0)
(φ1, . . . , φr) 7→ (φ2, . . . , φr,

τφ1).
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It lies over the partial Frobenius FrobI1 on XI (applying Frobℓ to the coordinates indexed
by i ∈ I1), so that the diagram below is commutative (and cartesian up to radiciel maps):

Sht
(I1,...,Ir)
G,D,I Sht

(I2,...,Ir,I1)
G,D,I

(X −D)I (X −D)I

FI1

πI πI

FrobI1

(5.1)

5.1.7. Base change setup. We now consider the following “base change setup”. Let F be the
function field of X and HF a reductive group over F . We choose a parahoric extension of
HF to a smooth affine group scheme H over X.

Let E/F be a cyclic extension of F having degree p, so E corresponds to the function
field of a smooth projective curve X ′. Define G := ResX′/X(HX′), which is an algebraic
group scheme over X with generic fiber GF

∼= ResE/F (HE). The group scheme G → X
comes with an induced action of ⟨σ⟩ = Aut(X ′/X).

5.2. Review of V. Lafforgue’s global Langlands correspondence. Write Γ := Weil(F, F ) =
Weil(F s/F ). In [Laf18, §13], Lafforgue constructs an action of Exc(Γ, LGalg) on the space of
cusp forms for G with coefficients in k. This has been improved by Cong Xue, who extended
the action to all compactly supported functions ([Xuea, §7] for split G and [Xueb, §6] for
all G).

We summarize the construction of the excursion action, as we shall make use of some
of its internal aspects, and we also need to explain why it can be used to construct some
excursion actions on Tate cohomology.

5.2.1. Constructing actions of the excursion algebra. We will explain an abstract setup that
gives rise to actions of the excursion algebra.

Definition 5.1. Let A be a (not necessarily commutative) ring. A family of functors
HI : Repk((

LG)I)→ ModA(Γ
I), where I runs over (possibly empty) finite sets, is admissible

if it satisfies the two conditions below.
(1) (Compatibility with fusion) For all ζ : I → J , there is a natural isomorphism χζ

between the functors HI ◦ Resζ and Resζ ◦HJ in the diagram:

Repk((
LG)I) ModA(Γ

I)

Repk((
LG)J) ModA(Γ

J)

HI

χζ
Resζ Resζ

HJ

(5.2)

(2) (Compatibility with composition) For I ′
ζ′

−→ I
ζ−→ J , we have χζ◦ζ′ = χζ ◦ χζ′ .

Construction 5.2. Let 1 denote the trivial representation of LG. Given an admissible
family of functors HI : Repk((

LG)I)→ ModA(Γ
I), we get an A-linear action of Exc(Γ, LG)

on H{0}(1) as follows.
For a tuple (I,W, x, ξ, (γi)i∈I) we define an endomorphism, which gives the image of

SI,W,x,ξ,(γi)i∈I
in EndA(H{0}(1)), by the following composition:

H{0}(1) H{0}(W
ζ) HI(W ) HI(W ) H{0}(W

ζ) H{0}(1).
H{0}(x)

∼
χζ (γi)i∈I

∼
χ−1
ζ H{0}(ξ)
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(Here we again conflate the vector x ∈ W∆(Ĝ) with a Ĝ-equivariant map 1 → W |∆(Ĝ).)
From the assumptions of admissibility it is straightforward to check the relations in §2.4.2.

Remark 5.3. Note that it follows from admissibility that the A-module underlying HI(1)
for any I is identified with H∅(1) by χ∅→I . Proposition 2.4 then attaches a Galois repre-
sentation to each generalized eigenvector for the Exc(Γ, LG)-action on H∅(1). (Of course,
such an eigenvector is not guaranteed to exist a priori.)

5.2.2. Excursion action on the cohomology of shtukas. Let HG be the Hecke algebra acting
on ShtG,D,I ; it is the tensor product of local Hecke algebras with the level structure dictated
by D. For any finite set I, we have a map

πI : ShtG,D,I → (X −D)I

remembering the points of the curve indexed by I (which avoid D by definition). Let ηI

denote the generic point of XI and ηI the spectrum of an algebraic closure, viewed as a
geometric generic point of XI . When I is a singleton, we will just abbreviate these by η
and η.

We will define a family of functors indexed by finite sets I:

Hj
I : Repk((

LGalg)I)→ ModHG
(ΓI) (5.3)

sending V ∈ Repk((
LGalg)I) to

Hj
c (ShtG,D,I |ηI ; Sat(V )). (5.4)

Note that a priori Hj
I (V ) has an action of π1(η

I , ηI), which maps12 to ΓI but neither
injectively nor surjectively.

5.2.3. We explain why the action of π1(η
I , ηI) extends canonically to an action of ΓI .

Assume I is non-empty, since otherwise there is nothing to prove. The Satake functor of
§5.1.3 generalizes to a functor

Sat(I1,...,Ir) : Repk((
LG)I)→ Db(

◦
Sht

(I1,...,Ir)

G,D,I ; k),

such that the map

ν :
◦

Sht
(I1,...,Ir)

G,D,I →
◦

ShtG,D,I

has the property that Rν! Sat
(I1,...,Ir)(V ) ∼= Sat(V ). Furthermore, there are natural isomor-

phisms
F ∗
I1 Sat

(I1,I2,...,Ir)(V ) ∼= Sat(I2,...,Ir,I1)(V ),

where FI1 is the partial Frobenius from §5.1.6.
Write I = {1, . . . , n}. Thanks to the above properties and (5.1), the partial Frobenius

maps on Sht
({1},...,{n})
G,D,I then induce maps

Frob∗{1} H
j
I (V )

∼−→ Hj
I (V ).

That equips Hj
I (V ) with the action of the larger group FWeil(ηI , ηI) that we now recall,

summarizing [Laf18, Remarque 8.18]. Let F I denote the function field of XI , so ηI =

Spec F I , and F I an algebraic closure, so we may take ηI = Spec F I . Write (F I)perf for

12The map is non-canonical: it depends on a choice of specialization as in [Laf18, Remark 8.18].
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the perfect closure of F I , and Frob{i} for the “partial Frobenius” automorphism of (F I)perf

induced by Frobℓ on the ith factor. We define

FWeil(ηI , ηI) := {γ ∈ AutFq
(F I) : ∃(ni)i∈I ∈ ZI such that γ|(F I)perf =

∏
i∈I

(Frob{i})
ni}.

Writing πgeom
1 (ηI , ηI) := ker(π1(η

I , ηI)
deg−−→ Ẑ), this fits into an extension

0→ πgeom
1 (ηI , ηI)→ FWeil(ηI , ηI)→ ZI → 0.

Fixing a specialization morphism ηI ⇝ ∆(η{1}) induces a surjection

FWeil(ηI , ηI)↠Weil(η, η)I .

A form of Drinfeld’s Lemma [Xuea, Lemma 7.4.2] is used to show that the action of
FWeil(ηI , ηI) on Hj

I (V ) factors through Weil(F s/F )I .

Example 5.4. Let us unravel

H0
{0}(1) = H0

c (ShtG,D,{1} |η{1} ; Sat(1)). (5.5)

By Remark 5.3 the underlying Hecke module of H{0}(1) is isomorphic to H∅(1). According
to [Laf18, Remarque 12.2], this is the space of compactly supported k-valued functions on
the discrete groupoid

BunG,D(Fℓ) =
∐

α∈ker1(F,G)

(
Gα(F )\Gα(AF )/

∏
v

Kv

)
, (5.6)

where Gα is the pure inner form of G corresponding to α, Kv = G(Ov) for v /∈ D, and
Kv = ker(G(Ov)→ GD).

The excursion action preserves the decomposition (5.6), and so gives an action of Exc(Γ, LG)
on each H0

c (ShtG,D,∅;1)α := C∞
c (Gα(F )\Gα(AF )/

∏
v Kv; k).

The family of functors Hj
I is admissible; this is an immediate consequence of the fact that

Sat is already compatible with composition and fusion. Hence Construction 5.2 applies to
define an action of Exc(Γ, LG) on C∞

c (BunG,D(Fℓ); k). Elements of the image of Exc(Γ, LG)
in End(C∞

c (BunG,D(Fℓ); k)) are called “excursion operators”.

5.2.4. Xue’s generalization. Lafforgue defined an Exc(Γ, LG)-action on the finite-dimensional
subspace of cuspidal functions C∞

cusp(BunG,D(Fℓ); k) ⊂ C∞
c (BunG,D(Fℓ); k). This decom-

poses C∞
cusp(BunG,D(Fℓ); k) into a direct sum of generalized eigenspaces under the action of

Exc(Γ, LG). Using Proposition 2.4, this decomposition corresponds to a parametrization by
Langlands parameters.

Thanks to Xue’s extension of the action to Exc(Γ, LG) ↷ C∞
c (BunG,D(Fℓ); k), it is mean-

ingful to speak of Langlands parameters arising from C∞
c (BunG,D(Fℓ); k). However, since

the excursion action does not stabilize any finite-dimensional subspaces of C∞
c (BunG,D(Fℓ); k)

unless they are contained in the space of cusp forms, we must broaden what it means to
have an L-parameter “come from” an automorphic function.

Definition 5.5. We say that an L-parameter ρ ∈ H1(Gal(F s/F ), Ĝ(k)) arises from C∞
c (BunG,D(Fℓ); k)

if it arises via Proposition 2.4 from the Exc(Γ, LG)-action on some irreducible Hecke-
subquotient of C∞

c (BunG,D(Fℓ); k); equivalently, if the corresponding maximal ideal mρ ⊂
Exc(Γ, LG) is in the support of C∞

c (BunG,D(Fℓ); k) as an Exc(Γ, LG)-module.
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We say will be called automorphic if it arises via Proposition 2.4 from C∞
c (BunG,D(Fℓ); k)

for some D; equivalently if the corresponding maximal ideal mρ ⊂ Exc(Γ, LG) is in the
support of C∞

c (Gα(F )\Gα(AF ); k) for some α.

5.3. Excursion action on the Tate cohomology of shtukas. For a category C with
σ-action, recall that we let CBσ denote the category of σ-equivariant objects in C. This
comes equipped with a forgetful functor to C.

5.3.1. Tate cohomology of moduli of shtukas. If σ acts on G, it induces an action V 7→ σV
on Rep(LG).

Given a σ-equivariant representation V ∈ Repk((
LGalg)I)Bσ, we can form RΓc(ShtG,D,I |ηI ; Sat(V ))

as above. The σ-equivariant structure on V equips this with a σ-equivariant structure; more
formally, because Sat and πI : ShtG,D,I → (X\D)I are σ-equivariant, RΓc(ShtG,D,I |ηI ; Sat(−))
lifts to a functor Repk((LGalg)I)Bσ → Db((X\D)I ; k)Bσ. Hence we can form T j(RΓc(ShtG,D,I |ηI ; Sat(V ))),
the Tate cohomology (§3.4) of RΓc(ShtG,D,I |ηI ; Sat(V )). To ease notation, we will abbre-
viate

T j(ShtG,D,I ;V ) := T j(RΓc(ShtG,D,I |ηI ; Sat(V ))). (5.7)

Let us explain in what category we regard (5.7). Since RΓc(ShtG,D,I |ηI ; Sat(V )) has com-
muting actions of FWeil(ηI , ηI) and the Hecke algebra HG (the former commuting with
the σ-action), its Tate cohomology has commuting actions of FWeil(ηI , ηI) and of T 0(HG),
where Tate cohomology is formed with respect to the σ-action. A priori we regard (5.7) as
a T 0(HG)[FWeil(ηI , ηI)]-module. However, in Appendix B, we will prove:

Proposition 5.6. For any G,D, I, V , the FWeil(ηI , ηI)-action on T j(ShtG,D,I ;V ) factors
through FWeil(ηI , ηI)↠Weil(η, η)I .

It will then be natural to regard (5.7) as a T 0(HG)[Weil(η, η)I ]-module.
Using Lemma 3.14 we deduce the following simple but important identity: if σ acts

trivially on ShtH and F , then

T ∗(ShtH,D,I ;F) ∼= H∗
c (ShtH,D,I |ηI ;F)⊗ T ∗(k). (5.8)

5.3.2. Excursion action. Since σ acts on G, it acts on Exc(Γ, LGalg) by transport of struc-
ture. Concretely, we have

σ · SV,x,ξ,(γi)i∈I
= Sσ(V ),σ(x),σ(ξ),(γi)i∈I

. (5.9)

In general given a k[σ]-algebra A and an A-module M , there is a natural T 0(A) = Aσ/(N ·A)-
module structure on T ∗(M). This equips T ∗(ShtG,D,∅;1) with a natural Exc(Γ, LG)σ-action.
If all the data (V, x, ξ) is σ-equivariant, then the action of SV,x,ξ,(γi)i∈I

∈ Exc(Γ, LG)σ can
be described more concretely as follows: it is given by composition

T ∗(ShtG,D,∅;1) T ∗(ShtG,D,∅;V ) T ∗(ShtG,D,∅;V ) T ∗(ShtG,D,∅;1).
x (γi)i∈I ξ

(5.10)
Here we used Proposition 5.6 to define the middle arrow.

5.4. Preparations for equivariant localization.
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5.4.1. Analysis of fixed points. We study the σ-fixed points of ShtG,D,I , in anticipation of
applying the theory of §3 to it.

