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1 Classical Hodge Theory

Let X be a compact complex manifold. We discuss three properties of classical Hodge the-
ory.

Hodge decomposition. Hodge’s theorem says that if X is Kähler, then there is a natural
“Hodge decomposition”

Hi(X,Z) ⊗Z C �
i⊕

j=0

Hi− j(X,Ω j
X).

This is proved by real analysis, and the main step is to represent de Rham cohomology
classes by harmonic forms.

de Rham cohomology. A more general (and much easier) statement is that

Hi(X,Z) ⊗Z C � Hi
dR(X).

This is a consequence of the fact that the holomorphic de Rham complex is exact on a
polydisc, hence forms a resolution of the constant sheaf. This uses crucially the “locally
trivial” nature of complex manifolds. We bring this up because it will fail in the p-adic
setting that I’m about to discuss.

Hodge-de Rham degeneration. These two facts together imply that the Hodge-de Rham
spectral sequence

Ei j
1 = H j(X,Ωi

X) =⇒ Hi+ j
dR (X).

degenerates at E1. This just follows from dimension considerations: any non-trivial differ-
ential would force the cohomology to be smaller than we know it to be.

Example 1.1. All projective smooth algebraic varieties over C have rise to Kähler complex
manifolds, and hence have Hodge decompositions. Even if you have only properness, you
can say something, e.g. that the Hodge-de Rham sequence degenerates.
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2 P-ADIC HODGE THEORY

We now discuss some examples of non-Kähler complex manifolds.

Example 1.2. (The Hopf surface) Let q ∈ C∗, |q| < 1. Then you do something similar to the
uniformization of a complex elliptic curve, but in one dimension higher: define the Hopf
surface

X := (C2 \ {(0, 0)})/qZ.

Here qZ acts diagonally. This a totally discontinuous action, so you can take the quotient and
obtain a complex manifold. This isn’t Kähler; for instance one can compute H1(X,OX) = C

while H0(X,Ω1
X) = 0, so Hodge symmetry fails.

However, the Hodge-de Rham spectral sequence still degenerates at E1.

Example 1.3. (Iwasawa threefold) This is the “first” example where you don’t have degen-
eration. Let N be the unipotent subgroup of GL3.

N =


1 ∗ ∗

1 ∗

1


 .

Then X := N(C)/N(Z[i]). You can project to a smaller object by forgetting the upper right
hand corner, and you get two copies of Ga modulo the lattice Z[i] × Z[i]. So the projection
is onto an abelian surface, and each fiber is the same (twisted) CM elliptic curve. The twist
introduces a non-trivial differential in the Hodge-de Rham spectral sequence.

In particular, X is non-Kähler.

2 p-adic Hodge Theory

2.1 Hodge-Tate decomposition

p-adic Hodge theory is about an analogue of these results for manifolds over p- adic fields
(discretely valued, complete non-archimedean extension of Qp with perfect residue field k)
instead of C (e.g. a finite extension of Qp; the important thing is that the residue field be
perfect).

Let C = K̂ be the completed algebraic closure of K. (K/K is always infinite, because
you can extract roots of the uniformizer, and thus it won’t be complete. Krasner’s Lemma
shows that Cp is algebraically closed.)

The first result in p-adic Hodge theory is:

Theorem 2.1 (Tate, 1967). Let A/OK be an abelian variety. Then there is a natural
Gal(K/K)-equivariant isomorphism

H1
ét(AC ,Zp) ⊗Zp C � (H1(A,OA) ⊗K C) ⊕ (H0(A,Ω1

A)(−1) ⊗K C).

Remark 2.2. This also works a proper smooth curve over O by considering the Jacobian.

This gives non-trivial results about the action of Galois on étale cohomology. After
proving this, Tate asked:
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3 RIGID ANALYTIC VARIETIES

One can ask whether a similar Hodge-like decomposition exists for the étale
cohomology with values in C in all dimensions, for a scheme XC coming from
a scheme X projective and smooth over OK , or perhaps even over K, or suitable
rigid analytic spaces.

