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Abstract. Using the Langlands-Kottwitz paradigm, we compute the trace
of Frobenius composed with Hecke operators on the cohomology of nearby
cycles, at places of parahoric reduction, of perverse sheaves on certain moduli
stacks of shtukas. Following an argument of Ngô, we then use this to give
a geometric proof of a base change fundamental lemma for parahoric Hecke
algebras for GLn over local function fields. This generalizes a theorem of Ngô,
who proved the base change fundamental lemma for spherical Hecke algebras
for GLn over local function fields, and extends to positive characteristic (for
GLn) a fundamental lemma originally introduced and proved by Haines for
p-adic local fields.
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1. Introduction

1.1. Motivation. There are two main goals of this paper:
(1) To compute the trace of Frobenius composed with Hecke operators on the

cohomology of nearby cycles at places of parahoric reduction for certain
moduli stacks of shtukas, and

(2) To parlay the resulting formulas into a geometric proof of a fundamental
lemma for base change for central elements in parahoric Hecke algebras over
local function fields.

The first goal is accomplished by using the Grothendieck-Lefschetz trace formula
to break up the computation of the trace into two pieces: (1) counting points on
certain moduli spaces, and (2) understanding the stalks of the nearby cycles sheaves.
These pieces are then each resolved by a sequence of technical steps whose overall
strategy is rather well-known, and which would require a considerable amount of
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notation to describe. Therefore, in this introduction we will focus on informally
explaining the idea of the second goal.

The fundamental lemma of interest was proposed and proved by Haines [Hai09]
for p-adic (i.e. mixed characteristic) local fields, and generalizes the fundamental
lemma for base change for spherical Hecke algebras proved (independently) in the
p-adic case by Clozel [Clo90] and Labesse [Lab90], building on work of Kottwitz
[Kot86a], and in the function field case (for GLn) by Ngô [Ngo06].

The original motivation for this fundamental lemma was to study the cohomology
of a Shimura variety with parahoric level structure, and in particular to determine
the semisimple zeta factor at a place of parahoric reduction. The fundamental
lemma enters in comparing the trace of Frobenius and Hecke operators on this
cohomology with the geometric side of the Arthur-Selberg trace formula. We refer
the interested reader to [Hai09], especially p. 573, for more details.

The same applications are available in the function field setting, with Shimura
varieties replaced by the moduli stacks of shtukas, which have been utilized by Drin-
feld ([Dri87], for GL2), L. Lafforgue ([Laf02], for GLn), and V. Lafforgue ([Laf18],
for general reductive groups) to spectacular success towards the global Langlands
correspondence over function fields.

However, in this paper we have chosen to emphasize the geometric aspect of the
fundamental lemma, rather than its applications to the Langlands program. In
contrast to the proof of [Hai09] for the p-adic case, which following in the tradition
of [Clo90] and [Lab90] is via p-adic harmonic analysis, our proof works by exploiting
additional geometry and structure which is available in the function field setting.
Our strategy is very much based on that of [Ngo06], and indeed specializes to it in
the case of spherical Hecke algebras.

Broadly speaking, the base change fundamental lemma compares an orbital in-
tegral with a twisted orbital integral. To elaborate, let F be a local field, G a
reductive group over F , γ ∈ G(F ), and f a function on G(F ). The orbital integral
corresponding to this data is

Oγ(f) :=

∫
G(F )/Gγ(F )

f(g−1γg) dg (1.1)

where Gγ(F ) is the centralizer of γ in G(F ). We will take f to be in an appropriate
Hecke algebra HG(F ). (Of course we also need to discuss the normalization of Haar
measures, but let us leave that for later, in §1.3.)

Let E/F be an unramified extension of degree r, δ ∈ G(E), and fE a function
on G(E). The twisted orbital integral corresponding to this data is

TOδσ(fE) :=

∫
G(E)/Gδσ(F )

fE(g−1δσ(g)) dg (1.2)

where σ ∈ Gal(E/F ) is the lift of (arithmetic) Frobenius, and

Gδσ(F ) = {g ∈ G(E) : g−1δσ(g) = δ}

is the twisted centralizer of γ inG(E). Again, we will take fE to be in an appropriate
Hecke algebra HG(E).