According to [Var04, Proposition 2.16] (stated there for split G, but valid for all G by
the same argument), ShtG,D,I is exhausted by quasi-compact open substacks Sht≤µ

G,D,I as µ

runs over dominant coweights and the Harder-Narasimhan truncation Sht≤µ
G,D,I is defined as

in [Laf18, (1.3)]. The open substack is determined by the Cartesian square

Sht≤µ
G,D,I ShtG,D,I

Bun≤µ
G BunG

Furthermore, for fixed µ the Deligne-Mumford stack Sht≤µ
G,D,I can be presented as a quotient

of a quasi-projective scheme by a finite group; for any closed point x0 ∈ X, the quasi-
projective scheme can be taken to be Sht≤µ

G,D+nx0,I
for sufficiently large n relative to µ,

and the group is then the automorphisms of the level structure. The same applies for the
variants Sht

(I1,...,Ir)
G,D,I .

We fix the following notation below. Let µ be a coweight of H and let µ̃ be the induced
coweight of G. Then we have a Cartesian square

Bun≤µ
H BunH

Bun≤µ̃
G BunG

which induces the Cartesian square

Sht
(I1,...,Ir),≤µ
H,D,I Sht

(I1,...,Ir)
H,D,I

Sht
(I1,...,Ir),≤µ̃
G,D,I Sht

(I1,...,Ir)
G,D,I

(5.11)

Lemma 5.7. If n is sufficiently large so that Sht(I1,...,Ir),≤µ
H,D+nx0,I

and Sht
(I1,...,Ir),≤µ̃
G,D+nx0,I

are repre-
sentable by schemes, then the diagonal map H → G induces an isomorphism

Sht
(I1,...,Ir),≤µ
H,D+nx0,I

∼−→ (Sht
(I1,...,Ir),≤µ̃
G,D+nx0,I

)σ.

Proof. For notational convenience we just treat the case of non-iterated shtukas, ShtG,D,I ;
the general case is essentially the same but with cumbersome extra notation.

There is an obvious map in one direction, Sht≤µ
H,D+nx0,I

→ (Sht≤µ̃
G,D+nx0,I

)σ. We will
construct the inverse.

Notate the S-points of Sht≤µ̃
G,D+nx0,I

as the set {({xi}i∈I , E , φ, υ)}. For any S, there is an
equivalence of categories between ResX′/X(H)-torsors on XS and H-torsors on X ′

S , which
we denote E 7→ E ′. The datum of a σ-fixed point of BunG,D translates under the above
equivalence to the datum of an H-torsor E ′ on X ′

S together with an isomorphism h : E ′ ∼−→
σ∗E ′. We claim that, since the point ({xi}i∈I , E , φ, υ) has no non-trivial automorphisms,
such an isomorphism automatically satisfies the cocycle condition, hence is equivalent to a
descent datum from E ′ to an H-torsor over XS . Furthermore, the map φ and level structure
υ will similarly descend uniquely.
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Let Nm(h) := (σp−1h)◦. . .◦(σh)◦h : E ′ ∼−→ E ′. The claim amounts to checking that Nm(h)
is the identity automorphism of E ′. By definition, it corresponds to some automorphism
of E compatible with φ and the level structure υ. But by assumption, this datum had no
non-trivial automorphisms, so Nm(h) can only be the identity automorphism.

This constructs a map ShtH,D+nx0,I ← (Sht≤µ̃
G,D+nx0,I

)σ which is manifestly a one-sided
inverse; we conclude by using (5.11) to see that it lands in Sht≤µ

H,D+nx0,I
.

□

5.4.2. Cohomology at infinite level. We will use Lemma 5.7 to apply Smith theory. However,
the excursion action does not stabilize the piece of cohomology coming from bounding the
HN polygon, so we need to let µ and n both go “off to infinity”.

Definition 5.8. Fix a closed point x0 ∈ X and consider the system of Deligne-Mumford
stacks, {Sht≤µ

H,D+nx0,I
} as n and µ vary. For V ∈ Rep((LHalg)I), we define

RΓc(ShtH,D+∞x0,I |ηI ; Sat(V )) = lim−→
n,µ

RΓc(Sht
≤µ
H,D+nx0,I

|
ηI ; Sat(V ))

where the maps in the µ variable are the covariant maps induced by open embeddings, while
the maps in the n variable are the contravariant maps induced by pullback. Note that the
colimit is filtered because both indexing posets are filtered.

Remark 5.9. As explained above, for any fixed µ, and all sufficiently large n depending
on µ, Sht≤µ

H,D+nx0,I
is representable by a scheme. Hence, the subposet of indices (n, µ) for

which Sht≤µ
H,D+nx0,I

is representable by a scheme is cofinal, so RΓc(ShtH,D+∞x0,I |ηI ; Sat(V ))

is naturally isomorphic to the colimit taken along this subposet.

Definition 5.10. Fix a closed point x0 ∈ X and V ∈ Repk((
LHalg)I)Bσ. We define

T j(ShtH,D+∞x0,I ;V ) := T j(RΓc(ShtH,D+∞x0,I |ηI ; Sat(V ))).

We note that RΓc(ShtH,D+∞x0,I |ηI ; Sat(V )) is bounded, since the dimension of the support
of Sat(V ) on each Sht≤µ

H,D+nx0,I
|
ηI is uniformly bounded for all n, µ.

Furthermore, note that for any cofinal subposet of HN polygons µ for H, the induced HN
polygons µ̃ form a cofinal poset for G. We make the analogous definitions RΓc(ShtG,D+∞x0,I |ηI ; Sat(V ))

and T j(ShtG,D+∞x0,I ;V ) for G.

5.5. Equivariant localization for excursion operators. We define Nm: Repk((
LG)I)→

Repk((
LG)I)Bσ to be the functor taking a representation V to V ⊗k

σV ⊗k . . . ⊗k
σp−1

V ,
with the σ-equivariant structure

σ Nm(V ) = σV ⊗k
σ2

V ⊗k . . .⊗k
σp−1

V ⊗k V
∼−→ V ⊗k

σV ⊗k . . .⊗k
σp−1

V = Nm(V )

given by the commutativity constraint for tensor products. It corresponds under Geometric
Satake to Definition 4.12. Given h : V → V ′ ∈ Repk((

LG)I), we set

Nm(h) := h⊗ σh⊗ . . .⊗ σp−1

h : Nm(V )→ Nm(V ′).

Note that Nm is not an additive functor, nor is it even k-linear. We linearize it by defining
Nm(p−1) := Nm ◦Frob−1

p , where (as in §4.6.3) Frob−1
p is the identity on objects and on

morphisms it is (−)⊗k,Frob−1
p

k. Then Nm(p−1) : Repk((
LG)I)→ Repk((

LG)I)Bσ is k-linear,
although still not additive.
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For V ∈ Repk((
LG)I), we denote by N · V the σ-equivariant representation V ⊕ σV ⊕

. . .⊕ σp−1

V , with σ-equivariant structure
σ(N · V ) = σV ⊕ σ2

V ⊕ . . .⊕ σp−1

V ⊕ V
∼−→ V ⊕ σV ⊕ . . .⊕ σp−1

V = (N · V )

given by the commutativity constraint for direct sums. For h : V → V ′ ∈ Repk((
LG)I), we

denote by N ·h : N ·V → N ·V ′ the σ-equivariant map h⊕σh⊕. . .⊕σp−1

h. Let ∆p : 1→ 1
⊕p

denote the diagonal map and ∇p : 1
⊕p → 1 denote the sum map.

Our goal in this subsection is to prove the theorem below.

Theorem 5.11. Fixed a closed point x0 on X and let D be any closed finite subscheme of
X.

(i) For each j ∈ {0, 1}, with respect to the isomorphism

T j(ShtG,D+∞x0,∅;1)
∼= Hj

c (ShtH,D+∞x0,∅;1)

induced by Lemma 5.7, the action of S
I,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I

∈ Exc(Γ, LG)σ

on T j(ShtG,D+∞x0,∅;1) is identified with the action of SI,ResBC(V ),x,ξ,(γi)i∈I
∈ Exc(Γ, LH)

on T j(ShtH,D+∞x0,∅;1) = H0
c (ShtH,D+∞x0,∅;1).

(ii) For each j ∈ {0, 1}, the action of SI,N ·V,(N ·x)◦∆p,∇p◦(N ·ξ),(γi)i∈I
∈ Exc(Γ, LG)σ on

T j(ShtG,D+∞x0,∅;1) is 0.

This will be established in several steps. The heart of the matter is the following equi-
variant localization isomorphism.

Proposition 5.12. Fixed a closed point x0 on X and let D be any closed finite subscheme
of X. Let G be a reductive group over F . We equip Repk(Ĝ

I) with the π1(η, η)
I-action

coming from the geometric action of π1(η, η) on Ĝ (§2.1.2).
(i) For each j ∈ {0, 1}, there is a natural isomorphism of π1(η

I , ηI)-equivariant functors
Repk(Ĝ

I)→ Vect/k,

T j(ShtG,D+∞x0,I ; Nm(p−1)(V )) ∼= T j(ShtH,D+∞x0,I ; ResBC(V )), V ∈ Repk(Ĝ
I). (5.12)

(ii) For each j ∈ {0, 1}, there is a natural isomorphism of functors Repk((LG)I)→ Modk(Weil(η, η)I),

T j(ShtG,D+∞x0,I ; Nm(p−1)(V )) ∼= T j(ShtH,D+∞x0,I ; ResBC(V )), V ∈ Repk((
LG)I),

(5.13)
which is compatible with fusion and composition.

Proof. (i) We will first construct a natural isomorphism of π1(η
I , ηI)-equivariant functors

Tiltk(Ĝ
I)→ Shv(ηI ; Tk),

T∗RΓc(ShtG,D+∞x0,I ; Nm(p−1)(V )) ∼= T∗ϵ∗RΓc(ShtH,D+∞x0,I ; ResBC(V )), V ∈ Tiltk(Ĝ
I).

(5.14)
By Lemma 4.24 (specifically, the commutativity of the back face), the diagram

Tiltk(Ĝ) Parity0L+G(GrG; k) Parity0L+G⋊σ(GrG; k) Parity0L+H(GrH ; k)

Db
L+G⋊σ,c(GrG; k) Perf(L+H)(GrH ; Tk)

Sat Nm

T∗ϵ∗

Psm

commutes. The composite functor that follows along the left and then bottom is Psm ◦Nm ◦ Sat,
while Theorem 4.20 identifies the composite functor that follows along the top and right
with T∗ϵ∗ ResBC(p) . We therefore have a π1(η

I , ηI)-equivariant natural isomorphism between
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these two composite functors. (The only non-tautological aspect of the equivariance is han-
dled in Lemma 4.22.) Linearizing this natural isomorphism, we get a π1(η

I , ηI)-equivariant
natural isomorphism of functors Tiltk(Ĝ

I)→ Perf(L+H)(GrH ; Tk),

Psm ◦Nm ◦ SatG ◦Frob−1
p
∼= SatH ◦ResBC . (5.15)

For any coweight µ for H, inducing the coweight µ̃ for G, and n sufficiently large so
that Sht≤µ̃

G,D+nx0,I
and Sht≤µ

H,D+nx0,I
are schemes, Lemma 5.7 identifies the σ-fixed points of

ShtG,D+∞x0,I with ShtH,D+∞x0,I . Therefore we may apply (3.6) to obtain an isomorphism
in Shv(ηI ; Tk),

T∗RΓc(Sht
≤µ̃
G,D+nx0,I

; Nm(p−1)(V )) := T∗RΓc(Sht
≤µ̃
G,D+nx0,I

; Sat(Nm(p−1)(V )))

∼= RΓc(Sht
≤µ
H,D+nx0,I

; Psm(Nm(Sat(Frob−1
p V ))))

(5.16)

which is natural in V ∈ Tiltk(Ĝ
I) and π1(η

I , ηI)-equivariant. The commutative diagram

ShtH,I HkH,I

ShtG,I HkG,I

induces a natural isomorphism between the two restriction functors Db
c(HkG,I |ηI ; k) →

Db
c(ShtH,I |ηI ; k), one by ∗-pullback through the right then top maps and the other by
∗-pullback through the bottom then left maps. Furthermore, the pullbacks are π1(η

I , ηI)-
equivariant, as is the natural isomorphism between them. The same discussion applies
with any level structure and HN truncation. Therefore, there is no risk of confusion in the
expression Psm(Nm(Sat(V )) whether we first regard Nm(Sat(V )) as a sheaf on Sht≤µ̃

G,D+nx0,I

and then apply Psm, or first apply Psm and then pull back to Sht≤µ
H,D+nx0,I

; the two are
naturally identified. Now, (5.15) induces an isomorphism in Shv(ηI ; Tk),

RΓc(Sht
≤µ
H,D+nx0,I

; Psm(Nm(Sat(Frob−1
p V )))) ∼= T∗ϵ∗RΓc(Sht

≤µ
H,D+nx0,I

; Sat(ResBC(V ))),

(5.17)
which is natural in V ∈ Tiltk(Ĝ

I) and π1(η
I , ηI)-equivariant.

We conclude (5.14) by taking the colimit of these isomorphisms (5.16) and (5.17) along
such n and µ, using that they form a cofinal poset by Remark 5.9.

Next we bootstrap from Tiltk(Ĝ
I) to Repk(Ĝ

I). For this, we use Proposition 4.10, which
allows for any V ∈ Repk(Ĝ

I) to produce a resolution of V by a complex V • = (. . . →
V −1 → V 0 → . . .) of tilting modules which is well-defined up to homotopy. Then Lemma
4.21 gives a natural isomorphism in Perf(Sht≤µ

H,D+nx0,I
; Tk),

Psm(Sat(Nm(p−1) V •)) = (. . .→ Psm(Sat(Nm(p−1) V −1))→ Psm(Sat(Nm(p−1) V 0))→ . . .)