We now call such a decomposition a Hodge-Tate decomposition.
This seems natural in light of the fact that the complex-analytic fact holds for Kähler

manifolds more generally than smooth projective varieties, and seems to come from analy-
sis.

Progress.

• Fontaine-Messing (1985) proved a Hodge-Tate decomposition for X a smooth pro-
jective scheme over OK = W(k) (i.e. unramified), and p > dim X. In fact, they proved
something much stronger, namely that the étale cohomology is crystalline.

• Faltings (1990) proved the result for X a proper smooth scheme over K, completely
resolving the question for algebraic varieties.

• Other proofs were given by Tsuji, Niziol, and Beilinson, for algebraic varieties.

• The rigid-analytic case remained open. One reason that this was hopeless was that
we not even the finiteness of Hi

ét(XC ,Zp) was known!

3 Rigid analytic varieties

3.1 Examples

Let’s see how the examples I discussed in the complex case translate here. Let X be a proper
smooth rigid-analytic variety over K.

Example 3.1. The analytification of a proper smooth scheme over K.

Example 3.2. You can start with an abelian variety or K3 surface. It is known that there
are non-algebraizable deformations, and the generic fiber is a proper smooth rigid-analytic
variety.

Example 3.3. There is a rigid analytic Hopf surface; in fact, it’s exactly the same construc-
tion. Let q ∈ K∗ with |q| < 1 and define

X := (A2 \ {(0, 0)})/qZ.

Dividing by qZ is bad in algebraic geometry because this is not a proper discontinuous
action, but it is in rigid analytic geometry.

We don’t have a definition of Kähler rigid-analytic varieties, but this examples hould
not be Kähler. One reason is that you can compute the cohomology, and it will fail to satisfy
Hodge symmetry.
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3 RIGID ANALYTIC VARIETIES

Example 3.4. However, there is no p-adic analogue of the Iwasawa manifold, because Cp

has no cocompact discrete subgroups like Z[i] ⊂ C. Consider the subgroup generated by 1:
it contains all the powers of p, which are not discrete. So we don’t have something that we
can “divide out by” to mimic the Iwasawa manifold.

3.2 Rigid-analytic Hodge-Tate decomposition

Theorem 3.5 (Scholze, 2012). Let X be a smooth rigid-analytic variety.

1. For all i ≥ 0, Hi
ét(XC ,Zp) is a finitely generated Zp-module, which vanishes for

i > 2 dim X.

2. There is a natural Gal(K/K)-equivariant Hodge-Tate decomposition

Hi
ét(XC ,Zp) ⊗Zp C �

i⊕
j=0

Hi− j(X,Ω j
X)(− j) ⊗K C.

3. There is a natural Gal(K/K)-equivariant de Rham comparison isomorphism

Hi
ét(XC ,Zp) ⊗Zp BdR � Hi

dR(X) ⊗K BdR

preserving filtrations; in particular, Hi
ét(XC ,Qp) is de Rham in the sense of Fontaine.

4. The Hodge-de Rham spectral sequence

Ei j
1 = H j(X,Ωi

X) =⇒ Hi+ j
dR (X).

degenerates on E1.

Very roughly, one can think of “de Rham” as meaning that there are “enough” Galois
invariants.

3.3 Sketch of proof

3.3.1 Finiteness of cohomology

The finiteness for Z`-cohomology for ` , p is known. The idea is is that any rigid analytic
variety admits a formal model, i.e. a formal scheme whose generic fiber is that rigid analytic
variety. One way to compute cohomology is to look at the “nearby cycles” and take their
cohomology. In the classical case one knows that if ` is different from all the relevant char-
acteristics, then forming nearby cycles preserves finiteness properties (i.e. constructibility).
This works for any quasicompact separated smooth rigid-analytic variety over k, i.e. with-
out properness. In particular, it works for a disc. Then, in analogy to the complex case, you
cover your space with discs and patch.