If HG(E),J and HG(F ),J are corresponding parahoric Hecke algebras, then there
is a base change homomorphism for their centers

b : Z(HG(E),J)→ Z(HG(F ),J).
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There is also a norm map N from stable twisted conjugacy classes in G(E) to stable
conjugacy classes in G(F ).

In the special case G = GLn, the base change fundamental lemma for the center
of parahoric Hecke algebras predicts that for σ-regular, σ-semisimple δ ∈ G(E) and
fE ∈ Z(HG(E),J), we have

TOδσ(fE) = ON(δ)(b(fE)). (1.3)

This is almost what we will prove. (For more general G, the formulation is more
complicated; see [Hai09], Theorem 1.0.3 and §5.)

1.2. The idea of the proof. Now we can describe our strategy of proof of (1.3).
The starting point is the seminal work of Kottwitz on counting points of Shimura
varieties over finite fields. In [Kot92] Kottwitz proves a formula expressing the trace
of Frobenius composed with a Hecke operator on the cohomology of certain PEL
Shimura varieties as a sum of a product of (twisted) orbital integrals:

Tr(h ◦ Frobp, H
∗(ShK ,Q`)) =

∑
(. . .)Oγ(hp)TOδσ(hp) (1.4)

where ShK is an appropriate Shimura variety and h is a Hecke operator. In fact
the purpose of the fundamental lemma is to re-express the twisted orbital integrals
in (1.4), so as to be able to compare the expression with the geometric side of the
Arthur-Selberg trace formula. But in this paper we adopt an opposite perspec-
tive, instead viewing (1.4) as giving a geometric interpretation of (twisted) orbital
integrals (in the p-adic case) in terms of the cohomology of Shimura varieties.

In the function field setting, which is the one of interest to this paper, one can
prove an analogous formula of the form

Tr(hA ◦ Frobx0
◦τ,H∗(ShtA,A)) =

∑
(. . .)Oγ(hx0

A )TOδσ(hA,x0
) (1.5)

for an appropriate moduli stack ShtA, an appropriate sheaf A, an appropriate Hecke
operator hA, and an additional symmetry τ . (Roughly, τ is a “rotation” symmetry
that arises from the moduli problem.)

However, it turns out that we can also construct a moduli stack ShtB such that

Tr(hB ◦ Frobx0
◦τ,H∗(ShtB ,B)) =

∑
(. . .)Oγ(hx0

B )ONm(σ)(b(hB,x0
)) (1.6)

for an appropriate sheaf B, an appropriate Hecke operator hB , and an additional
symmetry τ similar to that from (1.5). The crucial point is that in (1.6) the twisted
orbital integral is replaced with the orbital integral of a base changed function.

We remark that the computations (1.5) and (1.6) were obtained in [Ngo06] for
places of good (hyperspecial) reduction, in which case one finds a spherical Hecke
operator. In the present work, which concerns places of parahoric bad reduction,
the analogous computations (1.5) and (1.6) are of independent interest, and actu-
ally form the main content of this paper. They require several nontrivial inputs,
including, for the parahoric setting that we study here, a version of the Kottwitz
Conjecture for shtukas, as well as a geometric interpretation of the base change
homomorphism for Hecke algebras. Nevertheless, let us elide these points for now.

The upshot is that (1.5) and (1.6) translate the problem of comparing orbital
integrals and twisted orbital integrals into comparing (the cohomology of) two
different moduli spaces ShtA and ShtB . (We remark that the relationship we seek
turns out to be subtler than equality, but again we elide this issue for now.) To
do this, we realize ShtA and ShtB as specializations of “bigger” moduli spaces S̃htA
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and S̃htB . We then apply the Langlands-Kottwitz method to the spaces S̃htA and
S̃htB , obtaining formulas analogous to (1.5) and (1.6), but the crucial point is that
over “many” points of these larger moduli spaces (necessarily away from ShtA and
ShtB , the original spaces of interest), the output of the Langlands-Kottwitz method
has no twisted orbital integrals, hence does not require any fundamental lemma to
compare. We then deduce the desired equality over the specializations to ShtA
and ShtB by a continuation principle. The key to making this strategy work is a
strategic design of the moduli spaces ShtA and ShtB , which we take from [Ngo06].