So, using the earlier observations and (3.6), we have π1(η
I , ηI)-equivariant natural isomor-

phisms in Shv(ηI ; Tk),

T∗RΓc(Sht
≤µ
G,D+nx0,I

; Nm(p−1) V ) ∼= RΓc(Sht
≤µ
H,D+nx0,I

; PsmNm(p−1)(V ))

∼= RΓc(Sht
≤µ
H,D+nx0,I

; PsmNm(p−1)(V •)).
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Then using (5.14), we have

RΓc(Sht
≤µ
H,D+nx0,I

; PsmNm(p−1)(V •)) ∼= T∗ϵ∗RΓc(Sht
≤µ
H,D+nx0,I

; ResBC(V
•))

∼= T∗ϵ∗RΓc(Sht
≤µ
H,D+nx0,I

; ResBC(V )).

Now take the jth Tate cohomology group to obtain (5.12).
(ii) Since FWeil(ηI , ηI) ↠ Weil(η, η)I , it suffices to show a natural isomorphism as

FWeil(ηI , ηI)-modules. Then, since the FWeil(ηI , ηI)-actions on T ∗(ShtG,D+∞x0,I ; Nm(p−1)(V ))

and on T ∗(ShtH,D+∞x0,I ; ResBC(V )) are determined by their respective π1(η
I , ηI)-actions

plus partial Frobenius morphisms, we can and will focus on these two equivariance structures
separately.

Applying (−)Bπ1(η
I ,ηI) (see the references on equivariantization in §4.6.4) to the natural

isomorphism in (i) gives a natural isomorphism

T j(ShtG,D+∞x0,I ; Nm(p−1)(V )) ∼= T j(ShtH,D+∞x0,I ; ResBC(V ))

of functors V ∈ Repk((
LG)I)→ Modk(π1(η

I , ηI)).
Finally, we check the compatibility with partial Frobenius. We want to show that the

diagram

F ∗
{1}T

j(ShtG,D+∞x0,I ; Nm(p−1)(V )) T j(ShtG,D+∞x0,I ; Nm(p−1)(V ))

F ∗
{1}T

j(ShtH,D+∞x0,I ; ResBC(V )) T j(ShtH,D+∞x0,I ; ResBC(V ))

∼

∼ ∼

∼

(5.18)

commutes, where the vertical isomorphisms (as π1(η
I , ηI)-modules) have just been estab-

lished. By Lemma 5.7, there is a cofinal system of n, µ, µ′ such that applying σ-fixed points
to the diagram

F{1} : Sht
({1},{2},...,{r}),≤µ̃
G,D+nx0,I

→ Sht
({2},...,{r},{1}),≤µ̃′

G,D+nx0,I

yields the diagram

F{1} : Sht
({1},{2},...,{r}),≤µ
H,D+nx0,I

→ Sht
({2},...,{r},{1}),≤µ′

H,D+nx0,I
.

(The need for µ′ arises because F{1} does not preserve HN polygons.) This implies that
the natural isomorphims (5.16) and (5.17) are compatible with the maps F ∗

{1}. Taking the
(filtered) colimit along such n, µ, µ′ completes the proof.

□

Proof of Theorem 5.11. (i) Proposition 5.12(ii) gives a chain of compatible identifications

T j(ShtG,D+∞x0,I ;1) T j(ShtG,D+∞x0,I ; Nm
(p−1)(V )) T j(ShtG,D+∞x0,I ; Nm(p−1)(V )) T j(ShtG,D+∞x0,I ;1)

T j(ShtH,D+∞x0,I ;1) T j(ShtH,D+∞x0,I ; ResBC(V )) T j(ShtH,D+∞x0,I ; ResBC(V )) T j(ShtH,D+∞x0,I ;1)

Nm(p−1)(x)

∼ ∼

(γi)i∈I

∼

Nm(p−1)(ξ)

∼

x (γi)i∈I ξ

The operator S
I,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I

on T j(ShtG,D+∞x0,I ;1) is obtained
by tracing along the upper row, while the operator SI,ResBC(V ),x,ξ,(γi)i∈I

on T j(ShtH ;1) is
obtained by tracing along the lower row. Hence they coincide under the vertical identifica-
tions.
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(ii) By Lemma 5.7 and (3.6) we have a chain of compatible identifications

T j(ShtG,D+∞x0,I ;1) T j(ShtG,D+∞x0,I ;N · V ) T j(ShtG,D+∞x0,I ;N · V ) T j(ShtG,D+∞x0,I ;1)

T j(ShtH,D+∞x0,I ;1) T j(ShtH,D+∞x0,I ; Psm(N · V )) T j(ShtH,D+∞x0,I ; Psm(N · V )) T j(ShtH,D+∞x0,I ;1)

(N ·x)◦∆p

∼ ∼

(γi)i∈I

∼

∇p◦(N ·ξ)

∼

(N ·x)◦∆p (γi)i∈I ∇p◦(N ·ξ)

The operator SI,N ·V,(N ·x)◦∆p,∇p◦(N ·ξ),(γi)i∈I
on T j(ShtG,D+∞x0,I ;1) is obtained by tracing

along the upper row. But the stalks and costalks of N · Sat(V )|GrH are all complexes of
induced k[σ]-modules, and in fact they are perfect complexes over k[σ]. Hence Psm(N ·V ) is
equivalent to 0 in the Tate category of ShtH,D,I for all D, so T j(ShtH,D+∞x0,I ; Psm(N ·V )) =
0. Therefore the endomorphism in question factors through the zero map, hence is itself
zero. □

5.6. Applications to base change for automorphic forms. In §5.2 we described Laf-
forgue’s action of Exc(Γ, LG) on H∅(1). By (5.6), we have

H∅(1) =
⊕

α∈ker1(F,G)

C∞
c (Gα(F )\Gα(AF )/

∏
v

Kv; k).

Here ker1(F,G) := ker(H1(F,G) →
∏

v H
1(Fv, G)) is the isomorphism class of the generic

fiber of the G-torsor. More generally, this defines a decomposition

ShtG,D,I =
∐

α∈ker1(F,G)

(ShtG,D,I)α (5.19)

according to the isomorphism class of the generic fiber of E .
In the base change situation, the “diagonal embedding” map ϕ : H → G induces a map

ϕ∗ : ker1(F,H) → ker1(F,G), compatible with the map BunH,D(Fℓ) → BunG,D(Fℓ). The-
orem 1.6 is evidently implied by the theorem below, whose proof occupies this subsection.

Theorem 5.13. Fix any closed point x0 ∈ X and any closed finite subscheme on X. Let
[ρ] ∈ H1(Γ, Ĥ(k)) be an L-parameter arising from the action of Exc(Γ, LH) on H0

c (ShtH,D+∞x0,I ; Sat(1))α
in the sense of §5.2.4. Then the image of [ρ] in H1(Γ, Ĝ(k)) arises in the action of
Exc(Γ, LG) on H0

c (ShtG,D+∞x0,I ; Sat(1))ϕ(α) in the sense of §5.2.4.

We establish some preliminaries in preparation for the proof.

Definition 5.14 (The Tate diagonal). For a commutative algebra A in characteristic p with
σ-action, we denote by N ·A the subset consisting of elements of the form (1+σ+. . .+σp−1)a
for a ∈ A. One easily checks that N ·A is an ideal in Aσ.

We denote by Nm: A → Aσ the set map sending a 7→ a · σ(a) · . . . · σp−1(a). It is
multiplicative but not additive. It is an exercise to verify that the composition of Nm with
the quotient Aσ ↠ Aσ/N ·A is an algebra homomorphism, which we call the Tate diagonal
homomorphism ∆p : A→ T 0(A).

Lemma 5.15. Let A be a commutative ring over Fp with a σ-action. Let κ be any perfect
field over Fp. Let A′ ⊂ Aσ be a subring containing Nm(A) and N · A. (Since N · A is an
ideal in Aσ, it is also an ideal in any such A′.) Any character χ : A′ → κ factoring through
A′/N ·A extends uniquely to a character χ̃ : A→ κ, which is expclitily given by

χ̃(a) = χ(Nm(a))1/p. (5.20)

Proof. The same proof as that of [TV16, §3.4] works, but since our situation is a little more
general we reproduce it. One easily checks that the given formula (5.20) defines a valid
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extension (it is a ring homomorphism since κ is in characteristic p, and it clearly extends
χ).

Next we check that it is the unique extension. Note that σ acts on characters A→ κ by
pre-composition; we denote this action by χ̃ 7→ σ · χ̃ := χ̃ ◦σ−1. Clearly (5.20) is the unique
σ-fixed extension, so we will show that any extension χ̃′ must be σ-fixed. Indeed, since any
extension χ̃′ is trivial on N ·A by the assumption that χ factors through A′/N ·A, we have

p−1∑
i=0

σi · χ̃′ = 0.

By linear independence of characters [Sta20, Tag 0CKK] we must have σi · χ̃′ = χ̃′ for all i,
i.e. χ̃′ is σ-fixed. □

Lemma 5.16. Inside Exc(Γ, LG) we have

Nm(SI,V,x,ξ,(γi)i∈I
) = SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I

and
N · SI,V,x,ξ,(γi)i∈I

= SI,N ·V,(N ·x)◦∆p,∇p◦(N ·ξ),(γi)i∈I
.

Proof. The first equality follows from repeated application of the relations (2.7), (2.5) and
the explicit description of the σ-action in (5.9). The second equality follows from repeated
application of relations (2.7), (2.6) and the explicit description of the σ-action in (5.9). □

Construction 5.17 (Frobenius twist of algebras). This discussion is parallel to Construc-
tion 4.17. Let Frob be the absolute Frobenius of k. Given a k-algebra A, we denote by
A(p) := A ⊗k,Frob k its Frobenius twist. The map A → A(p) sending a 7→ a ⊗ 1 is a
k-semilinear isomorphism. It is characterized by the universal property that any Frob-
semilinear homomorphism f : A → B (i.e., f(λa) = λpf(a) for λ ∈ k) factors uniquely
through a k-linear homomorphism

A

A(p) B

f

If A is equipped with an Fp-structure φ0 : A ∼= A0 ⊗Fp
k, then there is a k-linear iso-

morphism A ∼= A(p), characterized by the property that it sends A0 to A0 ⊗ 1 via Id⊗1.
We denote by Frobφ0

: A
∼−→ A the Frob-semilinear isomorphism which is is the identity

on A0; it is the composition of the k-linear isomorphism A(p) ∼= A above and the Frob-
semilinear isomorphism A

∼−→ A(p) above. The k-linear homomorphism A→ B obtained by
precomposing f with the inverse of Frobφ0

will be call the linearization of f (with respect
to φ0).

Example 5.18. Note that Exc(Γ, LG) has an Fp-structure coming from the fact that LG
is defined over Fp.

Definition 5.19. Let Exc(Γ, LG)′ ⊂ Exc(Γ, LG) be the k-subalgebra generated by N ·
Exc(Γ, LG) and all elements of the form Nm(SI,V,x,ξ,(γi)i∈I

) = SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I

(the equality by Lemma 5.16).

Proof of Theorem 5.13. A trivial case of Proposition 5.12 gives an isomorphism

T 0(ShtG,D+∞x0,∅;1)
∼= H0

c (ShtH,D+∞x0,∅;1). (5.21)

https://stacks.math.columbia.edu/tag/0CKK
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The right side has an action of Exc(Γ, LH) through the quotient map Exc(Γ, LH) ↠
Exc(Γ, LH), and the left side has an action of Exc(Γ, LG)σ through the map Exc(Γ, LG)σ →
Exc(Γ, LG). Theorem 5.11 says that the isomorphism (5.21) is equivariant for the action of
the subalgebra Exc(Γ, LG)′ ⊂ Exc(Γ, LG)σ, which acts on the right side via the map

S
I,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I

→ SI,ResBC(V ),x,ξ,(γi)i∈I
.

The L-parameter [ρ] ∈ H1(Γ, Ĥ(k)) corresponds to a character χρ : Exc(Γ, LH) → k
under Proposition 2.4. Therefore χρ induces a character χ′

ρ : Exc(Γ, LG)′ → k sending

S
I,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I

7→ χρ(SI,ResBC(V ),x,ξ,(γi)i∈I
),

N · S 7→ 0 for any S ∈ Exc(Γ, LG).

Let m′
ρ = ker(χ′

ρ) ⊂ Exc(Γ, LG)′ be the corresponding maximal ideal. The assump-
tion that χ′

ρ arises in the action of Exc(Γ, LG)′ on H0
c (ShtH,D+∞x0,∅;1)α means that

H0
c (ShtH,D+∞x0,∅;1)α is supported at m′

ρ. For any Fp-module M0, there is semilinear
action of Aut(k) on M := M0⊗Fp

k through the second factor. This applies in particular to
Exc(Γ, LG)′ and H0

c (ShtH,D+∞x0,∅;1)α since they are defined over Fp ⊂ k. Since the action
of Exc(Γ, LG)′ on H0

c (ShtH,D+∞x0,∅;1)α is also defined over Fp, the image of m′
ρ under the

automorphism of Exc(Γ, LG)′ induced by Frobp ∈ Aut(k) also appears in the support of
H0

c (ShtH,D+∞x0,∅;1)α. We denote this maximal ideal by n′ρ; its associated character ηρ is
characterized by the property that ηρ kills N · S for any S ∈ Exc(Γ, LG), and for (V, x, ξ)
defined over Fp it sends

SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I
7→ χρ(SI,ResBC(V ),x,ξ,(γi)i∈I

)p

(we omitted Frobenius twists because they have no effect on maps defined over Fp).
At the start of the proof, we identified H0

c (ShtH,D+∞x0,∅;1)α with T 0(ShtG,D+∞x0,∅;1)

as modules over Exc(Γ, LG)′. The latter is a subquotient of H0
c (ShtG,D+∞x0,∅;1) viewed as a

Exc(Γ, LG)′-module via the composition Exc(Γ, LG)′ ↪→ Exc(Γ, LG). Since H0
c (ShtG,D+∞x0,∅;1)

is supported at n′ρ ⊂ Exc(Γ, LG)′, it is also supported at some maximal ideal nρ of Exc(Γ, LG)

lying over n′ρ. Lemma 5.15 implies that there is a unique maximal ideal of Exc(Γ, LG) lying
over n′ρ, which by Lemma 5.16 corresponds to the character sending

SI,V,x,ξ,(γi)i∈I
7→ηρ(SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I

)1/p = χρ(SI,ResBC(V ),x,ξ,(γi)i∈I
).

