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1 Introduction

Notation.

• K is a complete discretely valued field,

• X/K is a smooth projective cure of genus g.

• R ⊂ K is the valuation ring,

• X/R is a regular semistable model of X.

• G is the dual graph of Xs (The special fiber).

This talk is about “tropical Brill-Noether theory.” The idea is to study algebraic geom-
etry of linear series on X (the smooth general fiber) using combinatorial/piecewise-linear
geometry on G.

1.1 Applications.

We want to prove some result which is open on the moduli space of curves. In principle
this can be established by exhibiting a single smooth curve with the desired property, but in
practice this is impossible. The classical approach is through degeneration, and we perform
a different kind of degeneration.

We can (re)prove the existence of curves X (over any algebraically closed fields or
complete rationally valued fields) such that

1. (Brill-Noether Theorem) dim Wr
d(X) = ρ(g, r, d) (empty if ρ < 0) where

Wr
d(X) = {[L] ∈ Picd(X) : h0(L) > r}

and
ρ(g, r, d) = g − (r + 1)(g − d + r).

It is very hard to write down such a curve explicitly.
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2. (Gieseker-Petri Theorem) The map

Γ(X, L) ⊗ Γ(X, L−1 ⊗ K)→ Γ(X,KX)

is injective for all L. This implies that the variety Gr
d(X), which lives over Wr

d(X) and
parametrizes choices of a linear system of dimension r as well, is smooth (at least on
the locus away from Gr+1

d (X)).

3. When ρ ≥ 0, there exists L ∈ Wr
d(X) such that Sym2 Γ(X, L) → Γ(X, L⊗2) is injective

or surjective.

This is saying that the image of the embedding is contained in the expected number
of quadrics.

More generally, the space of embeddings is irreducible, so there is a “general Hilbert
function.” This is predicted by the maximal rank conjecture, and the statement here
is the special case for quadrics.

As mentioned, the existence of a single curve with any of these properties immediately
implies it for the general curve in the moduli space.

Tropical proofs were given by

1. Cools-Darisma-Robeva (2012)

2. Jensen (2014)

3. Jensen (2015)

This is not a reframing of old arguments. Eisenbud-Harris proved 1 and 2 using the
theory of limit linear series and degenerations to curves of compact type. These lie on K3
surfaces, while the maximal rank conjecture fails for such curves. So the degenerations we
use are necessarily different.

For example, an open problem is to give an algebro-geometric proof of tropical Riemann-
Roch.

1.2 Ingredients of the proofs

The input involves:

• Ideas from limit linear series (Harris and Eisenbud)

• Non-archimedean potential theory (Berkovich and Thuillier)

• Metrized complex (Amini, Baker)

• Tropical Abel-Jacobi theory
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2 Tropical geometry

Let G be a metric graph, where all edges have length 1. We have G ⊂ Xan as a skeleton (in
the sene of Berkovich). So G is a strong deformation retract of Xan.

G // Xan

p
��

π
{{

X

The way these maps play together is important.

• We have p(G) = ηX .

• G is a subset of the valuations on K(X)∗ that extend a valuation on K. Concretely this
means that any rational function on X is a regular function on G.

• One way to think okf the analytification is as {x ∈ X(K′) | K′ | K a valued extension}.

Think of the linear series as points moving on the curve. They can even be interpreted as
moving on Xan, the shadow of which movement is reflected in G. The key is to understand
how the movement on G is reflected on X.

Let D be a divisor on X, say D =
∑

aixi. The tropicalization is π∗(D), a divisor on G:

π∗(D) =
∑

aiπ(xi).

Topologically the map is proper, so pushforward is nice. Suppose D ∼ D′. Then we have
D′ = D + Div( f ) for some f ∈ K(X)∗. We get a map Trop( f ) : G → R sending v 7→ valv( f ).
This is piece-wise linear with integer slopes.

Proposition 2.1 (Non-archimedean Poincaré formula). If Div( f ) =
∑

b jx j, then

π∗Div( f ) =
∑
v∈G

(∑
incoming slopes at v

)
v.

So if D moves a lot, then there are many rational functions with poles boudned by D,
hence many piece-wise linear functions on G that bend in precise ways.

Definition 2.2. If ψ : G → R is a piece-wise linear function with integer slopes, then

Div(ψ) =
∑

v

(
incoming slope at v

)
· v.

Definition 2.3. A divisor on G is a formal sum
∑

aivi with ai ∈ Z, vi ∈ G. We say that

• deg D =
∑

ai

• D is effective if ai ≥ 0,
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• We have an equivalence relation D ∼ D′ if and only if D − D′ = Div(ψ).

We define Pic(G) = Div(G)/ ∼, whose degree 0 piece is Alb(G). This is a compact torus of
dimension h1(G).

The theory is quite similar to that of linear series in algebraic geometry. What we need
is a theory of the rank or dimension of a linear series of a divisor. I’ve been trying to hint
that this should have to do with how the divisor moves.

Definition 2.4. The rank r(D) is the largest integer r such that D − E is effective for all
effective E of degree r.

This is completely analogous to the dimension of linear series in algebraic geometry.
Finally, we need a notion of canonical divisor.

Definition 2.5 (SW Zhang, 1993). We define

KG :=
∑

v

(deg v − 2) · v.

The inner degree is valence. You can check that deg KG = 2h1(G) − 2.

Proposition 2.6 (Baker). We have π∗KX ∼ KG.

Theorem 2.7 (Tropical Riemann-Roch). We have

r(D) − r(K − D) = deg D + 1 − h1(G).

Specialization. The pushforward π∗ : Div(X) → Div(a) respects equivalence, hence de-
scends to the Picard group: π∗ : Pic(X)→ Pic(G). The specialization theorem says that

r(π∗D) ≥ r(D).

We hinted at this before, and if you try to make this precise you can probably prove it.

3 Brill-Noether Theorem

Definition 3.1. Define wr
d(G) is the largest integer w such that for every effective E of degree

r + w, there exists D such that r(D) ≥ r, deg D = d, and D − E is effective.

Proposition 3.2. We have wr
d(G) ≥ dim Wr

d(X).

To prove Brill-Noether, we just have exhibit a single curve with wr
d(G) ≥ ρ(X).

Theorem 3.3 (CDPR 2012). Let G be a chain of loops with generic edge lengths. Then
wr

d(G) = ρ(g, r, d).
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