1.3. Statement of the base change fundamental lemma. We now give a
precise formulation of the fundamental lemma of interest. It is an exact analogue
for local function fields of the fundamental lemma studied in [Hai09]. We will
impose several assumptions that simplify the formulation, referring the general
case to [Hai09]. In particular we let G be a reductive group over a local field F ,
and assume that G is unramified and Gder is simply connected.

1.3.1. Normalization of Haar measures. Recall the notation of §1. To give a well-
defined meaning to the orbital integral (1.1) and twisted orbital integral (1.2), we
need to specify Haar measures on G,Gγ and Gδσ. We assume that γ is regular
semisimple.

We fix a hyperspecial vertex and an alcove containing it in the Bruhat-Tits build-
ing for G over F . By Bruhat-Tits theory this induces maximal compact subgroups
KF ⊂ G(F ) and KE ⊂ G(E).

• We pick the left-invariant Haar measures dg on G(F ) and G(E) such that
dg(KF ) = 1 and dg(KE) = 1.

• We pick the left-invariant Haar measures dh on Gγ(F ) and Gδσ(F ) such
that dg(KF ∩ Gγ(F )) = 1 and dh on Gδσ(E) is the canonical transfer of
Haar measure from Gγ to its inner form Gδσ. ♠♠♠ TONY: [put a reference
to Kottwitz]

Taking the quotient measure dg
dh on G(F )/Gγ(F ) and G(E)/Gδσ(E), now (1.1)

and (1.2) have been fully defined.

1.3.2. Parahoric Hecke algebras. We now fix a facet in the given alcove whose clo-
sure contains the fixed hyperspecial point, which induces corresponding (compact
open) parahoric groups JF ⊂ G(F ) and JE ⊂ G(E). LetHG(F ),J = Func(JF \G(F )/JF ,Q`)

and HG(E),J = Func(JE\G(E)/JE ,Q`) be the corresponding parahoric Hecke al-
gebras. (Parahoric Hecke algebras are discussed in more detail in §4.1.)

1.3.3. The base change homomorphism. Let Z(HG(F ),J) be the center of HG(F ),J ,
and define Z(HG(E),J) similarly. There is a base change homomorphism

b : Z(HG(E),J)→ Z(HG(F ),J),

which is defined in §6.1. To give a brief characterization of the base change homo-
morphism: under the Bernstein isomorphism

− ∗J IK : Z(HG(F ),J)
∼−→ HG(F ),K
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obtained by convolving with the indicator function IK , it corresponds to the usual
base change homomorphism for spherical Hecke algebras.

Z(HG(E),J) Z(HG(F ),J)

HG(E),K HG(F ),K

b

−∗J IK∼ −∗J IK∼

b

1.3.4. The norm map. Let σ ∈ Gal(E/F ) be a lift of (arithmetic) Frobenius. The
“concrete norm”

NmE/F : G(E)→ G(F )

defined by
NmE/F (δ) := δ · σ(δ) · . . . σr−1(δ)

descends to a norm map

N : G(E)/stable σ-conjugacy→ G(F )/stable conjugacy.

1.3.5. Formulation of the fundamental lemma. The following fundamental lemma
was proved by Haines in the p-adic setting [Hai09, Theorem 1.0.3].

Theorem 1.1 (Haines). Let E/F be an unramified extension of p-adic local fields
of degree r and residue characteristic p. Let ψ ∈ Z(HG(E),J) and δ ∈ G(E) such
that N(δ) is semisimple. Then we have

SO
G(E)
δσ (ψ) = SOG

N(δ)(b(ψ)).

Here SO are stable (twisted) orbital integrals, for whose definition we refer to
[Hai09, §5.1]. Since our eventual result will be for G = GLn, where stable conjugacy
coincides with conjugacy, we can ignore the issue of stabilization.