This is precisely χρ ◦ ϕ∗
BC, so its kernel is nρ. We conclude that H0

c (ShtG,D+∞x0,∅;1) must
be supported at ker(χρ ◦ ϕ∗

BC) ⊂ Exc(Γ, LG), as desired.
□

6. On local base change

In this section we will prove the main local results mentioned in the Introduction. We
begin by reviewing the relevant aspects of the Genestier-Lafforgue correspondence in §6.1.
Its key property is local-global compatibility, which will allow us to leverage the global
results proved in the preceding section.

After that we embark on the construction of the map ZTV from Theorem 1.4. Its definition
does not require any geometry, and works equally well over local fields of characteristic zero
(and residue characteristic different from p), but requires some technical preliminaries on
Hecke algebras, which we establish in §6.2. Then we review the Brauer homomorphism in
§6.3, which is needed to finally construct ZTV and prove Theorem 1.4. We then use it (and
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intermediate results established along the way) to prove Theorem 1.2 in §6.5 and Theorem
1.1 in §6.6.

6.1. Review of the Genestier-Lafforgue correspondence. Let Fv be a local function
field with ring of integers Ov and residue characteristic ℓ ̸= p. Let Wv be the Weil group of
Fv. Let G be a reductive group over Fv and denote Gv := G(Fv). In [GL, Théorèm 8.1],
Genestier-Lafforgue construct a map{

irreducible admissible representations
π of Gv over k

}
/ ∼ −→

{
semi-simple L-parameters

ρπ : Wv → LG(k)

}
/ ∼,

which is characterized by local-global compatibility with Lafforgue’s Global Langlands cor-
respondence.

We briefly summarize the aspects of the Genestier-Lafforgue correspondence that we will
need.

6.1.1. The Bernstein center. We begin by recalling the formalism of the Bernstein center
[Ber84]. Let K ⊂ Gv be an open compact subgroup with prime-to-p order. The Hecke
algebra of G with respect to K with coefficients in Λ is

H(G,K; Λ) := Cc(K\Gv/K; Λ),

the compactly supported functions on K\Gv/K valued in Λ. This forms an algebra under
convolution, normalized so that the indicator function 1K is the unit. We let Z(G,K; Λ) :=
Z(H(G,K; Λ)) be the center of H(G,K; Λ).

If K ⊂ K ′ have prime-to-p pro-order (e.g., this will be true as long as they are sufficiently
small), then convolution with 1K′ gives a homomorphism Z(G,K; Λ) → Z(G,K ′; Λ). The
Bernstein center of G (with coefficients in Λ) is

Z(G; Λ) := lim←−
K

Z(G,K; Λ),

where the transition maps to Z(G,K; Λ) are as above, and the inverse limit is taken over K
with prime-to-p pro-order.

If Λ = k, we abbreviate H(G,K) := H(G,K; k), Z(G,K) := Z(G,K; k), and Z(G) :=
Z(G; k).

The ring Z(G) has another interpretation as the ring of endomorphisms of the identity
functor of the category of smooth k-representations of Gv. Explicitly, smoothness of Π im-
plies that Π =

⋃
open compact K⊂Gv

ΠK , and Z(G,K) acts on ΠK as an H(G,K)-module; this
assembles into action of Z(G) on Π. In particular, any irreducible admissible representation
Π of Gv over k induces a character of Z(G).

6.1.2. Action of the excursion algebra. The main result of [GL] is the construction of a
homomorphism

ZG : Exc(Wv,
LG)→ Z(G). (6.1)

Let x ∈ B(G/Fv) be a point of the Bruhat-Tits building of G, and use it to extend G to
a parahoric group scheme over Ov. (Some reminders on Bruhat-Tits theory will appear in
§6.2.2.) For r ≥ 0, let Kr := G(Fv)x,r; this is an open compact subgroup of Fv. We write
ZG,r : Exc(Wv,

LG)→ Z(G,Kr) for the composition of ZG with the tautological projection
to H(G,Kr).

We will shortly give a characterization of (6.1). First let us indicate how (6.1) defines
the correspondence Π 7→ ρΠ. An irreducible admissible Π induces a character of Z(G),
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as discussed above. Composing with ZG then gives a character of Exc(Wv,
LG), which by

Proposition 2.4 gives a semisimple Langlands parameter ρΠ ∈ H1(Wv, Ĝ(k)).

6.1.3. Local-global compatibility. Choose a smooth projective curve X over Fℓ and a point
v ∈ X so that Xv = Spec Ov, and G extends to a reductive group over the generic point of
X. Then choose a further extension of G to a parahoric group scheme over all of X, such
that G/Ov is the parahoric group scheme corresponding to the chosen point x ∈ B(G/Fv).

Choose an embedding of the local Weil group Wv into the global Weil group of X, which
we denote Weil(η, η). The map (6.1) is characterized by local-global compatibility with the
global excursion action. The idea is that for (γi)i∈I ⊂ W I

v ⊂ Weil(η, η)I , the action of
the the excursion operator SI,f,(γi)i∈I

on H0
c (ShtG,D,∅;1) is local at v, i.e. it acts through

a Hecke operator for Gv. Moreover, it commutes with other Hecke operators because all
excursion operators commute with all Hecke operators, hence it must actually be in the
center of the relevant Hecke algebra. This idea is affirmed by the Proposition below.

Proposition 6.1 (Genestier-Lafforgue Proposition 1.3). Let r ≥ 0 be an integer and D :=
rv + Dv a closed finite subscheme of X, with Dv supported away from v. For (γi)i∈I ⊂
W I

v , the operator SI,f,(γi)i∈I
acts on H0

c (ShtG,D,∅;1) as convolution by ZG,r(SI,f,(γi)i∈I
) ∈

Z(G,Kr).

Remark 6.2. By [GL, Lemme 1.4], for large enough (depending on r) Dv the action of
ZG,r(SI,f,(γi)i∈I

) on H0
c (ShtG,D,∅;1) is faithful. Therefore, Proposition 6.1 certainly charac-

terizes the map (6.1). What is not clear is that the resulting ZG,r(SI,f,(γi)i∈I
) is independent

of choices (of the global curve, or the integral model of the affine group scheme). In [GL] this
is established by giving a purely local construction of (6.1) in terms of “restricted shtukas”,
but for our purposes it will be enough to accept Proposition 6.1 as a black box.

6.2. Preliminary results on Hecke algebras. We next establish some technical lemmas
which aid to study the properties of the Brauer homomorphism. The only result that will
be needed in later subsections is Corollary 6.4.

6.2.1. Assumptions. In this subsection, we allow Fv to be any local field (including one of
characteristic zero) of residue characteristic ℓ ̸= p. Let Ev/Fv be a finite Galois assumption
such that Gal(Ev/Fv) has order coprime to ℓ. We let H be any (connected) reductive group
over Fv and G := ResEv/Fv

(HEv
). We abbreviate Hv = H(Fv) and Gv = G(Fv) = H(Ev).

6.2.2. Reminders on Bruhat-Tits theory. First we recall some relevant facts from Bruhat-
Tits theory, originally developed in [BT72] but explained in the form used below in [KP23].

Let B(H/Fv) be the Bruhat-Tits building of H/Fv and x ∈ B(H/Fv). Associated to
x there is the parahoric group H(Fv)

0
x := H(Fv)x,0, along with its decreasing filtration

H(Fv)x,r for r ≥ 0. The subgroup H(Fv)x,0+ :=
⋃

s>0 H(Fv)x,s is pro-ℓ.
We record some descent properties: if Ev/Fv is unramified then H(Ev)

Gal(Ev/Fv)
x,r =

H(Fv)x,r, and if Ev/Fv is tamely ramified then H(Ev)
Gal(Ev/Fv)
x,r ⊃ H(Fv)x,r as explained

in [KP23, §12].
We shall make use of the Cartan decomposition. We follow the description in [KP23,

§5.2]. Let S be a maximal Fv-split torus of H, and Z = ZH(S). Referring to [KP23, (5.2.1)]
for undefined notation, we have a subset

Z := {z ∈ Z(Fv) : α(ωZ(z)) ≥ 0 for all α ∈ Φ+} ⊂ Z(Fv). (6.2)

According to [KP23, Theorem 5.2.1], for a special vertex x in the apartment of S, we have
(1) H(Fv) = H(Fv)x,0 · Z ·H(Fv)x,0, and
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(2) for z, z′ ∈ Z, H(Fv)x,0 z H(Fv)x,0 = H(Fv)
0
x z

′ H(Fv)
0
x if and only if z′(z−1) ∈

Z(Fv)
0,

where for a Levi subgroup M ⊂ G, the subgroup M(Fv)
0 ⊂ M(Fv) is the kernel of the

Kottwitz homomorphism κM : M(Fv) → π1(M)
Gal(F̆v/Fv)
I ; it may be defined alternatively

as in [KP23, Definition 2.6.23]. We have Z(Fv)
0 ⊂ H(Fv)x,0.

6.2.3. Maps of double coset spaces. Following the notation of §6.2.1, let SG be a maximal
Fv-split torus of G, and define ZE := ZG(SG), and ZE ⊂ ZE(Fv) as in (6.2). Let SF be
a maximal Fv-split torus of H contained in SG, ZF = ZH(SH), and ZF ⊂ ZF (Fv) as in
(6.2). Let x ∈ B(G/Fv) be a special vertex in the apartment of SG. We will abbreviate
Kr := G(Fv)x,r and Ur = K

Gal(Ev/Fv)
r ⊃ H(Fv)x,r. The goal of this subsection is to prove

the following.

Proposition 6.3. If r ≥ 0, then the map Ur\Hv/Ur → Kr\Gv/Kr is injective.

Proof. We first handle the case r = 0, which will seen to be a consequence of Cartan
decomposition. Since U0 ⊃ H(Fv)x,0, the Cartan decomposition implies that double cosets
U0\Gv/U0 are represented by z ∈ ZF . If z1, z2 ∈ ZF are such that K0z1K0 = K0z2K0,
then z2z

−1
1 ∈ ZE(Fv)

0 ⊂ K0. On the other hand, clearly z2z
−1
1 ∈ H(Fv), so we conclude

that z2z−1
1 ∈ K0 ∩Hv = U0. Therefore, U0z1U0 = U0z2U0, and the case r = 0 is concluded.

Now suppose r > 0. Let a, b ∈ Ur\Hv be two elements whose images in Kr\Gv lie in the
same orbit for the right translation of Kr. In other words, a = bk for some k ∈ Kr. Since
a, b are fixed by σ, this implies that

a = bσ(k)

and therefore σ(k)k−1 ∈ StabKr
(b) =: Kb

r . Note that Gal(Er/Fr) is of order prime-to-ℓ
while Kr is pro-ℓ thanks to the assumption r > 0, so then H1(Gal(Er/Fr);K

b
r) = 0. This

means that there exists y ∈ Kb
r such that σ(k)k−1 = σ(y)y−1. Then y−1k is fixed by σ, so

y−1k ∈ Hv ∩Kr = Ur. But then

a = bk = (by−1)k = b(y−1k),

which shows that a and b lie in the same orbit for the right translation of Ur on Ur\Hv. □

In the following Corollary, we let Gal(Ev/Fv) act on Gv = H(Ev) by the natural Galois
action, which induces an action on H(G,Kr; Λ).

Corollary 6.4. Suppose r ≥ 0. Then the restriction map H(G,Kr; Λ)
Gal(Ev/Fv) → H(H,Ur; Λ)

is surjective.

6.3. The Brauer homomorphism. We introduce the notion of the Brauer homomorphism
from [TV16], whose utility for our purpose is to capture the relationship between Π and its
Tate cohomology from the perspective of Hecke algebras.

6.3.1. Assumptions. In this subsection we allow Fv to be any local field (including one of
characteristic zero) of residue characteristic ℓ ̸= p. We assume that Gal(Ev/Fv) is cyclic of
order p, and we let σ ∈ Gal(Ev/Fv) be a generator. We let H be any (connected) reductive
group over Fv and G := ResEv/Fv

(HEv
). Subgroups Kr ⊂ Gv, Ur ⊂ Hv are defined as in

§6.2.3.
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6.3.2. The (un-normalized) Brauer homomorphism. Let K ⊂ Gv be an open compact sub-
group, and let U := Kσ ⊂ Hv. We say that K ⊂ Gv is a plain subgroup if (Gv/K)σ = Hv/U .

We can view H(G,K) as the ring of Gv-invariant (for the diagonal action) functions on
(Gv/K)× (Gv/K) under convolution.

Lemma 6.5. If K ⊂ Gv is a plain subgroup, then the restriction map

H(G,K)σ = FunGv,c((Gv/K)× (Gv/K), k)σ (6.3)
restrict−−−−→ FunHv,c((Hv/U)× (Hv/U), k) = H(Hv, U)

is an algebra homomorphism.

