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Today I want to highlight the theory of the moment map T ∗X → g∗ for a G-
space X, which is due to Friedrich Knop. This has not previously played much
role in automorphic forms, but it seems to be important, because the dual group
(more precisely, its elements) seem to have a geometric (rather than combinatorial)
meaning.

1. Introduction

Langlands functoriality predicts that when you have a map LG1 → LG2, one
should (roughly) get a transfer between irreducible representations of G1 to irre-
ducible representations of G2. By “representations” we mean:

• local case: representations of G(F ), where F is a local field
• global case: automorphic representations.

We now know that Langlands functoriality holds more generally than the setting
of groups. It extends to spherical G-spaces X, i.e. the Borel subgroup acts with an
open orbit.

Example 1.1. Toric varieties, flag varieties, reductive groups H (with G = H ×H
acting by left and right multiplication), and more generally symmetric spaces such
as GL2n / Sp2n,SOn+1 / SOn, ...

To such a space, we can attach an L-group LX with a map LX → LG [Gaitsgory-
Nadler, S.-Venkatesh, Knop-Schalke].

A map LX1 → LX2 should induce a transfer between irreducible representations
in the spectrum of X1 to irreducible representations in the spectrum of X2. What
does “in the spectrum” mean?

• Locally, you have the Plancherel formula

S(X ×X) 3 Φ1 ⊗ Φ2 7→ 〈Φ1,Φ2〉L2(X) =

∫
Ĝ
Jπ(Φ1 ⊗ Φ2)µX(π).

The representations π on which µX is supported are what I call the “spectrum
on X”. This is closely related to the question of distinction by X, i.e. π ↪→
C∞(X).
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• Globally, you have the relative trace formula: let k be a global field and A
its ring of adeles. Then you consider

Φ1 ⊗ Φ2︸ ︷︷ ︸
∈S(X×X(A))

7→
∑

(γ1,γ2)∈X2(k)

Φ1(γ1,−)⊗ Φ2(γ2,−)

︸ ︷︷ ︸
∈C∞(G(k)\G(A)×G(k)\G(A))

〈·,·〉G(k)\G(A)−−−−−−−−→ C.

Example 1.2. If X = H is a group, then
∑

X(k) Φ = KΦ (it’s a function on
G = H × H). Then you get the Hilbert-Schmidt inner product of two operators,
which is the same as the trace of their convolution.

The RTF decomposes as an integral of automorphic representations, and those
that appear are the “automorphic spectrum of X”.

As with the usual trace formula, we would like to do the following: given a map
LX1 → LX2, compare the geometric sides of RTFX1 and RTFX2 . What does it
mean to “compare” them? This is a very subtle issue, as one wants to “extract” the
correct part of the spectrum. (This is already very hard in the group case, and is
the subject of Beyond Endoscopy.) So this is very hard, but there are more cases to
play with.

This is highly non-trivial already when LX1
∼= LX2. (In the group case, this would

only happen for inner forms.)
Example 1.3. The following varieties have L-group SL2.

• PGLn+1 /GLn
• SO2n+1 / SO2n

• Sp2n / Sp2n−2×Sp2

• F4/Spin9

• G2/SL3

Example 1.4. The following varieties have L-group PGL2.
• SO2n / SO2n−1

• Spin8/Spin7

• Spin7/G2

Moreover, there are all the affine homogeneous examples, up to finite automor-
phisms.

These cases were treated locally by Gan-Gomez, who analyzed L2(X) in terms of
L2((N,ψ)\PGL2), using the theta correspondence and generalizations (on a case-
by-case basis).

2. Schwartz functions

I would like to study these spaces using the trace formula, and in a uniform way
– as uniform as the formulation of the conjecture.

The input to the relative trace formula is: Φ1 ⊗ Φ2 ∈ S(X ×X). But really it’s
expressed in terms of orbital integrals, so I prefer to work with measures. (This is
equivalent to a Schwartz function times a Haar measure.) Instead of orbital integrals,
we then consider “orbital measures”.
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So we have
S(X ×X)→ Meas(X ×X//G) (2.1)

where X ×X//G = Spec k[X ×X]G.
Example 2.1. For X = H, G = H ×H,

X ×X//G = H//H − conj

is the space of characteristic polynomials.
Example 2.2. For X = H\G, X×X//G = H\G//H. This is the usual formulation
of the relative trace formula.