Remark 1.2. Haines has informed us that his proof, which is based on the global
simple trace formula and Kottwitz’s stabilization of the twisted trace formula, does
not carry over (at least, not without nontrivial additional work) to the positive
characteristic setting. 1

1.4. Statement of results. We now formulate our main result, which is an ex-
tension (in a special case) of Theorem 1.1 to positive characteristic.

By the Bernstein isomorphism, a basis for Z(HG(E),J) is given by the functions
ψµ for µ a dominant coweight of G, which correspond under −∗J IK to the indicator
functions of the double coset in KE\G(E)/KE indexed by µ.

Example/Definition 1.3. If G = GLn, and T ⊂ GLn is the usual (diagonal)
maximal torus, then we may identify X∗(T ) ∼= Zn in the standard way. The
dominant weights coweights X∗(T )+ are those µ = (µ1, . . . , µn) with µ1 ≥ µ2 ≥
. . . ≥ µn. We define

|µ| := µ1 + . . .+ µn.

In this paper we prove:

1However, we note that W. Ray Dulany proved the base change fundamental lemma for GL2 by
hand in the function field case [RD]. We thank Tom Haines for informing us about Ray Dulany’s
work.
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Theorem 1.4. Let E/F be an unramified degree r extension of characteristic p
local fields. If δ ∈ GLn(E) is such that N(δ) is regular semisimple and separable,
and ψ ∈ Z(HGLn(E),J) is a linear combination of ψµ with |µ| = 0, then we have

TOδσ(ψ) = ON(δ)(b(ψ)).

Remark 1.5. Let us make some remarks on the hypotheses. The hypothesis
|µ| = 0 arises geometrically as a condition for the non-emptiness of moduli stacks
of shtukas. It can be interpreted as saying that ψ comes from the Hecke algebra of
SLn.

The restriction to GLn comes from a need to obtain a proper moduli stack, in
order to have enough control over the cohomology of the relevant moduli stacks
of shtukas. In general the moduli stacks of shtukas are of infinite type, and their
cohomology not constructible. However, for GLn we can use the trick of globalizing
to a division algebra in order to create a proper global space with the right local
behavior.

Remark 1.6. As T. Haines pointed out to us, another key aspect of the funda-
mental lemma is the assertion that Oγ(b(ψ)) = 0 if γ is not a norm. Our strategy
does not seem to naturally give access to this statement. On the other hand, since
Labesse gave a purely local proof of this statement for the spherical case in mixed
characteristic, which was extended to the center of parahoric Hecke algebras in
[Hai09] §5.2, it should generalize to positive characteristic.

1.4.1. Related work. The fundamental lemma for base change for spherical Hecke
algebras, which arises from Theorem 1.1 in the special case where J = K is a
hyperspecial maximal compact subgroup, was proved in the p-adic case by Clozel
[Clo90] and Labesse [Lab90], using key input from Kottwitz [Kot86a] who checked
it for the unit element. These arguments were generalized by Haines to proved the
base change fundamental lemma for centers of parahoric Hecke algebras, as has
been discussed.2

For local function fields (i.e. positive characteristic), the spherical case J = K
of Theorem 1.4 was established by Ngô [Ngo06], also for GLn and also for |µ| = 0
(with the same reasons for the restrictions). Indeed, our strategy as described in §1
is the one pioneered by [Ngo06]. Similar results were obtained independently and
simultaneously by Lau [Lau04].

1.5. Summary of the paper. Although our current argument does not work
beyond GLn, we hope that after future technical improvements in the theory of
shtukas it can be generalized to a much wider class of reductive groups. For this
reason, for the individual steps we have tried to work with more general groups
when possible. It seems worthwhile to give a brief outline of the organization of
the paper, pointing out exactly where we can be more general.

In §3 we review the theory of shtukas for nonconstant reductive group schemes,
summarizing the essential background facts. Also, a key point is to define an
“integral model” for the moduli stack of shtukas, extending over points of parahoric
bad reduction.