Proof. What we must verify is that for x, z ∈ Hv/U , and f, g ∈ H(G,K)σ, we have∑
y∈Gv/K

f(x, y)g(y, z) =
∑

y∈Hv/U

f(x, y)g(y, z). (6.4)

Since f and g are σ-invariant, we have

f(x, y) = f(σx, σy) = f(x, σy) and g(y, z) = g(σy, σz) = g(σy, z).

If y /∈ Hv/U , then the plain-ness assumption implies that y is not fixed by σ. Therefore the
contribution from the orbit of σ on y to (6.4) is a multiple of p, which is 0 in k. □

The map of Lemma 6.5 was introduced in [TV16, §4] and called the (un-normalized)
Brauer homomorphism. We denote it

Br: H(G,K)σ → H(H,U).

Lemma 6.6. If K ⊂ G(Fv)x,0+ for any x ∈ B(G/Fv), then K is plain.

Proof. By the long exact sequence for group cohomology, the plain-ness of K ⊂ Gv is
equivalent to condition that the map on non-abelian cohomology H1(⟨σ⟩;K)→ H1(⟨σ⟩;Gv)
has trivial fiber over the trivial class. But since G(Fv)x,0+ is pro-ℓ, all its subgroups are
acyclic for H1(⟨σ⟩,−) as σ has order p. Therefore H1(⟨σ⟩,K) vanishes for all such K ⊂
G(Fv)x,0+. □

Lemma 6.7 (Relation to the Brauer homomorphism). Assume K ⊂ Gv is plain. Suppose
Π is a σ-fixed representation of Gv. Then the map of Tate cohomology groups T ∗(ΠK) →
T ∗(Π) lands in the U -invariants, and for any h ∈ H(G,K)σ we have the commutative
diagram below.

T ∗(ΠK) T ∗(Π)U

T ∗(ΠK) T ∗(Π)U

T 0h Br(h)

(Here T 0h is the element of T 0(H(G,K)) represented by h.)

Proof. This is [TV16, §6.2]; it follows from a direct computation similar to the proof of
Lemma 6.5. □
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6.3.3. Treumann-Venkatesh homomorphism. If we take K = Kr as in Corollary 6.4, then the
Brauer homomorphism Br: H(G,Kr)

σ → H(H,Ur) is a surjective algebra homomorphism,
hence induces a map on centers

Z(Br) : Z(H(G,Kr)
σ)→ Z(H,Ur). (6.5)

It is evident from the definition that Z(Br) through the quotient Z(H(G,Kr)
σ)/N ·Z(G,Kr).

Since Z(G,Kr) is commutative, it has a Tate diagonal homomorphism (Definition 5.14)
Z(G,Kr)

∆p

−−→ T 0(Z(G,Kr)). Since Z(H(G,Kr))
σ ⊂ Z(H(G,Kr)

σ), we may compose with
Z(Br) to obtain a map

Z(G,Kr)
∆p

−−→ T 0(Z(G,Kr))
Z(Br)−−−−→ Z(H,Ur). (6.6)

Note however that it is not k-linear, since ∆p is Frob-semilinear over k. Then there is a
(unique) homomorphism Z ′ fitting into the commutative diagram

Z(G,Kr)

Z(G,Kr)
(p) Z(H,Ur)

∼ Z(Br)◦∆p

Z′

(6.7)

We have Z(G,Kr) ∼= Z(G,Kr;Fp)⊗Fp k, which as explained in Construction 5.17 induces a
k-linear isomorphism

Z(G,Kr)
(p) ∼= Z(G,Kr). (6.8)

Definition 6.8. We define Treumann-Venkatesh homomorphism ZTV,r to be the homo-
morphism Z(G,Kr)→ Z(H,Ur) obtained by linearization of Z ′ in the sense of Construction
5.17 with respect to the Fp structure (6.8).

Remark 6.9. Definition 6.8 is not considered in [TV16], but it is inspired by the definition
of the normalized Brauer homomorphism in [TV16, §4.3].

6.4. The base change homomorphism for Bernstein centers. For now, assumptions
are as in §6.3.1. Suppose Kr has prime-to-p pro-order. For s > r, so that Ks ⊂ Kr, we have
a map es→r

G : Z(G,Ks) → Z(G,Kr) given by convolution with 1Kr
. (Technically es→r

G also
depends on the point x ∈ B(G/Fv) used to define the Kr, but we suppress this from our
notation.) Similarly, we have es→r

H : Z(H,Us)→ Z(H,Ur) given by convolution with 1Ur
.

Lemma 6.10. The diagram

Z(G,Ks) Z(H,Us)

Z(G,Kr) Z(H,Ur)

ZTV,s

es→r
G es→r

H

ZTV,r

commutes.

Proof. This follows by direct computation, using Lemma 6.5 and Lemma 6.7. □

Definition 6.11 (Base change homomorphism for Bernstein centers). We define the map
ZTV : Z(G)→ Z(H) as

lim←−
r

ZTV,r : lim←−
r

Z(G,Kr)→ lim←−
r

Z(H,Ur).
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Definition 6.11 is well-defined over local fields of any residue characteristic ℓ ̸= p, but in
this paper we will only prove properties of it for local function fields. Hence, for the rest
of the paper, we assume that Fv is a local field of positive characteristic . The
rest of this subsection shall be devoted to the proof of Theorem 1.4.

6.4.1. The maps

Exc(Wv,
LG)

ZG,r−−−→ Z(G,Kr)→ EndHG
(H0

c (ShtG,D,∅;1))

induce upon applying Tate cohomology,

T 0 Exc(Wv,
LG)

T 0ZG,r−−−−−→ T 0Z(G,Kr)→ EndT 0HG
(T 0(H0

c (ShtG,D,∅;1))).

Fix a closed point x0 on X distinct from v. For each integer r, we will impose level structure
along D := rv + ∞x0, interpreted as in §5.4.2. By Remark 6.2, the map Z(G,Kr) →
EndHG

(H0
c (ShtG,D,∅;1)) is injective.

6.4.2. Theorem 5.11 implies that under the identification T 0(ShtG,D,∅;1) ∼= T 0(ShtH,D,∅;1),
we have the action of

S
I,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I

on T 0(ShtG,D,∅;1)

 =

(
the action of SI,ResBC(V ),x,ξ,(γi)i∈I

on T 0(ShtH,D,∅;1)

)
.

6.4.3. For any set S, we let k[S] denote the k-vector space of k-valued functions on S.
Now suppose S̃ is a set with an action of Gv ⋊ ⟨σ⟩, on which an open compact subgroup

K ⊂ Gv acts freely. Then for S := S̃/K, there is a natural action of H(G,K) on k[S] since
we may view H(G,K) = HomGv (k[Gv/K], k[Gv/K]) and k[S] = HomGv (k[Gv/K], k[S̃]).
This induces an action of T 0(H(G,K)) on T 0(k[S]) ∼= k[Sσ], and then by inflation an action
of H(G,K)σ on k[Sσ].

By the same mechanism, for U := Kσ there is an induced action ofH(H,U) on k[S̃σ/Kσ] =

k[S̃σ/U ]. We define ZH,r : Exc(Wv,
LH)→ Z(H,Ur) similarly to ZG,r.

Lemma 6.12. Assume K ⊂ Gv is a plain subgroup. Then k[S̃σ/U ] is a H(G,K)σ-direct
summand of k[Sσ], and for all h ∈ H(G,K)σ we have(

the action of h on k[S̃σ/U ]
)
=
(
the action of Br(h) ∈ H(H,U) on k[S̃σ/U ]

)
.

Proof. See [TV16, equation (4.2.2)]. □

From §6.4.1 we have the diagram

T 0 Exc(Wv,
LG) T 0Z(G,Kr) EndT 0HG

(T 0(ShtG,D,∅;1))

Exc(Wv,
LH) Z(H,Ur) EndHH

(T 0(ShtH,D,∅;1))

ZG,r

Z(Br)

ZH,r

(6.9)

Here the right vertical map is the identity map on endomorphisms, with respect to the
identification T 0(ShtG,D,∅;1) ∼= T 0(ShtH,D,∅;1). Note that the surjectivity statement of
Corollary 6.4, plus Lemma 6.5 and Lemma 6.7 giving compatibility of the respective actions
with the Brauer homomorphism, are what guarantees that an endomorphism commuting
with the T 0(HG)-action also commutes with the HH -action.
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Corollary 6.13. For all r ≥ 1, the action of z ∈ T 0Z(G,Kr) on T 0(ShtG,D,∅;1) in
(6.9) agrees with the action of Z(Br)(z) on T 0(ShtH,D,∅;1) in (6.9) under the identification
T 0(ShtG,D,∅;1) ∼= T 0(ShtH,D,∅;1) from §3.4.5. In other words, the square in diagram (6.9)
commutes.

Proof. Apply Lemma 6.12 with S := ShtG,D,∅ and S̃ := ShtG,∞v+∞x0,∅ := lim←−j≥0
ShtG,(r+j)v+jx0,∅.

Then k[S] is identified with the functions on ShtG,rv+∞x0,∅, and Lemma 5.7 plus §3.4.5 iden-
tify k[S̃σ/Kσ] with the functions on ShtH,rv+∞x0,∅.

As compactly supported functions are dual to functions, the assertions for compactly
supported functions then follow by duality. □

Corollary 6.14. For all r ≥ 1, for all {V, x, ξ, (γi)i∈I} as in §2.4, Br sends

ZG,r(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I
) ∈ Z(G,Kr) ⊂ H(G,Kr)

Br−→ ZH,r(SI,ResBC(V ),x,ξ,(γi)i∈I
) ∈ Z(H,Ur) ⊂ H(H,Ur).

Proof. The equality from §6.4.2 shows that
the image of

S
I,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I︸ ︷︷ ︸

∈T 0 Exc(Wv,LG)

in EndHH
(T 0(ShtH,rv+∞x0,∅;1))

via (6.9)

 =


the image of

SI,ResBC(V ),x,ξ,(γi)i∈I︸ ︷︷ ︸
∈Exc(Wv,LH)

in EndHH
(T 0(ShtH,rv+∞x0,∅;1))

via (6.9)

 .

(6.10)
On the other hand, Corollary 6.13 shows that the left hand side of (6.10) agrees with the
image of
Br(ZG,r(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I

)) via (6.9), for all r ≥ 1. We conclude
using that the map Z(H,Ur) ↪→ EndHH

(T ∗(ShtH,D,∅;1)) in (6.9) is injective, which follows
from Remark 6.2. □

6.4.4. Recall that in Definition 2.8 we have defined a map ϕBC :
LH → LG over k.

Corollary 6.15. The following diagram commutes:

Exc(Wv,
LG) Exc(Wv,

LH)

Z(G) Z(H)

ϕ∗
BC

ZG ZH

ZTV

(6.11)

Proof. The commutativity of the diagram

Exc(Wv,
LG) T 0 Exc(Wv,

LG)

Z(G) T 0Z(G)

∆p

ZG T 0(ZG)

∆p

implies that Z(Br)◦∆p◦ZG = Z(Br)◦T 0(ZG)◦∆p. By definition ZTV◦ZG is the linearization
of Z(Br) ◦∆p ◦ ZG, so it is also the linearization of Z(Br) ◦ T 0(ZG) ◦∆p.

By Lemma 5.16, the Tate diagonal ∆p : Exc(Wv,
LG)→ T 0(Exc(Wv,

LG)) sends

SI,V,x,ξ,(γi)i∈I

∆p

−−→ SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I
. (6.12)
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It linearization therefore sends

SI,V,x,ξ,(γi)i∈I
7→ S

I,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I

since this is a k-algebra homomorphism that agrees with (6.12) when (V, x, ξ) are defined
over Fp. Applying Corollary 6.14 with r →∞, we have

Z(Br) ◦ ZG(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I
) = ZH(SI,ResBC(V ),x,ξ,(γi)i∈I

)

= ZH(ϕ∗
BC(SI,V,x,ξ,(γi)i∈I

)).

Therefore the linearization of Z(Br) ◦ T 0(ZG) ◦∆p agrees with ZH ◦ ϕ∗
BC. □

Completion of the proof of Theorem 1.4. Let π be an irreducible representation of Hv and
χπ : Z(H)→ k the induced character. By the definition of the Genestier-Lafforgue parametriza-
tion, ρπ corresponds to χπ◦ZH via Proposition 2.4. Then (6.11) implies that χπ◦ZTV◦ZG =
χπ ◦ ZH ◦ ϕ∗

BC is associated to the L-parameter ϕBC ◦ ρπ. □

6.5. The Treumann-Venkatesh Conjecture. In this subsection we will prove Theorem
1.2. We begin by formulating the Treumann-Venkatesh Conjecture precisely in this setting.
(The original phrasing of [TV16] is in terms of a hypothetical Local Langlands correspon-
dence which was not defined at the time for general groups.)

6.5.1. Assumptions. In this subsection the assumptions are as in §6.3, and we furthermore
assume Fv is a local function field. We note, however, that the formulation of all the
statements in §6.11 makes sense for any local field Fv of residue field ℓ ̸= p, with a suitable
replacement for the Genestier-Lafforgue correspondence, and that all our arguments in this
subsection apply if those statements are true for Fv.

6.5.2. Formulation of the Conjecture. Let Π be an irreducible admissible representation of
Gv over k. Let Πσ be the representation of Gv obtained by composing Π with σ : Gv → Gv.
We say that Π is σ-fixed if Π ≈ Πσ as Gv-representations.

Lemma 6.16 ([TV16, Proposition 6.1]). If Π is σ-fixed, then the Gv-action on Π extends
uniquely to an action of Gv ⋊ ⟨σ⟩.