However, this doesn’t work for ` = p. In fact, if X is the closed unit disk over K, then
H1

ét(XC ,Fp) is infinite-dimensional. This is related to non-finiteness of H1
ét(A

1
k
,Fp), i.e. the
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3 RIGID ANALYTIC VARIETIES

existence of Artin-Schreier curves. In addition, the étale cohomology groups are critically
dependent on the base field C. You embed this into the other group. Roughly, the formal
model has special fiber the affine line, and an étale cover of such can be deformed, hence
extended to the generic fiber. Said differently, nearby cycles of Fp containsA1 on the special
fiber.

This means that we need a global argument, using finiteness of coherent cohomology
on proper guys to control Artin-Schreier type covers. The problem is that the Artin-Schreier
sequence lives in characteristic p, whereas we want to prove something in characteristic 0.

3.4 Local structure of rigid-analytic varieties

Complex manifolds are locally contractible. In contrast, rigid-analytic varieties have large
étale fundamental group, even locally, as we just saw. But at least they have no higher
homotopy groups:

Theorem 3.6 (Scholze, 2012). Let X be a connected affinoid rigid-analytic variety over C.
Then X is a K(π, 1) for p-torsion coefficients, i.e. for all p-torsion local systems L on X,

Hi
ét(X,L) � Hi

cont(π1(X, x),Lx)

where x is a geometric basepoint.

In particular, the étale cohomology of X is some group cohomology.

This is also true and easy for X over equal characteristic fields ̂k((t)). It is enough to
consider L = Fp, and the Artin-Schreier sequence reads

0→ Fp → OX → OX → 0.

As X is affinoid, its higher coherent cohomology vanishes. Hence Hi
ét(X,Fp) vanishes for

i ≥ 2. Moreover, we get a long exact sequence

0→ H0
ét(X,Fp)→ R→ R→ H1

ét(X,Fp)→ 0

where R = H0(X,OX). As the exactness of Artin-Scherier sequence needs only finite étale
covers, one gets by the same computation the same result for Hi

cont(π1(X, x),Lx). The point
was that the sequence was already exact on the “finite étale site” instead of the full étale
site.

To prove the result in general, we reduce the mixed characteristic case to the equal
characteristic case using perfectoid spaces.

I’ll discuss perfectoid spaces in detail tomorrow, so I won’t go into them too much
today. Perfectoid spaces are built from topological algebras, but they are unusual in that
you must assume that they have lots of p-power roots. This is encoded in requiring that
Frobenius is surjective on the “integral subring,” which will never be the case for finite type
stuff.
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3 RIGID ANALYTIC VARIETIES

Definition 3.7. A perfectoid C-algebra is a Banach C-algebra R such that the subring of
powerbounded elements R◦ ⊂ R is bounded and the Frobenius Φ : R◦/p → R◦/p is surjec-
tive.

Theorem 3.8 (Scholze, 2011). The category of perfectoid C-algebras is canonically equiv-
alent to the category of perfectoid C[-algebras.

Again, you can associate “rigid-analytic varieites” (more precisely, adic spaces) to per-
fectoid C or C[-algebras, called affinoid perfectoid spaces over C, resp. C[. The crucial
result is that this “tilting” induces an equivalence of categories X 7→ X[, and the étale sites
are equivalent: Xét � X[

ét.
The functor from perfectoid C-algebras R to perfectoid C[-algebras R[ is given by

Fontaine’s construction:
R[ = (lim

←−−
φ

R◦/p) ⊗lim
←−φ

OC/p C[.

The slogan is that all topological information passes from characteristic 0 to p, but no
coherent information passes through (the linearity structure is obviously incompatible).

Let’s see how this finishes the proof.

• Find affinoid perfectoid space X̃ over C, so that X̃ → X is an inverse limit of finite
étale covers. (You contruct X̃ by iteratively adjoining p-power roots of units.)

• The tilt X̃[ is affinoid and lives in equal characteristic, hence is a K(π, 1) for p-torsion
coefficients.

• As X̃ét � X̃[
ét, also X̃ is a K(π, 1) for p-torsion coefficients.

• As X̃ → X is pro-finite étale, and taking finite covers doesn’t change the higher
homotopy groups, it will also be the case that X is a K(π, 1) for p-torsion coefficients.
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