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1. Goal

We consider a particular case of what has become called the “relative local Lang-
lands correspondence”.

Let E/F be a quadratic extension of p-adic fields. Denote Gal(E/F ) = {1, σ}.
Let V be a hermitian space over E of dimension n.

We have an embedding H = U(V ) ↪→ G = GLn(E).
The goal is to study the “spectrum” of H\G. This can mean two things.
• Irreducible representations π ofG which admit an embedding π ↪→ C∞(H\G).
These are called “distinguished representations”.
• A spectral decomposition of L2(H\G).

2. Multiplicities

Conjecture 2.1 (Jacquet). If π ↪→ C∞(H\G), then π ∼= πσ. The converse holds if
H is quasi-split.

This has essentially be proved by Feigon-Lapid-Offen [FLO]. They prove the first
statement in full generality, and the second part for generic or unitary π.

We want to consider the multiplicities

m(π) := dim HomH(π,C).

Remark 2.2. We do not have multiplicity one in this situation; in fact, m(π) can
be as high as 2n−1.

There is a base-change transfer from Irr(G′) to Irr(G), by work of Arthur-Clozel.
We will see that this gives almost everything you want to know about multiplicities.

Using the Langlands classification, we can equip Irr(G) with the structure of
algebraic varieties. It then turns out that this map is a finite morphism. Then one
can define a function (deg BC): Irr(G)→ N, which has the propery that

(deg BC)(π) =
∑

σ∈BC−1(π)

(deg BC)(σ).

This defines a locally function on Im (BC), and for general π ∈ Im(BC) we have
(deg BC)(π) = |BC−1(π)|.
Remark 2.3. The work of Arthur-Clozel shows that π ∈ Im(BC) if and only if
π ∼= πσ.
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Example 2.4. Let π ∈ Im(BC) be generic. Then by work of Bernstein-Zelevinsky,
π can be written as δ1 × . . . × δt with δi essentially square-integrable, and then
(deg BC)(π) = 2#{i|δi

∼=δσi }. Furthermore, deg BC(π) = |BC−1(π)| if and only if the
Galois stable δi are distinct.

Theorem 2.5 (FLO). For π ∈ Irr(G) generic, we have

m(π) ≥

{
ddegBC(π)

2 e H quasisplit,
bdegBC(π)

2 c H not quasisplit

Moreover, equality holds whenever (deg BC)(π) = |BC−1(π)|.
[FLO] and (independently) Prasad have conjectured that equality always holds.

Theorem 2.6. This is true: for π ∈ Irr(G) generic,

m(π) =

{
ddegBC(π)

2 e H quasisplit,
bdegBC(π)

2 c H not quasisplit.

3. Plancherel decomposition

Sakellaridis-Venkatesh have made very general conjectures for spherical varieties.
It turns out to be convenient to consider also H ′ = U(V ′), where dimV ′ = n and
V ′ 6∼= V (there are only 2 classes of hermitian spaces). Let G′ = GLn(F ).

Theorem 3.1. There exists an isomorphism of unitary G-representations

L2(H\G)⊕ L2(H ′\G) ∼=
∫

BC(σ)dµG′(σ)

where dµG′ is the Plancherel measure for G′.

Remark 3.2. This is not a Plancherel decomposition, because BC is not injective.
Hence this decomposition is not unique. But we’ll later see a refinement that uniquely
characterizes the decomposition.

4. FLO functionals

The work of [FLO] constructs invariant functionals.

4.1. Jacquet-Ye transfer. Let N ′ = Nn(F ) ⊂ G′ = GLn(F ) be the standard
maximal unipotent. Similarly we let N = Nn(E) ⊂ G = GLn(E). Fix generic
characters ψ′n : N ′ → C× and ψn : N → C×.

We will apply the relative trace formula, so we need to introduce relative orbital
integrals.

For f ∈ C∞c (G), γ ∈ Greg we define

O(γ, f) =

∫
H×N

f(hγu)ψn(u) dhdu.

For f ′ ∈ C∞c (G′) and δ ∈ G′reg, we define

O(δ, f ′) =

∫
N ′×N ′

f ′(u1δu2)ψ
′
n(u1u2)du1du2.
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To make a comparison, we need a matching of orbits:

H\Greg/N ↪→ N ′\G′reg/N ′.

Given this, we introduce the notion of matching functions: we say f ∈ C∞c (G)
matches f ′ ∈ C∞c (G′) if

Ω(γ)O(γ, f) = Ω(δ)O(δ, f ′) for γ ↔ δ.

Theorem 4.1 (Jacquet). Every f ∈ C∞c (G) matches some f ′ ∈ C∞c (G′).

Remark 4.2. There is a converse if you consider H,H ′ at the same time.

4.2. The functionals. By comparison of global relative trace formulas (the Kuznetsove
trace formula for G′ and the Jacquet-Ye trace formula for G), [FLO] have defined
for every σ ∈ Temp(G′) an H-invariant form

αHσ : W(BC(σ))→ C

where W(BC(σ)) is the Whittaker model of BC(σ). This is characterized by the
condition that

JHBC(σ)(f) = Iσ(f ′)

for matching f, f ′, where

JHBC(σ)(f) =
∑

W∈ON(W(BC(σ)))

αHσ (f ·W )W (1)

with “ON” standing for orthonormal basis (this is called a “relative Bessel distribu-
tion”) and

Iσ(f ′) =
∑

W ′∈ON(W(σ))

(f ′ ·W ′)(1)W ′(1)

(this is called a “Bessel distribution”).
[FLO] prove the inequality by counting the number of independent such function-

als.