Using Lemma 6.16 we can form the Tate cohomology groups T 0(Π) and T 1(Π) with
respect to the σ-action, which are then representations of Hv. Treumann-Venkatesh con-
jecture that they are in fact admissible representations of Hv, but we do not prove or use
this.

Definition 6.17 (Linkage). An irreducible admissible representation π of Hv is linked with
an irreducible admissible representation Π of Gv if π(p) appears in T 0(Π) or T 1(Π), where
π(p) is the Frobenius twist

π(p) := π ⊗k,Frob k.

Conjecture 6.18 ([TV16, Conjecture 6.3]). If π is linked to Π, then π base changes to Π.

Example 6.19. The need for the Frobenius twist can be seen in a simple example. Suppose
G = Hp and σ acts by cyclic permutation. Then Gσ is the diagonal copy of H. In this case
a representation π of Hv should transfer to π⊠p of Gv. And indeed,

T 0(π⊠p) =
ker(1− σ | π⊠p)

N · π⊠p
∼= π(p).



54 TONY FENG

Remark 6.20. Conjecture 6.18 is highly non-trivial even for groups such as GLn where the
full Local Langlands correspondence, hence in particular existence of cyclic base change, is
already known. In fact, the main result of [Ron16] is a special case of the conjecture, for
depth-zero supercuspidal representations of GLn compactly induced from cuspidal Deligne-
Lusztig representations. Despite the very explicit nature of the Local Langlands Correspon-
dence for such representations, the proof in loc. cit. involves rather hefty calculations, which
were not amenable to generalization.

Our proof of Conjecture 6.18 (when p is odd and good for Ĝ) is conceptual and applies to
all representations, without using any explicit models such as models for supercuspidal rep-
resentations as compact inductions. Furthermore, the unramified and tamely ramified base
change are handled completely differently in [Ron16], whereas our proof will be completely
uniform in the field extension, the reductive group, and the irreducible representation.

Theorem 6.21. Assume p is an odd good prime for Ĝ. Let Π be an irreducible admissible
representation of Gv and let

χΠ(p) : Exc(Wv,
LG)→ k

be the associated character of Π(p). Form T ∗(Π) := T ∗(⟨σ⟩,Π), viewed as a smooth Hv-
representation. Then for any irreducible character χ : Exc(Wv,

LH) → k appearing in the
action on T ∗(Π) via ZH : Exc(Wv,

LH)→ Z(H), the composite character

Exc(Wv,
LG)

ϕ∗
BC−−→ Exc(Wv,

LH)
χ−→ k

agrees with χΠ(p) .

It is clear that Theorem 6.21 implies Theorem 1.2.

Proof. Let Π be a representation of Gv. Then Z(G) acts Gv-equivariantly on Π, inducing
an Hv-equivariant action of Z(G)σ on T ∗(Π). In particular, as ZG maps Exc(Wv,

LG)σ ⊂
Exc(Wv,

LG) into Z(G)σ, we get an Hv-equivariant action of Exc(Wv,
LG)σ on T ∗(Π).

By Lemma 6.6, Kr is plain as soon as r ≥ 1. Taking the (filtered) colimit over r in
Lemma 6.7 with K = Kr, we find that for all S ∈ Exc(Wv,

LG)σ, we have(
the action on T ∗(Π) of

ZG(S)

)
=

(
the action on T ∗(Π) of

Br(ZG(S))

)
.

In other words, the diagram below commutes:

Z(G)σ EndHv (T
∗Π)

Z(H) EndHv
(T ∗Π)

Z(Br) ∼ (6.13)

On the other hand, taking the inverse limit over r in Corollary 6.14 yields that

Br(ZG(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I
)) = ZH(SI,ResBC(V ),x,ξ,(γi)i∈I

) (6.14)

for all V ∈ Repk((
LG)I).

Combining (6.13) and (6.14) shows that(
the action on T ∗(Π) of

ZG(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I
)

)
=

(
the action on T ∗(Π) of
ZH(SI,ResBC(V ),x,ξ,(γi)i∈I

)

)
(6.15)

for all V ∈ Repk((
LG)I).

From now on, assume Π is an irreducible (smooth) representation of Gv. Then EndGv
(Π) ∼=

k (by Schur’s Lemma applied to the Hecke action on the invariants of Π for every compact
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open subgroup of Gv). The L-parameter attached to Π corresponds under Proposition 2.4
to the character

χΠ : Exc(Wv,
LG)↠ Exc(Wv,

LG)
ZG−−→ Z(G)→ EndGv

(Π) ∼= k.

This induces

T 0χΠ : T 0 Exc(Wv,
LG)→ T 0 Exc(Wv,

LG)
T 0ZG−−−−→ T 0Z(G)→ T 0 EndGv

(Π) ∼= k.

The action of T 0 Exc(Wv,
LG) on T ∗(Π) is through T 0χΠ composed with the natural map

ι : T 0 EndGv
(Π)→ EndHv

(T ∗Π).
We also consider the homomorphism

χT∗Π : Exc(Wv,
LH)

ZH−−→ Z(H)→ EndHv
(T ∗Π).

Then (6.15) implies that for all V ∈ Repk((
LG)I), we have

ι ◦ T 0χΠ(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I
) = χT∗Π(SI,ResBC(V ),x,ξ,(γi)i∈I

). (6.16)

Note that the fact that the right hand side of (6.16) lies in k is already non-obvious. In
particular, (6.16) implies that for any irreducible subquotient π of T ∗Π, we have

χπ(SI,ResBC(V ),x,ξ,(γi)i∈I
) = χT∗Π(SI,ResBC(V ),x,ξ,(γi)i∈I

)

= (T 0χΠ)(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I
)

= χΠ(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I
). (6.17)

The character χΠ(p) giving the k-linearized action of Exc(Wv,
LG) on Π(p) := Π⊗k,Frobp k

satisfies

χΠ(p)(SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I
) = χΠ(SI,Nm(p−1)(V ),Nm(p−1)(x),Nm(p−1)(ξ),(γi)i∈I

)p. (6.18)

Definition 6.22. Similarly to Definition 5.19, let Exc(Wv,
LG)′ ⊂ Exc(Wv,

LG) be the k-
subalgebra generated by N ·Exc(Wv,

LG) and all elements of the form Nm(SI,V,x,ξ,(γi)i∈I
) =

SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I
.

Then the combination of (6.17) and (6.18) tells us that the action of Exc(Wv,
LG)′ on

Π(p) via Exc(Wv,
LG)′ → Exc(Wv,

LG)
ZG−−→ Z(G) is given by the character χ′

Π(p) that sends

SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I
7→ χπ(SI,ResBC(V ),x,ξ,(γi)i∈I

)p. (6.19)

and (using Theorem 5.11(ii)) N ·S 7→ 0 for any S ∈ Exc(Γ, LG). By Lemma 5.15, the unique
extension of this character to Exc(Wv,

LG) is (using Lemma 5.16)

SI,V,x,ξ,(γi)i∈I
7→ χ′

Π(p)(SI,Nm(V ),Nm(x),Nm(ξ),(γi)i∈I
)1/p

[(6.19) =⇒ ] = χπ(SI,ResBC(V ),x,ξ,(γi)i∈I
)

= χπ ◦ ϕ∗
BC(SI,V,x,ξ,(γi)i∈I

).

On the other hand, since χΠ(p) is tautologically an extension of χ′
Π(p) to Exc(Wv,

LG), it
must be the case that χΠ(p) = χπ ◦ ϕ∗

BC as characters of Exc(Wv,
LG) for any irreducible

subquotient π of T ∗(Π).
□
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6.6. Local mod p cyclic base change. In this subsection, we will prove Theorem 1.1.
Assumptions are as in §6.5. We note, however, that the formulation of all the statements in
§6.11 makes sense for any local field Fv of residue field ℓ ̸= p, with a suitable replacement
for the Genestier-Lafforgue correspondence, and that all our arguments in this subsection
apply if those statements are true for Fv.

6.6.1. Formulation of local base change. We begin by formulating a precise notion of local
base change.

Definition 6.23. Let π be an irreducible admissible representation of Hv over k, and Π be
an irreducible admissible representation of Gv over k. We say that π base changes to Π if
ρΠ ∼= ϕBC ◦ ρπ ∈ H1(Wv, Ĝ(k)).

This definition is an approximation to the notion of base change for L-packets. An L-
packet for Hv should be said to base change to an L-packet for Gv if the corresponding
L-parameters are related by ϕBC. A more refined version of Definition 6.23 would declare π
to base change to Π if the L-packet of π base changes to the L-packet of Π, but we lack a
definition of L-packets for general groups and representations; therefore, we use the fibers
of the Genestier-Lafforgue correspondence as a substitute for L-packets.

6.6.2. Finiteness conditions on Hecke algebras. We will use the following recent result of
Dat-Helm-Kurinczuk-Moss. We are keeping the running assumption that p differs from the
residue characteristic of Fv.

Theorem 6.24 ([DHKM]). For every x ∈ B(G/Fv) and every r ≥ 0, and Kr := G(Fv)x,r,
the Hecke algebra H(G,Kr) is finite over its center Z(G,Kr), which is itself a finitely gen-
erated algebra over k.

Remark 6.25. The paper [DHKM] proves a much stronger result, where coefficients are
allowed to be an arbitrary Zp-algebra. The analogous result with coefficients in a charac-
teristic zero field is an old result of Bernstein. The case where p is banal for G was known
to experts to follow in a similar manner from work of Vignéras, although it is not explicitly
written down in the literature.

6.6.3. Existence of local base change. Fix x ∈ B(H/Fv), and let Kr := G(Fv)x,r and Ur :=
Kσ

r . We prove the following theorem, which in particular implies Theorem 1.1.

Theorem 6.26. Suppose p is an odd good prime for Ĝ. Let π be an irreducible representa-
tion of Hv over k, having non-zero Ur-fixed vectors, with L-parameter ρπ ∈ H1(Wv, Ĥ(k)).
Then there is an irreducible representation Π of Gv over k, having non-zero Kr-fixed vectors,
such that ρΠ ∼= ϕBC ◦ ρπ.

Proof. If r = 0 then the result is classical, so we assume r > 0. Then Ur,Kr have prime-to-p
pro-order so the theory of the Bernstein center applies. Recall that the functor Π 7→ ΠKr

induces a bijection between irreducible admissible Gv-representations with non-zero Kr-
invariants and irreducible H(Gv,Kr)-modules. It therefore suffices to construct an irre-
ducible representation of H(Gv,Kr) whose induced character of Exc(Wv,

LG) is χπ ◦ ϕ∗
BC,

where χπ : Exc(Wv,
LH)→ k is the character of Exc(Wv,

LH) corresponding to π.
By hypothesis, we have a non-zero algebra homomorphism H(H,Ur)→ End(πUr ), which

has the property that the composite homomorphism

Exc(Wv,
LH)

ZH,r−−−→ Z(H,Ur)→ H(H,Ur)→ Endk(π
Ur )
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has kernel the maximal ideal mπ = ker(χπ) ⊂ Exc(Wv,
LH). The Brauer homomorphism

Br: H(G,Kr)
σ → H(H,Ur) fits into a commutative diagram13

Exc(Wv,
LH) Z(H,Ur) H(H,Ur) Endk(π

Ur )

Exc(Wv,
LG)′ Z(G,Kr)

σ H(G,Kr)
σ

Exc(Wv,
LG) Z(G,Kr) H(G,Kr)

ZH,r

ZG,r

Br

ZG,r

where Exc(Wv,
LG)′ ⊂ Exc(Wv,

LG)σ is as in Definition 6.22. Let m′
π ⊂ Exc(Wv,

LG)′

be the kernel of the map Exc(Wv,
LG)′ → Endk(π

Ur ) obtained by tracing through the
diagram above. We claim that m′

π is a maximal ideal. First of all, we observe that the
map Exc(Wv,

LG)′ → Endk(π
Ur ) lands in the subring of scalars k ⊂ Endk(π

Ur ), since
by Corollary 6.14 the action of Exc(Wv,

LG)′ on Endk(π
Ur ) factors through the action of

Exc(Wv,
LH), which is through χπ. On the other hand, since all maps in the diagram are

maps of k-algebras, Exc(Wv,
LG)′ must surject onto the full ring of scalars k ⊂ Endk(π

Ur ).
Note that Br: H(G,Kr)

σ → H(H,Ur) vanishes on N · H(G,Kr) ⊂ H(G,Kr)
σ. By the

commutativity of the bottom part of the diagram, the composition from Exc(Wv,
LG)′ to

H(H,Ur) therefore vanishes on N · Exc(Wv,
LG) ⊂ Exc(Wv,

LG)′. Therefore we may apply
Lemma 5.15 to see that the homomorphism χ′

π : Exc(Wv,
LG)′ → k corresponding to m′

π

has a unique extension to a character Exc(Wv,
LG) → k. Since Corollary 6.14 shows that

χπ ◦ ϕ∗
BC is such an extension, its kernel must be the unique maximal ideal of Exc(Wv,

LG)
lying over m′

π.
The preceding paragraph implies that the localization of H(G,Kr)

σ at m′
π is non-zero,

since the character χ′
π factors through this localization. Since the action of Exc(Wv,

LG)′

on H(G,Kr)
σ factors through the action of Z(G,Kr)

σ, there exists a maximal ideal nπ
of Z(G,Kr) lying over m′

π at which H(G,Kr) is supported. Since the pullback of nπ to
Exc(Wv,

LG) contains m′
π, it must equal ker(χπ ◦ ϕ∗

BC) by the preceding paragraph.
By Theorem 6.24 and the Artin-Tate Lemma, Z(G,Kr) is finite over Z(G,Kr)

σ and then
H(G,Kr) is finite over Z(G,Kr)

σ. So Nakayama’s Lemma implies that the left H(G,Kr)-
module quotient H(G,Kr)/H(G,Kr)nπ is finite-dimensional and non-zero. By design, the
only maximal ideal in its support over Exc(Wv,

LG) is ker(χπ◦ϕ∗
BC), so there is an irreducible

H(G,Kr)-subquotient Ξ of H(G,Kr)/H(G,Kr)nπ on which Exc(Wv,
LG) acts through χπ ◦

ϕ∗
BC, as was to be showed.

