ON THE BRAVERMAN-KAZHDAN PROGRAM

TALK BY NGO BAO CHAU,
NOTES BY TONY FENG

The Braverman-Kazhdan program is about automorphic L-functions. The goal
of the subject is about constructing automorphic L-functions and proving that they
share the nice properties enjoyed by the Riemann zeta function. The way that
Langlands conceived to study automorphic L-functions is via the so-called “principle
of functoriality”. But there is actually another route — a much more direct one —
which is taken up by Braverman-Kazhdan.

1. GODEMENT-JACQUET THEORY

There is one case we know a lot about L-functions, which is that of the “standard
L-functions”, whose theory was developed by Godement-Jacquet.

Let G be a reductive group over k, and p: “G — GL, be a representation of its
dual group. For G = GL,,, we can take “G = GL,,(C). The general principle is that,
given an automorphic representation m of G and p as above, we can construct an
automorphic L-function L(s, p, 7). A priori this comes as a function on some half-
plane, but one should be able to prove a meromorphic continuation and functional
equation

L(s,p,m) < L(1 —s,p,m).

The setting of the standard L-functions have G = GL,, and p = std.

We will now explain the ansatz that implies this story, in the standard (Godement-
Jacquet) case. It comes from Fourier and Mellin analysis. We will write out the
ingredients. Take k to be a global field.

1.1. Local theory. For v € |K|, we have a completion k,, which we also denote by
F.

(1) (Schwartz space) We define a space of Schwartz functions .74 (G(F)), which
is .7 (My(F)), restricted to G(F).

(2) (Basic function) We have a basic function %4 € **9(G(F)). When F is
non-archimedean, this is taken to be 8 := I, (o). When F' is archimedean,
we take B := e~

(3) (Fourier transform) Fix an additive character ¢: F' — C*. There is a Fourier
transform

o Bla) = /M T dy

It is desirable to write this as ¢ % J5' where * is convolution with respect

to the multiplicative Haar measure on G(F), where J%(x) = o (Tr(z))|z|™.
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Now we’ll take the Mellin transform.

(1) For m an irreducible representation of G(F) and f € @ ¥, ¢ € . (G(F)),
we consider the family of zeta integrals.

Z(p,frs) = /G L @@

These will have a GCD, which is L(s, m, p).
(2) Recall that in the Riemann zeta function, one needs to complete with I'-
factors to get the functional equation. These are Mellin transforms of the

basic functions of the form e~™*”. At the non-archimedean places,

0 7w ramified,

L(32,7,p) m ramified.

Tr(B,7) = {

(3) Since Mellin transform takes convolution to product, we get a functional
equation
Z(l -5, 7Tv7 10) = F(ﬂ-a p)Z(Sv , 10)

1.2. Global theory. That was all local. What about the global theory? Let A =
A be the ring of adeles of k.
We define the global Schwartz space to be the restricted product

S (G(A)) = Q7 (C(ky))

with respect to the basic functions 3,.
We have a Poisson summation formula

Y= > a0)

VEG(k) VEG(k)

under some local conditions on ¢, (whose role is to annihilate boundary terms).
Under Mellin transform, this then gives a global functional equation.

2. BRAVERMAN-KAZHDAN PROGRAM

How can we generalize this?

2.1. Reductive monoids. First question: what is the Schwartz space? In the case
of GL,,, we defined a bigger ambient object M, then took Schwartz functions on
that and restricted them to GL,. So the first problem is to find a space M* O G
which generalizes this. We want the G' x G-action to extend to M,. We ask for a
monoid structure on M, generalizing the multiplication on M,,.

How can we construct such M*? It just so happens that a theory of “reductive
monoids” has been developed by Putcha, Renner, and Vinberg, which are suitable
for this purpose. Take a maximal torus T' C G. Let Miﬁ be the closure; this
will be a normal affine algebraic (toric) variety. We have a W-action on T, which
extends to an action on M~. Conversely, we can construct M” out of the data of
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T,I/V,Mj’i. Namely, start with a W-equivariant, strictly convex cone ¢ C Ar =
Hom(G,,,T) ® R.

It’s not completely obvious that such a thing exists. Indeed, if G is semisimple
then such a thing cannot exist. You need to have a center which will allow you to
“shift” the translates of the cone to a half.

Let p: 1'G — GL(V,). Then we can take the cone generated by the weight of p.
This will give rise to a satisfactory M?.

Remark 2.1. Note that M? doesn’t capture all the information of p. The cone
forgets the multiplicities. For example, p @ p gives the same monoid.

