MULTIPLICITIES AND PLANCHEREL FORMULA FOR THE SYMMETRIC SPACE $U(n) \setminus GL_n(E)$

TALK BY RAPHAEL BEUZART-PLESSIS, NOTES BY TONY FENG

1. Goal

We consider a particular case of what has become called the "relative local Langlands correspondence".

Let E/F be a quadratic extension of *p*-adic fields. Denote $\operatorname{Gal}(E/F) = \{1, \sigma\}$. Let V be a hermitian space over E of dimension n.

We have an embedding $H = U(V) \hookrightarrow G = \operatorname{GL}_n(E)$.

The goal is to study the "spectrum" of $H \setminus G$. This can mean two things.

- Irreducible representations π of G which admit an embedding $\pi \hookrightarrow C^{\infty}(H \setminus G)$. These are called "distinguished representations".
- A spectral decomposition of $L^2(H \setminus G)$.

2. Multiplicities

Conjecture 2.1 (Jacquet). If $\pi \hookrightarrow C^{\infty}(H \setminus G)$, then $\pi \cong \pi^{\sigma}$. The converse holds if H is quasi-split.

This has essentially be proved by Feigon-Lapid-Offen [FLO]. They prove the first statement in full generality, and the second part for generic or unitary π .

We want to consider the multiplicities

$$m(\pi) := \dim \operatorname{Hom}_H(\pi, \mathbf{C}).$$

Remark 2.2. We do not have multiplicity one in this situation; in fact, $m(\pi)$ can be as high as 2^{n-1} .

There is a base-change transfer from Irr(G') to Irr(G), by work of Arthur-Clozel. We will see that this gives almost everything you want to know about multiplicities.

Using the Langlands classification, we can equip $\operatorname{Irr}(G)$ with the structure of algebraic varieties. It then turns out that this map is a finite morphism. Then one can define a function $(\deg BC): \operatorname{Irr}(G) \to \mathbf{N}$, which has the property that

$$(\deg BC)(\pi) = \sum_{\sigma \in BC^{-1}(\pi)} (\deg BC)(\sigma).$$

This defines a locally function on Im (BC), and for general $\pi \in \text{Im}(BC)$ we have $(\deg BC)(\pi) = |BC^{-1}(\pi)|$.

Remark 2.3. The work of Arthur-Clozel shows that $\pi \in \text{Im}(BC)$ if and only if $\pi \cong \pi^{\sigma}$.

Example 2.4. Let $\pi \in \text{Im}(BC)$ be generic. Then by work of Bernstein-Zelevinsky, π can be written as $\delta_1 \times \ldots \times \delta_t$ with δ_i essentially square-integrable, and then $(\deg BC)(\pi) = 2^{\#\{i|\delta_i \cong \delta_i^{\sigma}\}}$. Furthermore, $\deg BC(\pi) = |BC^{-1}(\pi)|$ if and only if the Galois stable δ_i are distinct.

Theorem 2.5 (FLO). For $\pi \in Irr(G)$ generic, we have

$$m(\pi) \ge \begin{cases} \left\lceil \frac{\deg \operatorname{BC}(\pi)}{2} \right\rceil & H \text{ quasisplit,} \\ \left\lfloor \frac{\deg \operatorname{BC}(\pi)}{2} \right\rfloor & H \text{ not quasisplit} \end{cases}$$

Moreover, equality holds whenever $(\deg BC)(\pi) = |BC^{-1}(\pi)|$.

[FLO] and (independently) Prasad have conjectured that equality always holds. **Theorem 2.6.** This is true: for $\pi \in Irr(G)$ generic,

$$m(\pi) = \begin{cases} \left\lceil \frac{\deg \mathrm{BC}(\pi)}{2} \right\rceil & H \text{ quasisplit,} \\ \left\lfloor \frac{\deg \mathrm{BC}(\pi)}{2} \right\rfloor & H \text{ not quasisplit.} \end{cases}$$

3. Plancherel decomposition

Sakellaridis-Venkatesh have made very general conjectures for spherical varieties. It turns out to be convenient to consider also H' = U(V'), where dim V' = n and $V' \not\cong V$ (there are only 2 classes of hermitian spaces). Let $G' = \operatorname{GL}_n(F)$.

Theorem 3.1. There exists an isomorphism of unitary G-representations

$$L^{2}(H\backslash G) \oplus L^{2}(H'\backslash G) \cong \int BC(\sigma) d\mu_{G'}(\sigma)$$

where $d\mu_{G'}$ is the Plancherel measure for G'.

Remark 3.2. This is not a Plancherel decomposition, because BC is not injective. Hence this decomposition is not unique. But we'll later see a refinement that uniquely characterizes the decomposition.

4. FLO FUNCTIONALS

The work of [FLO] constructs invariant functionals.

4.1. Jacquet-Ye transfer. Let $N' = N_n(F) \subset G' = \operatorname{GL}_n(F)$ be the standard maximal unipotent. Similarly we let $N = N_n(E) \subset G = \operatorname{GL}_n(E)$. Fix generic characters $\psi'_n \colon N' \to \mathbf{C}^{\times}$ and $\psi_n \colon N \to \mathbf{C}^{\times}$.