□

Remark 6.27 (Depth estimates). For applications it is useful to have control of the depth
of the base change. The proof of Theorem 6.26 implies an estimate on the depth, which we
now spell out. Recall from [MP96] that the depth of an irreducible representation Π of Gv

is the minimal r such that for some x ∈ B(G/Fv), ΠG(Fv)x,r+ ̸= 0. Let us emphasize that
the definition of the Moy-Prasad filtration {G(Fv)x,r} is normalized so that F×

v has value
group Z.

Let π be an irreducible representation of H of depth r, and let x ∈ B(H/Fv) such that
πH(Fv)x,r+ ̸= 0. First assume that Ev/Fv is unramified. Then B(H/Fv) = B(G/Fv)

Gal(Ev/Fv),

13Since we are not assuming here that x is a special vertex, we cannot invoke Corollary 6.4 to say that
Br is surjective, so it may not induce a map of centers.
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and we have H(Fv)x,r+ = G(Fv)
Gal(Ev/Fv)
x,r+ [KP23, §9]. The proof of Theorem 6.26 shows

that there exists a local base change Π of π such that ΠG(Fv)x,r+ ̸= 0, so that depth(Π) ≤
depth(π). (The proof does not use Corollary 6.4 or the Treumann-Venkatesh homomor-
phism.)

Next suppose Ev/Fv is tamely ramified. By [Pra20] we still have B(H/Fv) = B(G/Fv)
Gal(Ev/Fv),

and by [KP23, Proposition 12.9.2] we have (G(Fv)x,r+)
Gal(Ev/Fv) = H(Fv)x,r+ for all r ≥ 0.

Hence in this case, the proof of Theorem 6.26 shows that there exists a local base change Π
of π such that ΠG(Fv)x,r+ ̸= 0, so that depth(Π) ≤ depth(π). Let us caution, however, that
if we regard x ∈ B(H/Ev) instead of B(G/Fv) and Π as a representation of H(Ev) instead
of G(Fv), then it is natural to define the Moy-Prasad filtration H(Ev)x,r so that E×

v has
value group Z, for which H(Ev)x,pr = G(Fv)x,r. Hence, in this normalization our estimate
would instead be “depth(Π) ≤ p · depth(π)”.

In both cases, the inequalities we obtain are expected to be optimal [AL10].

Appendix A. The base change functor realizes Langlands functoriality
by Tony Feng and Gus Lonergan

In this section we prove Theorem 4.20.
First we recall some general properties of Smith theory for schemes.

A.1. Recollections on Smith theory for schemes. The Tate category for schemes en-
joys a robust 6-functor formalism (observed in the topological case in [Tre19, §4.3], and
proved for schemes in [RW22, §2,3]). Let us recall the statements for later use. Let f : Y → S
be a σ-equivariant morphism of varieties with admissible σ-action, over a field of character-
istic ℓ ̸= p. Let Λ be a p-adic ring of coefficients; we are most interested in Λ ∈ {W (k), k}.

• The pullback functor f∗ : Db
c(S

σ; Λ[σ])→ Db
c(Y

σ; Λ[σ]) descends to

f∗ : Perf(Sσ; TΛ)→ Perf(Y σ; TΛ).
The proper pushforward Rf! : D

b
c(Y

σ; Λ[σ])→ Db
c(S

σ; Λ[σ]) descends to

Rf! : Perf(Y σ; TΛ)→ Perf(Sσ; TΛ).
• As Verdier duality D : Db

c,σ(Y
σ; Λ) → Db

c,σ(Y
σ; Λ) preserves Perf(Y σ; Λ[σ]), it de-

scends to the Tate category to define

D : Perf(Y σ; TΛ)→ Perf(Y σ; TΛ).
Using this, we may define the operations

f ! := D ◦ f∗ ◦ D : Perf(Sσ; TΛ)→ Perf(Y σ; TΛ)
and

Rf∗ := D ◦ f! ◦ D : Perf(Y σ; TΛ)→ Perf(Sσ; TΛ).
We now list some properties which could be remembered under the slogan, “the Smith

operation commutes with all operations” (cf. [Tre19, §4.4]).

A.1.1. Compatibility with pullback. If f satisfies the assumptions above, then the following
diagrams commute:

Db
c,σ(Y ; Λ) Db

c,σ(S; Λ)

Perf(Y σ; TΛ) Perf(Sσ; TΛ)

Psm Psm

f∗

f∗

Db
c,σ(Y ; Λ) Db

c,σ(S; Λ)

Perf(Y σ; TΛ) Perf(Sσ; TΛ)

Psm Psm

f !

f !



SMITH THEORY AND CYCLIC BASE CHANGE FUNCTORIALITY 59

The proof for the first square is formal; for the second it follows immediately from the first
plus [RW22, Lemma 3.5], whose proof is the same as that for Lemma 3.8.

A.1.2. Compatibility with pushforward. If f satisfies the assumptions above, then the fol-
lowing diagrams commute:

Db
c,σ(Y ; Λ) Db

c,σ(S; Λ)

Perf(Y σ; TΛ) Perf(Sσ; TΛ)

Psm

Rf∗

Psm

Rf∗

Db
c,σ(Y ; Λ) Db

c,σ(S; Λ)

Perf(Y σ; TΛ) Perf(Sσ; TΛ)

Psm

Rf!

Psm

Rf!

The proof for the second diagram is the same as that of Proposition 3.12. Then the com-
mutativity of the first diagram follows by applying Verdier duality and using Lemma 3.8.

A.2. Setup for the proof of Theorem 4.20. We keep the setup of §4.6.1: H is any
reductive group over a separably closed field F of characteristic ̸= p, and G = Hp. We let
σ act on G by cyclic rotation, sending the ith factor to the (i+ 1)st (mod p) factor.

A.3. Proof of additivity. We first prove that BC is additive, i.e., we exhibit a natural
isomorphism BC(F ⊕ F ′) ∼= BC(F)⊕ BC(F ′). We have

Nm(F ⊕ F ′) = (F ⊕ F ′) ∗ (σF ⊕ σF ′) ∗ . . . ∗ (σ
p−1

F ⊕ σp−1

F ′)

∼= Nm(F)⊕Nm(F ′)⊕ (direct sum of free σ-orbits).

Therefore, the restrictions of Nm(F ⊕ F ′) and Nm(F)⊕ Nm(F ′) to Y σ differ by a perfect
complex of O[σ]-modules, and hence project to isomorphic objects in the Tate category
Perf(Y σ; TO). This shows that Psm ◦Nm is additive. Since the lifting functor L is also
additive, diagram (4.7) shows that BC(p) ◦ F is additive. Since F is essentially surjective as
our assumptions imply that all parity sheaves exist, BC(p) is additive. Finally, Frob−1

p is an
equivalence so also additive, so BC is additive. □

A.4. Reduction to the case of a torus. Fix a regular σ-equivariant cocharacter κ : Gm →
H. Its centralizer in G is a maximal torus T ⊂ G, such that TH := T ∩H is a maximal torus
of H. We recall the following statements relating the restriction functor Rep(Ĥ)→ Rep(T̂H)
with the hyperbolic localization functor under the Geometric Satake equivalence.

The fixed points of Gm acting by left translation on GrG via κ are the tν for ν ∈ X∗(T ).
The attracting locus to tν is the semi-infinite orbit Sν . These semi-infinite orbits form a
stratification of GrG. Let iν : Sν → GrG be the inclusion (a locally closed embedding of ind-
schemes) and pν : Sν → tν , viewed as a point of GrT . The hyperbolic localization functor
(for G) is the functor

CTG =
⊕

ν∈X∗(T )

Rpν!i
∗
ν : D

b
c(GrG)

Gm−mon → Db
c(GrT )

Gm−mon

where the superscript Gm−mon means monodromic for the Gm-action via κ (i.e., the full
subcategory spanned by objects pulled back from the Gm-equivariant derived category).

Denote by [degG] the function X∗(T )
⟨2ρG,−⟩−−−−−→ Z, and similarly for H. Set

CTG[degG] :=
⊕

ν∈X∗(T )

Rpν!i
∗
ν [degG(ν)]
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and CTH [degH ] similarly. Then CTG[degG] and CTH [degH ] are t-exact and under the
Geometric Satake equivalence, they are intertwined with restriction along T̂ → Ĝ and
T̂H → Ĥ, respectively:

PL+G(GrG; Λ) RepΛ(Ĝ)

PL+T (GrT ; Λ) RepΛ(T̂ )

∼
Geom. Sat.

CTG[degG] ResĜ
T̂

∼
Geom. Sat.

PL+G(GrH ; Λ) RepΛ(Ĥ)

PL+T (GrTH
; Λ) RepΛ(T̂H)

∼
Geom. Sat.

CTH [degH ] ResĤ
T̂H

∼
Geom. Sat.

(A.1)
(Here CT is defined because equivariance implies monodromicity.)

Remark A.1. In the stated generality – with the scheme-theoretic GrG in equal charac-
teristic, and the coefficients being modular étale sheaves – the commutative diagram (A.1)
is perhaps not completely documented in the literature. It does appear for general coeffi-
cients on the complex affine Grassmannian [BR18, p.66] and the B+

dR-affine Grassmannian
(in arbitrary characteristic) [FS, p.233]. The proofs in either case are essentially the same –
the commutativity of the diagram is baked into the step of identifying the Tannakian group
Ĝ – and they carry over essentially verbatim to our setting.

The functor CTH [degH ] induces

Db
c,σ(GrH)Gm−mon → Db

c,σ(GrTH
)Gm−mon

Since ∗/!-restriction and ∗/!-pushforward all commute with Psm by §A.1, the Constant Term
functor commutes with Psm in the sense of the following commutative diagram

Db
c,L+G⋊σ(GrG;O) Perf(L+H)(GrH ; TO)

Db
c,L+G⋊σ(GrT ;O) Perf(L+H)(GrTH

; TO)

Psm

CTG[degG] CTH [degH ]

Psm

(A.2)

and the same holds with the shifts by degH and degG, thanks to the parity calculations in
§4.6.3.

Lemma A.2. Consider the cube

Tiltk(Ĝ) Tiltk(Ĥ)

Parity0L+G(GrG; k) Parity0L+H(GrH ; k)

Tiltk(T̂ ) Tiltk(T̂H)

Parity0L+T (GrT ; k) Parity0L+TH
(GrTH

; k)

ResBC

ResĜ
T̂

ResĤ
T̂HBC

CTG[degG] CTH [degH ]

ResBC

BC

(A.3)
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where all diagonal arrows are the Geometric Satake equivalence (using Theorem 4.8). The
back, front, left, and right faces commute.

Proof. The back face obviously commutes. The left and right faces commute by (A.1). It
remains to analyze the front square.

Consider the diagram

Parity0L+G(GrG;O) Parity0L+G⋊σ(GrG;O) Parity(L+H)(GrH ; TO) Parity0L+H(GrH ; k)

Parity0L+T (GrT ;O) Parity0L+T⋊σ(GrT ;O) Parity(L+TH)(GrTH
; TO) Parity0L+TH

(GrTH
; k)

Nm

CTG[degG] CTG[degG]

Psm L

CTH [degH ] CTH [degH ]

Nm Psm L

(A.4)
The left square commutes because CTG[degG] is symmetric monoidal. The middle square
commutes because Psm is compatible with ∗-pullback and !-pushforward, as explained in
§A.1. We claim that the right square commutes. To see this, we consider the diagram

Parity0L+H×σ(GrH ;O) Parity(L+H)(GrH ; TO) Parity0L+H(GrH ; k)

Parity0L+H×σ(GrTH
;O) Parity(L+TH)(GrTH

; TO) Parity0L+TH
(GrTH

; k)

T∗ϵ∗

CTH [degH ]

F

L

CTH [degH ] CTH [degH ]

T∗ϵ∗

F

L

(A.5)
The upper and lower caps commute by (4.3). Then it is immediate from the definition of
the modular reduction functor F that the outer square commutes. In the left square, the
vertical arrows are essentially surjective since all (Tate-)parity sheaves exist for all strata.
The maps on morphisms are given by (4.2). Hence the outer commutative diagram induces
the right one.

We have now established that the outer rectangle in (A.4) commutes. Therefore, by (4.7),
the diagram

Parity0L+G(GrG; k) Parity0L+H(GrH ; k)

Parity0L+T (GrT ; k) Parity0L+TH
(GrTH

; k)

BC(p)

CTG[degG] CTH [degH ]

BC(p)

commutes. Finally, applying the Frobenius linearization process of Definition 4.18 completes
the proof for commutativity of the front face of (A.3).

□

Theorem 4.20 is the statement that the top face commutes. The bottom face is the special
case of Theorem 4.20 for a torus, which we will check directly. We may reduce the general
case to the torus case as follows. The restriction functor Rep(Ĥ) → Rep(TĤ) is faithful
and injective on tilting objects (i.e. “tilting modules are determined by their characters”) by
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[Don93, p. 46]. Hence, by Lemma A.2, to check that the top face commutes it suffices to
check that the bottom face commutes, i.e., to prove Theorem 4.20 in the special case where
H is a torus.