The image of (2.1) will be denoted by S(X ×X/G). (Everything here is over a
local field F , and X = X(F ).)
Example 2.3. What does S(X × X/G) look like? Baby case: A2/Gm, with a ·
(x, y) = (ax, a−1y). Then A2//Gm = A1 via (x, y) 7→ ξ := xy.

Exercise: functions that are smooth away from ξ = 0, but at 0 there will be a
singularity of the form c1(ξ) log |ξ|+ c2(ξ) where c1, c2 are smooth.

In general, you get measures with singularities. (In the group case, you get mea-
sures with singularities along the discriminant divisor.)

Conjecture 2.4. Suppose LX1 = LX2 and denote by Xi := Xi × Xi/Gi. There
should be a “functoriality transfer operator” T :

S(X1(A)) S(X2(A))

C

T

RTF RTF

This is a bit imprecise, because on the spectral side of RTFX the automorphic
representation π is weighted by a factor

LX(π)

L(π,Ad, 1)

where LX is some L-value depending on X.
Example 2.5. In the group case, LX = L(π,Ad, 1) and it cancels with the denom-
inator.

For X = N,ψ\G we have LX = 1.
For X = Un\Un × Un+1 and π = π1 ⊗ π2, we have LX = L(π1 × π2,

1
2).

This means that the conjecture should not work as stated. Really, one should
enlarge the space of test functions to introduce extra L-functions on the spectral
side.

Theorem 2.6. Let X = H\G be of rank 1, as in the list of examples. Let G∗ = PGL2

or SL2 if LX = SL2 or PGL2. Then there is an explicit transfer operator

S(X ×X/G)
∼←− S+

LX
((N,ψ)\G∗/(N,ψ)) : T



4 TALK BY YIANNIS SAKELLARIDIS, NOTES BY TONY FENG

given by explicit Fourier transforms determined by LX . (Here LX = L(π, s1)L(π, s2)
if LX = SL2 and LX = L(π,Ad, s0) if LX = PGL2.)

At the heart of the proof is an explicit description of S(X ×X/G), which goes as
follows. For simplicity, let’s assume G and H are split.

Theorem 2.7. For X of rank 1 as above, the quotient C := X × X//G ∼= A1

and S(X ×X/G) has singularities ξ− and ξ+ where the orbital measures behave like
pushforwards under a quadratic form

q± : V± → A1

where V± is a split quadratic space of dimension d± [which has an explicit formula,
omitted].

3. On the proof

How do you analyze X ×X/G = H\G/H?
Remark 3.1. For X symmetric, Richardson has studied H\G/H = AX//WX .

For G acting on X, you get g→ Vect(X) and then dually a moment map T ∗X →
g∗. Knop has shown that although the X’s look very different, their cotanget spaces
T ∗X are very similar.

More precisely, consider the composition

T ∗X → g∗ → g∗//G = a∗//W = a∗//W.

One then forms the cartesian diagram

T ∗X a∗//W

T̂ ∗X a∗

Knop has shown that there is an irreducible component T̂ ∗X
◦
→ a∗X ↪→ a∗ where

the action of B on the open B-orbit X◦ is through a quotient AX of A. (The “rank
of X” is the rank of AX .)

The map T̂ ∗X → T ∗X is WX , the Weyl group of X (which is the Weyl group of
LX).
Fact 3.2. Over a∗,reg

X (the locus with no WX -stabilizer) the bottom horizontal map
is the moment map for an AX -action.

We give an example of how the geometry of T ∗X is related to the modified space
of Schwartz functions. Consider ∆(X) ⊂ X × X. The conormal bundle can be
identified with T ∗X → ∆(X). You have the commutative group AX acting on T ∗X.
Hence you get an action map AX × T ∗X → T ∗X × T ∗X. So you consider flows on
the cotangent spaces instead of on X. It turns out that in rank 1, the composition
AX × T ∗X → T ∗X × T ∗X → X × X identifies X × X/G ∼= AX//WX = A1, and
shows that there are only 2 singularities.
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