We will apply the relative trace formula, so we need to introduce relative orbital integrals.

For $f \in C_c^{\infty}(G)$, $\gamma \in G_{\text{reg}}$ we define

$$O(\gamma, f) = \int_{H \times N} f(h\gamma u) \psi_n(u) \, dh du.$$

For $f' \in C_c^{\infty}(G')$ and $\delta \in G'_{\text{reg}}$, we define

$$O(\delta, f') = \int_{N' \times N'} f'(u_1 \delta u_2) \psi'_n(u_1 u_2) du_1 du_2.$$

To make a comparison, we need a matching of orbits:

$$H \setminus G_{\text{reg}}/N \hookrightarrow N' \setminus G'_{\text{reg}}/N'$$

Given this, we introduce the notion of matching functions: we say $f \in C_c^{\infty}(G)$ matches $f' \in C_c^{\infty}(G')$ if

$$\Omega(\gamma)O(\gamma, f) = \Omega(\delta)O(\delta, f') \text{ for } \gamma \leftrightarrow \delta.$$

Theorem 4.1 (Jacquet). Every $f \in C_c^{\infty}(G)$ matches some $f' \in C_c^{\infty}(G')$.

Remark 4.2. There is a converse if you consider H, H' at the same time.

4.2. The functionals. By comparison of global relative trace formulas (the Kuznetsove trace formula for G' and the Jacquet-Ye trace formula for G), [FLO] have defined for every $\sigma \in \text{Temp}(G')$ an *H*-invariant form

$$\alpha_{\sigma}^{H} \colon \mathcal{W}(\mathrm{BC}(\sigma)) \to \mathbf{C}$$

where $\mathcal{W}(BC(\sigma))$ is the Whittaker model of $BC(\sigma)$. This is characterized by the condition that

$$J^{H}_{\mathrm{BC}(\sigma)}(f) = I_{\sigma}(f')$$

for matching f, f', where

$$J^{H}_{\mathrm{BC}(\sigma)}(f) = \sum_{W \in \mathrm{ON}(\mathcal{W}(\mathrm{BC}(\sigma)))} \alpha^{H}_{\sigma}(f \cdot W) \overline{W(1)}$$

with "ON" standing for orthonormal basis (this is called a "relative Bessel distribution") and

$$I_{\sigma}(f') = \sum_{W' \in ON(\mathcal{W}(\sigma))} (f' \cdot W')(1) \overline{W'(1)}$$

(this is called a "Bessel distribution").

[FLO] prove the inequality by counting the number of independent such functionals.

5. Proof of Theorem 2.6

We reduce to the statement for $\pi \in \text{Temp}(G)$. It is convenient in the proof to consider H and H' together, so define

$$m'(\pi) := \dim \operatorname{Hom}_{H'}(\pi, \mathbf{C})$$

Since we know a lower bound for each of $m(\pi)$ and $m'(\pi)$, we just need to show an upper bound for the sum: $m(\pi) + m'(\pi) \leq (\deg BC)(\pi)$.

Let $X = H \setminus G \coprod H' \setminus G$. Then

$$m(\pi) + m'(\pi) = \dim \operatorname{Hom}_N(C_c^{\infty}(X)_{\pi}, \psi_n)$$

where the subscript π refers to the maximal π -isotypic quotient. This is easy, using just Frobenius reciprocity and uniqueness of Whittaker functions.

For $\sigma \in \text{Temp}(G')$, we have $J_{\sigma}^{H}, J_{\sigma}^{H'} \in \text{Hom}_{N}(C_{c}^{\infty}(X), \psi_{n})$. Let $J_{\sigma} = J_{\sigma}^{H} + J_{\sigma}^{H'}$. The key lemma is:

Lemma 5.1. We have

$$\operatorname{Hom}_N(C_c^{\infty}(X)_{\pi},\psi_n) \subset \overline{\langle J_{\sigma} \colon \sigma \in \operatorname{BC}^{-1}(\Omega_{\pi}^t) \rangle}$$

where $\Omega^t_{\pi} \subset \text{Temp}(G)$ is the connected component of π , and the closure is for the weak topology.

In other words, any $f \in C_c^{\infty}(X)_{\pi}$ which is called by all the J_{σ} is killed by all Whittaker functionals.

Proof. Use the local Kuznetsov trace formula:

$$\int_{N'\setminus G'/N'} O(\delta, f_1') \overline{O(\delta_1, f_2')} = \int_{\operatorname{Temp}(G')} I_{\sigma}(f_1') \overline{I_{\sigma}(f_2')} d\mu_{G'}(\sigma) d\mu_{G'}(\sigma)$$

If f'_1 match, we can write both sides in terms of G.

$$\int_{X/N} O(x,\varphi_1) \overline{O(x,\varphi_2)} = \int_{\text{Temp}(G')} J_{\sigma}(\varphi_1) \overline{J_{\sigma}(\varphi_2)} d\mu_{G'}(\sigma).$$

A localization principle implies that $\langle J_{\sigma} \mid \sigma \in \text{Temp}(G') \rangle$ is dense in $\text{Hom}_N(C_c^{\infty}(X), \psi_n)$.