A.5. Proof in the case of a torus. Finally, we examine the case when H is a torus. Since
the theorem is compatible with products, we can even reduce to the case H = Gm. For
H = Gm the underlying reduced scheme of GrH is a disjoint union of points labeled by the
integers.

The irreducible algebraic representations of Ĥ are indexed by n ∈ Z, with Vn ∈ Rep(Ĥ)
corresponding to the constant sheaf supported on the component GrnH labeled by n. The irre-
ducible algebraic representations of Ĝ are then labeled by p-tuples of integers (n1, . . . , np) ∈
Zp. By the additivity of BC established in §A.3 and the complete reducibility of algebraic
representations of tori, we may assume that F is irreducible, say F = F(n1, . . . , np) is the
constant sheaf supported on Gr

(n1,...,np)
G . Then the σ-equivariant sheaf Nm(F) is the con-

stant sheaf k supported on the component Gr
(n1+...+np,...,n1+...+np)
G . Its restriction to the

diagonal copy of GrH is the constant sheaf with value k supported on Gr
n1+...+np

H . This
is already an indecomposable k-parity sheaf, which tautologically lifts its own image in the
Tate category. Hence we have shown that

k
Gr

n1+...+np
H

= BC(p)(Vn1,...,np
).

And indeed, this is precisely the sheaf which corresponds under geometric Satake to ResBC(Vn1
⊠

Vn2⊠. . .⊠Vnp)
∼= Vn1+n2+...+np ∈ Rep(Ĥ). This confirms the commutativity of the diagram

Parity0L+G(GrG; k) Parity0L+H(GrH ; k)

Tiltk(Ĝ) Tiltk(Ĥ)

∼

BC

∼

ResBC

at the level of objects. Our final step is to verify the commutativity on morphisms. Since
(as H is a torus) the categories involved are all semi-simple, the commutativity at the level
of morphisms reduces to examining a scalar endomorphism of the simple object F above,
which corresponds to the simple representation Vn1,...,np

. The restriction functor ResBC is k-
linear, so what we have to check is that BC sends multiplication by λ on F to multiplication
by λ on BC(F). Now, multiplication by λ on F is sent under Nm to multiplication by λp

on Nm(F), which restricts to multiplication by λp on BC(p)(F). Then the inverse Frobenius
twist Frob−1

p sends it to multiplication by λ, so BC := Frob−1
p ◦BC

(p) behaves as desired. □

A.6. Proof of Lemma 4.21. In this subsection we prove Lemma 4.21. We keep the
notations from §A.4.

Lemma A.3. The functor CT: Perf(L+H)(GrH ; Tk) → Perf(L+TH)(GrTH
; Tk) is conserva-

tive.

Proof. Suppose CT(K) = 0 for some non-zero K ∈ Shv(L+H)(GrH ; Tk). Let GrλH =

L+Htλ ⊂ GrH be the maximal stratum (for the closure order) on which K is supported.
Then for w0 the longest Weyl element, the semi-infinite orbit Sw0(λ) intersects GrλH in a
single point tw0(λ) [BR18, Theorem 5.2]. Hence the stalk at tw0(λ) vanishes, which shows
(by the assumed constructibility for L+H-orbits) that K vanishes on Grλ, which contradicts
the assumption on the support of K. □
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Let i : GrH ↪→ GrG. Since apply Frob−1
p preserves exact sequences, Lemma 4.21 is equiva-

lent to: if A→ B → C is an exact sequence in Repk(Ĝ), then the map in Db
c,L+H(GrH ; k[σ]),

Cone [i∗ NmSat(A)→ i∗ NmSat(B)]→ i∗ NmSat(C)

projects to an isomorphism in Perf(L+H)(GrH ; Tk). By Lemma A.3, this can be checked
after applying CT[degG]. Using the commutative diagram analogous to (A.2) but with k-
coefficients, and that CT[degG] is intertwined with restriction from Ĝ to T̂ under Geometric
Satake, we have a commutative diagram

Repk(Ĝ) PL+G(GrG; k) PL+G⋊σ(GrG; k) Db
L+H,c(GrH ; k[σ]) Perf(L+H)(GrH ; Tk)

Repk(T̂ ) PL+T (GrT ; k) PL+T⋊σ(GrT ; k) Db
L+TH ,c(GrTH

; k[σ]) Perf(L+TH)(GrTH
; Tk)

Sat

Res

Nm

CT[degG] CT[degG]

T∗

CT[degG] CT[degG]

Sat Nm T∗

The question of whether the composition of functors along the top then right is an isomor-
phism is equivalent to the question of whether the composition of functors along the left
then bottom is an isomorphism. This reduces us to the case where Ĝ = T̂ is a torus. In
this case, since all maps in Rep(T̂ ) have splittings, the exactness statement reduces to the
additivity, which was verified in §A.3.

Appendix B. Applying Drinfeld’s Lemma to Tate cohomology

Here we prove Proposition 5.6, that the action of FWeil(ηI , ηI) on T j(ShtG,D,I ;V ) factors
through the quotient FWeil(ηI , ηI)↠Weil(η, η)I . This statement is analogous to results in
[Laf18] and [Xueb] for ordinary cohomology, the latter of which incorporates simplifications
by [XZ], and our argument will follow the same broad lines. Here is an outline of the
strategy:

(1) Prove an Eichler-Shimura relation, relating the action of partial Frobenii and Hecke
operators.

(2) Using (1), express T j(ShtG,D,I ;V ) as the filtered colimit of submodules stable under
the partial Frobenii, with each module being finite type over some finitely generated
k-algebra (depending on the submodule; it will be taken to a suitable tensor product
of local Hecke algebras).

(3) Apply Drinfeld’s Lemma, which says roughly that any continuous A-linear FWeil(ηI , ηI)-
action on a finite-type A-module automatically factors over Weil(η, η)I , to each of
the submodules produced in (1).

B.1. The Eichler-Shimura relation. Regarding the first step, Xue proves:

Proposition B.1 ([Xueb, Proposition 7.2.6]). Let v ∈
◦
X be a closed point, with degree deg v.

For any finite set I = Ĩ ⊔ {0} and any V ∈ Repk(Ĝ
I), there exists W ∈ Repk(Ĝ) such that

dimW∑
α=0

(−1)αS∧dimW−αW,v(F
deg v
{0} )α = 0 ∈ End

Dc((
◦
X\D)Ĩ×v;k)

(RjπI!(
◦

ShtG,D,I |
(

◦
X\D)Ĩ×v

; Sat(V ))).

Here for a representation W of Ĝ, the operator SW,v is defined in [Laf18, §6] by a process
similar to one defining excursion operators. The only thing we need to know about SW,v is
the following.
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Theorem B.2 (“S=T Theorem”). SW,v agrees with the Hecke operator TW,v after restricting
to (X \ (D ∪ v))I .

This fact is proved in [Laf18, §6] in characteristic zero; a simpler proof is a consequence
[XZ, Theorem 6.0.1(2)], which already shows the equality at the level of cohomological
correspondences on local shtukas. The argument of Xiao-Zhu is written with integral coeffi-
cients in [Yu22, Theorem 5.1 and Corollary 5.5]. Since it holds at the level of cohomological
correspondences, it holds in particular for Tate cohomology.

Xue’s proof of Proposition B.1 (which is a small generalization of an argument appearing
in [XZ, §6]) works essentially verbatim for Tate cohomology, replacing her Hj,OE

G,N,I,W by
T jπI!(ShtG,D,I |

(
◦
X\D)Ĩ×v

; Sat(V ))). It yields:

Lemma B.3. Let v ∈ X be a closed point, with degree deg v. For any finite set I = Ĩ ⊔{0}
and any V ∈ Repk(Ĝ

I), there exists W ∈ Repk(Ĝ) such that
dimW∑
α=0

(−1)αS∧dimW−αW,v(F
deg v
{0} )α = 0 ∈ End

D((
◦
X\D)Ĩ×v;k)

(T jRπI!(ShtG,D,I |
(

◦
X\D)Ĩ×v

; Sat(V ))).

B.2. The filtration. We carry out Step (2) of the outline, following [Xueb, §1].
Harder-Narasimhan truncation presents ShtG,D,I as a filtered colimit

ShtG,D,I = lim−→
µ

Sht≤µ
G,D,I

where µ runs over dominant coweights of G.
Since the support of Sat(V ) on Sht≤µ

G,D,I |ηI is of finite type over ηI , T j(Sht≤µ
G,D,I ;V ) :=

T j(RΓc(Sht
≤µ
G,D,I |ηI ; Sat(V ))) is finite-dimensional over k. We have a filtered colimit

T j(ShtG,D,I ;V ) ∼= lim−→
µ

T j(Sht≤µ
G,D,I ;V ).

We will express T j(ShtG,D,I ;V ) as an increasing union of submodules Mµ which are stable
under FWeil(ηI , ηI), and such that for each Mµ there is a finite set of points vi (depending
on Mµ) so that Mµ is stable under the partial Frobenii and finite type over ⊗i∈IHG,vi

.
Write

T := RπI!(ShtG,D,I |
(

◦
X\D)I

; Sat(V )) ∈ Db((
◦
X \D)I ; k)

and
Tµ := RπI!(Sht

≤µ
G,D,I |( ◦

X\D)I
; Sat(V )) ∈ Db

c((
◦
X \D)I ; k).

Note that proper base change gives an isomorphism T j(ShtG,D,I ;V ) ∼= T|
ηI . Since Tµ is

constructible, there is an open dense subscheme Ω ⊂ (
◦
X \D)I such that Tµ is a local system

over Ω. Choose a closed point v ∈ Ω and let vi = pri(v) for i ∈ I. Then ×i∈Ivi ∈ (
◦
X \D)I

is a finite union of closed points containing v. Let Mµ be the subspace of T j(ShtG,D,I ;V )
given by

Mµ :=
∑

ni∈NI

(⊗i∈IHi,vi)
∏
i∈I

Fni

{i}

(∏
i∈I

(Frobni

{i})
∗ Im

(
Tµ|

ηI → T|
ηI

))
. (B.1)

Then it is clear that T j(ShtG,D,I ;V ) =
⋃

µ M
µ.

We regard Mµ as a module over the finite type k-algebra Aµ := ⊗i∈IHi,vi . The following
Lemma and its proof are variants of [Xueb, Lemma 1.3.11].
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Lemma B.4. The submodule Mµ ⊂ T|
ηI
∼= T j(ShtG,D,I ;V ) is stable under the partial

Frobenii F{i} and of finite type over Aµ.

Proof. The stability under partial Frobenii is clear by construction. Let v be a geometric
point over v. We have a specialization map sp : ηI ⇝ v. For any ni, we have the partial
Frobenius

F
ni deg(vi)
{i} : (Frob

ni deg(vi)
{i} )∗Tµ → T.

Altough partial Frobenius does not preserve the HN truncation, there exists κ fitting into a
commutative diagram

(Frob
ni deg(vi)
{i} )∗Tµ|v (Frob

ni deg(vi)
{i} )∗Tµ|

ηI

Tµ+κ|v Tµ+κ|
ηI

F
ni deg(vi)

{i}

sp∗

F
ni deg(vi)

{i}

sp∗

(B.2)

We have Frobni deg(vi)
{i} (v) = v ∈ Ω. Then using Proposition B.3, we may eliminate all powers

of partial Frobenius with exponent ≥ dimW in (B.1) in terms of S-operators, because for
d ≥ dimW we have

F d deg vi
{i} (Frob

d deg(vi)
{i} )∗ Im (Tµ|v → T|v) ⊂

dimW−w∑
α=0

S?F
α deg(vi)
{i} (Frob

α deg(vi)
{i} )∗ Im (Tµ|v → T|v).

Since the S-operators and the F{i} are morphisms of sheaves, they commute with the
specialization map sp∗. The upper arrow in (B.2) an isomorphism because v ∈ Ω lies in the
lisse locus of Tµ by construction. Therefore the Eichler-Shimura relation from Proposition
B.3 is also satisfied in the right column. Now over ηI we can apply the same elimination
argument and use Theorem B.2 to replace S-operators by Hecke operators, thus deducing
that for d ≥ dimW , we have

F d deg vi
{i} (Frob

d deg(vi)
{i} )∗ Im (Tµ|

ηI → T|
ηI ) ⊂

dimW−1∑
α=0

(⊗i∈IHi,vi)F
α deg(vi)
{i} (Frob

α deg(vi)
{i} )∗ Im (Tµ|

ηI → T|
ηI ).

Therefore, we actually have

Mµ =
∑

0≤ni<dimW deg vi

(⊗i∈IHi,vi)
∏
i∈I

Fni

{i}

(∏
i∈I

(Frobni

{i})
∗ Im

(
Tµ|

ηI → T|
ηI )
))

.

Since Tµ|
ηI is finite-dimensional over k, Mµ is finite-type over Aµ. □

B.3. Drinfeld’s Lemma. The following result of Xue is a generalization of the so-called
“Drinfeld’s Lemma”.

Lemma B.5 ([Xuea, Lemma 7.4.2]). Let A be a finitely generated k-algebra. Let M be an
A-module of finite type. Then any continuous A[FWeil(ηI , ηI)]-action on M factors through
Weil(η, η)I .

Proof of Proposition 5.6. Applying Lemma B.5 to each Mµ, we deduce that the FWeil(ηI , ηI)-
action on Mµ factors through Weil(η, η)I . Then the same holds for lim−→µ

Mµ = T j(ShtG,D,I ;V ).
□
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