2.2. The basic function. The Godement-Jacquet case is basically the only one
where the monoid is smooth. When it is not smooth, it isn’t right to take smooth
functions.

Problem: Define a sheaf .7 (in the p-adic topology) on MP(F)
such that #?(G) =T (MP(F), 7).

When v is non-archimedean, 3, should be the trace of Frobenius on the intersec-
tion complex of ZMP (when p is irreducible). This is a joint result of Bouthier-
Sakellaridis-N. The philosophy is that the basic function should “only depend on the
singularities”.

2.3. The Fourier transform. A more difficult problem seems to be to develop a
theory of “p-Fourier transform”. This should stabilize the Schwartz space, preserve
the basic function, and have the form ¢ — ¢ % JP. Experience suggests that we
want J” to be a stably invariant smooth function on Gss(F).

For all irreducible representations 7, we believe J? x f = ~°(w) f for f € . Since
7 is a function packets, this is consistent with the property that J, should be stably
invariant.

Example 2.1. For GL,,, we saw that J?(g) = ¢¥(Tr(g))|det g|™.

2.4. The finite field case. Let G be a reductive group over a finite field K. Let
p: PG — GL(V). For every irreducible representation 7 of G(K), we can define
vP(m) € C. (Think of this as something like a Gauss sum.) We then get an invariant
function J*: G(K) — C determined by: for v € m, J* x v = y°(m)v.

Here is Braverman-Kazhdan’s proposal for constructing J”. Consider restricting
p: G — GL(V,) to T. This will break up as

p’T:XI@-“@Xn

which corresponds (by local Langlands for tori) to the character pr: G}t — T given
by

n
pr(we,. . wn) = [ [ xi(@i).
i1
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We have a diagram

Gr =, Al

lPT

T
Let .%,, be the Artin-Schreier sheaf on A!, and form J2 := pn¥*.%.
Example 2.1. For T = G,,, p = std @ std then JJ. corresponds to a Kloosterman
sum.

We have now defined a sheaf on T', and we want to define a sheaf on G. A process
called Lusztig induction takes in W-invariant perverse sheaves on 1" and constructs
perverse sheaves on G.

Remark 2.2. In Lusztig’s case, he uses Kummer sheaves. Here we use the Artin-
Schreier sheaf, which is more complicated, but his formalism still goes through.
But the W-equivariant structure is not obvious. There is an S,-action on G\,
but it’s not clear how this plays with the W-action on T'.
What happens is that there is W/ mapping to both S,, and W, and you have an
exact sequence
> W
S,

n

! w 0

0 —— H?zl Snz

You then find that pp is W'-equivariant, but [];", S,, doesn’t act trivially (so it
doesn’t descend to a W-action). It turns out that the kernel acts by a sign character.
So you twist the action by the sign character of S,,, at which point it descends, and
then you untwist by the sign character of W.

Braverman-Kazhdan conjecture that this gives the correct J?. This is basically
known now, even in a more geometric version. It was proved by Braverman-Kazhdan
for G semisimple of rank 1. Chen-Ngo6 extended the result to G = GL, and all p.
Tsao-Hsien Chen proved it in general in the C-setting, reformulating in terms of
D-modules. Laumon-Lettelian have recently proved it in general.

2.5. The p-adic case. The twisting and untwisting by the sign character is puzzling
— what would correspond to the sign character in the p-adic case? But I've realized
that you don’t really need it.

Let F =k, and T be a torus, not split, over F. Let X7 =T x T — GL(V,). It is
an elementary exercise to show that this is equivalent to p: D, — T where D, is the
induced torus. (Namely, I' = S,, corresponds to an extension £/F, and D, := E*.)
We compose with E* — (Tr)F. Integrating along the fibers, with appropriate
regularization, gives Jg.

Now consider p: “G' — GL(V,). We want to make a function J% on G. We can
consider T C G a maximal torus. There is no canonical “T" — “G, but it turns out
that one can make a canonical composition pr: T — G — GL(V,). You then get
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a function J7. on T'. This is compatible, and “glues” to a (stably invariant) function
on G(F). However, it is not the correct distribution: it stops working after the
standard representation. )
Lastly let me explain the work of Lafforgue. He studied GLy. Start with JZ"*"(c, a)

where ¢ is the trace and a is the determinant. Then do Fourier transform on the
first variable and multiply by [£], getting |{|F1J” (€, a), and then Fourier transform
on the second variable, getting ]-"g. He proved that this satisfies compatibility with
constant terms, so it’s right on the induced representations. It seems probable that
it is correct in general.
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