Let $\mathcal{B}(G') = \text{Spec } \mathscr{Z}(G')$ and $\mathcal{B}(G) = \text{Spec } \mathscr{Z}(G)$ (where \mathscr{Z} denotes the Bernstein center). We have

$$\operatorname{Irr}(G') \xrightarrow{\operatorname{BC}} \operatorname{Irr}(G)$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow^{\lambda}$$

$$\mathcal{B}(G') \xrightarrow{\operatorname{BC}} \mathcal{B}(G)$$

By Jacquet's theory of Whittaker functionals, we have

$$\{\sigma \mapsto I_{\sigma}(f') \mid f' \in C_c^{\infty}(G')\} = \mathbf{C}[\mathcal{B}(G')] = \{\sigma \in J_{\sigma}(f) \mid f \in C_c^{\infty}(X)\}.$$

We denote $\Omega_{\pi} \subset \operatorname{Irr}(G)$ the connected component of π , and $\Omega'_{\pi} \subset \operatorname{Irr}(G')$ the pre-image under BC. Let $(\Omega'_{\pi})^{\lambda}$ be the image under λ .

By Lemma 5.1, every element of $\operatorname{Hom}_N(C_c^{\infty}(X)_{\pi}, \psi_n)$ factors through $C_c^{\infty}(X) \twoheadrightarrow \mathbf{C}[(\Omega'_{\pi})^{\lambda}]$, and then further through the quotient by the maximal ideal $\mathfrak{m}_{\lambda(\pi)}$, whose dimension is $(\deg BC)(\pi)$.

6. Explicit Plancherel

Let $X = H \setminus G \coprod H' \setminus G$. Let $\sigma \in \text{Temp}(G')$. We have a G-invariant semi-definite scalar product

$$(,)_{X,\sigma} \colon C_c^{\infty}(X) \times C_c^{\infty}(X) \to \mathbf{C}$$

This is defined by

$$(\varphi_1, \varphi_2)_{X, \sigma} = \sum_{W \in \mathscr{W}(\mathrm{BC}(\sigma)))} \alpha_{\sigma}(\varphi_1 \cdot W) \overline{\alpha_{\sigma}(\varphi_2 \cdot W)}$$

If $\varphi = \varphi^H + \varphi^{H'} \in C_c^{\infty}(X)$, then

$$\alpha_{\sigma}(\varphi \cdot W) = \alpha_{\sigma}^{H}(\varphi^{H} \cdot W) + \alpha_{\sigma}^{H'}(\varphi^{H'} \cdot W).$$

Remark 6.1. We have $(C_c^{\infty}(X), (,)_{X,\sigma})^{\wedge} \cong \widehat{\mathrm{BC}(\sigma)}$.

Theorem 6.2. For every $\varphi_1, \varphi_2 \in C_c^{\infty}(X)$ we have

$$(\varphi_1,\varphi_2)_{L^2(G)} = \int_{\mathrm{Temp}(G')} (\varphi_1,\varphi_2)_{X,\sigma} d\mu_{G'}(\sigma).$$

Unitary periods: let k'/k be a quadratic extension of number fields. Let

$$H := U(V) \hookrightarrow G := \operatorname{GL}_{n,k'}.$$

For $\pi \hookrightarrow \mathcal{A}_{\text{cusp}}$, we define

$$P_H \colon \phi \in \pi \mapsto \int_{[H]} \phi$$

Dually, we have $C_c^{\infty}(H(\mathbf{A}) \setminus G(\mathbf{A})) \to \pi$ given by the composition

$$\varphi \mapsto \Sigma \varphi(-) := \sum_{x \in H(k) \setminus G(k)} \varphi(x-),$$

and then projecting $(\Sigma \varphi) \mapsto (\Sigma \varphi)_{\pi}$.

It's better to replace $H(\mathbf{A})\backslash G(\mathbf{A})$ by $(H\backslash G)(\mathbf{A}) = X(\mathbf{A})$. It's the (infinite) disjoint union of $H'(\mathbf{A})\backslash G(\mathbf{A})$ where H' runs over unitary groups.

Theorem 6.3 (FLO, Jacquet (n=3)). Let $\varphi = \prod_{v} \varphi_{v} \in C_{c}^{\infty}(X(\mathbf{A}))$. Then $(\sum \varphi)_{\pi} = 0$ unless $\pi = BC(\sigma)$ for $\sigma \hookrightarrow \mathcal{A}_{cusp}(GL_{n,k})$, in which case

$$\langle (\sum \varphi)_{\pi}, (\sum \varphi)_{\pi} \rangle_{L^{2}} = \frac{2}{n} \frac{L^{S}(1, \sigma, \operatorname{Ad} \otimes \eta)}{L^{S}(1, \sigma, \operatorname{Ad})} \left(\prod_{v \in S} (\varphi_{v}, \varphi_{v})_{X_{v}, \sigma_{v}} + \prod_{v \in S} (\varphi_{v}, \varphi_{v})_{X_{v}, \sigma_{v} \otimes \eta_{v}} \right)$$

where η is the character corresponding to k'/k.