5. Proof of Theorem 2.6

We reduce to the statement for π ∈ Temp(G). It is convenient in the proof to
consider H and H ′ together, so define

m′(π) := dim HomH′(π,C).

Since we know a lower bound for each of m(π) and m′(π), we just need to show an
upper bound for the sum: m(π) +m′(π) ≤ (deg BC)(π).

Let X = H\G
∐
H ′\G. Then

m(π) +m′(π) = dim HomN (C∞c (X)π, ψn)

where the subscript π refers to the maximal π-isotypic quotient. This is easy, using
just Frobenius reciprocity and uniqueness of Whittaker functions.

For σ ∈ Temp(G′), we have JHσ , JH
′

σ ∈ HomN (C∞c (X), ψn). Let Jσ = JHσ + JH
′

σ .
The key lemma is:
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Lemma 5.1. We have

HomN (C∞c (X)π, ψn) ⊂ 〈Jσ : σ ∈ BC−1(Ωt
π)〉

where Ωt
π ⊂ Temp(G) is the connected component of π, and the closure is for the

weak topology.

In other words, any f ∈ C∞c (X)π which is called by all the Jσ is killed by all
Whittaker functionals.

Proof. Use the local Kuznetsov trace formula:∫
N ′\G′/N ′

O(δ, f ′1)O(δ1, f ′2) =

∫
Temp(G′)

Iσ(f ′1)Iσ(f ′2)dµG′(σ).

If f ′1 match, we can write both sides in terms of G.∫
X/N

O(x, ϕ1)O(x, ϕ2) =

∫
Temp(G′)

Jσ(ϕ1)Jσ(ϕ2)dµG′(σ).

A localization principle implies that 〈Jσ | σ ∈ Temp(G′)〉 is dense in HomN (C∞c (X), ψn).
�

Let B(G′) = Spec Z (G′) and B(G) = Spec Z (G) (where Z denotes the Bern-
stein center). We have

Irr(G′) Irr(G)

B(G′) B(G)

λ

BC

λ

BC

By Jacquet’s theory of Whittaker functionals, we have

{σ 7→ Iσ(f ′) | f ′ ∈ C∞c (G′)} = C[B(G′)] = {σ ∈ Jσ(f) | f ∈ C∞c (X)}.
We denote Ωπ ⊂ Irr(G) the connected component of π, and Ω′π ⊂ Irr(G′) the

pre-image under BC. Let (Ω′π)λ be the image under λ.
By Lemma 5.1, every element of HomN (C∞c (X)π, ψn) factors through C∞c (X) �

C[(Ω′π)λ], and then further through the quotient by the maximal ideal mλ(π), whose
dimension is (deg BC)(π).

6. Explicit Plancherel

Let X = H\G
∐
H ′\G. Let σ ∈ Temp(G′). We have a G-invariant semi-definite

scalar product
(, )X,σ : C∞c (X)× C∞c (X)→ C.

This is defined by

(ϕ1, ϕ2)X,σ =
∑

W∈W (BC(σ)))

ασ(ϕ1 ·W )ασ(ϕ2 ·W )

If ϕ = ϕH + ϕH
′ ∈ C∞c (X), then

ασ(ϕ ·W ) = αHσ (ϕH ·W ) + αH
′

σ (ϕH
′ ·W ).
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Remark 6.1. We have (C∞c (X), (, )X,σ)∧ ∼= B̂C(σ).

Theorem 6.2. For every ϕ1, ϕ2 ∈ C∞c (X) we have

(ϕ1, ϕ2)L2(G) =

∫
Temp(G′)

(ϕ1, ϕ2)X,σdµG′(σ).

Unitary periods: let k′/k be a quadratic extension of number fields. Let

H := U(V ) ↪→ G := GLn,k′ .

For π ↪→ Acusp, we define

PH : φ ∈ π 7→
∫
[H]

φ.

Dually, we have C∞c (H(A)\G(A))→ π given by the composition

ϕ 7→ Σϕ(−) :=
∑

x∈H(k)\G(k)

ϕ(x−),

and then projecting (Σϕ) 7→ (Σϕ)π.
It’s better to replace H(A)\G(A) by (H\G)(A) = X(A). It’s the (infinite)

disjoint union of H ′(A)\G(A) where H ′ runs over unitary groups.

Theorem 6.3 (FLO, Jacquet (n=3)). Let ϕ =
∏
v ϕv ∈ C∞c (X(A)). Then (

∑
ϕ)π =

0 unless π = BC(σ) for σ ↪→ Acusp(GLn,k), in which case

〈(
∑

ϕ)π, (
∑

ϕ)π〉L2 =
2

n

LS(1, σ,Ad⊗η)

LS(1, σ,Ad)

(∏
v∈S

(ϕv, ϕv)Xv ,σv +
∏
v∈S

(ϕv, ϕv)Xv ,σv⊗ηv

)
.

where η is the character corresponding to k′/k.
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