2See the last paragraph of the introduction to [Hai09] for a discussion of to what extent Theorem
1.1 follows from the fundamental lemma for twisted endoscopy. Although base change is a special
case of twisted endoscopy, the fundamental lemma for twisted endoscopy should imply that there
is a matching function for ψ, but does not identify it in terms of the base change homomorphism.
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In §4 we establish an analogue of the Kottwitz Conjecture for moduli of shtukas.
This works even for fairly general (not necessarily constant) reductive groups G →
X: Gaitsgory originally proved it for constant groups, and his argument was gen-
eralized by Zhu in [Zhu14, Theorem 7.3] and Pappas-Zhu in [PZ13].

In §5 we establish some counting formulas for points of shtukas over finite fields.
This is a minor variant of the work of Ngô B.C. and Ngô Dac T., which was previ-
ously only formulated at places of hyperspecial level structure. Our contribution is
to write it out for the case of parahoric bad reduction that we require.

In §6 we provide a geometric interpretation of the base change homomorphism
for spherical Hecke algebras and the center of parahoric Hecke algebras for general
split reductive groups G over a local field. For GLn this was proved by Ngô, in
a formulation that was rather specific to GLn. We generalize the argument to
spherical Hecke algebras for arbitrary split reductive groups, and then use that to
deduce a result for (central elements in) parahoric Hecke algebras.

In §7 we introduce the two moduli problems ShtA and ShtB which are to be
compared, and recall Ngô’s theorem stating the precise comparison. Using this we
deduce an equality of traces on the nearby cycles sheaves at the point of parahoric
reduction. Here we also crucially use that the moduli of shtukas associated to a
sufficiently ramified division algebra is proper, which implies that the cohomology
is a local system.

In §8 we compute these traces in terms of (twisted) orbital integrals, giving
formulas in the paradigm of Kottwitz, and then use them in §8.3 to deduce the
cases of the base change fundamental lemma claimed in Theorem 1.4.

1.6. Acknowledgments. I am indebted to Zhiwei Yun for teaching me basically
everything that I know about shtukas, and in particular for directing me to [Ngo06].
I thank Zhiwei, Laurent Clozel, Gurbir Dhillon, Tom Haines, Jochen Heinloth, Urs
Hartl, Bao Le Hung, and Rong Zhou for helpful conversations related to this work,
and Brian Conrad and Timo Richarz for comments and suggestions on a draft. I
am particularly grateful to Tom Haines and the very thorough referee for crucial
corrections and explanations.

This project was conceived at the 2017 Arbeitsgemeinschaft in Oberwolfach, and
completed while I was a guest at the Institute for Advanced Study, and under the
support of an NSF Graduate Fellowship. I am grateful to these institutions for
their support.

2. Notation

We collect some notation that will be used frequently throughout the paper.
• Let X be a smooth projective curve over a finite field k = Fq, and –

changing notation from the introduction – let F = k(X) be its global
function field for the rest of the paper. We assume that X has a rational
point, and fix such a point x0 ∈ X(Fq).

• We will let X◦ be an open subset of X, usually the complement of some
points for ramification and possibly also x0.

• We denote by |X| the set of closed points of X, and for x ∈ X we write
k(x) for the residue field of x.

• For x ∈ X, we let Ox be the completion of OX,x at its maximal, and Fx be
the fraction field of Ox. We set Dx := Spec Ox.
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• We let G be a connected reductive group over F , whose derived group is
simply connected. We extend G to a parahoric group scheme G → X (which
is also possible – cf. [Laf18] §12.1), and that G ⊗ Fx is split at all points
x ∈ X where G(Ox) is not hyperspecial.

• We let U ⊂ X be the dense open subscheme where G is reductive.
• We denote by E0 the trivial (fppf) G-torsor over X.

3. Moduli of shtukas

In this section we recall material concerning shtukas and their perverse sheaves.
This is mostly background, but we emphasize that it is important for us to work at
the generality of nonconstant groups. This allows us to define an “integral model”
for parahoric shtukas, which is much easier than the corresponding problem for
Shimura varieties. References for this section are [Zhu14, §3], [Laf18, §12], and
[HaRa].

3.1. G-bundles. Let G → X be a smooth affine group scheme with (connected)
reductive generic fiber G, such that G|Ox is a parahoric group scheme for each
x ∈ X. We assume that G|Fx is split at all points x ∈ X where G(Ox) is not
hyperspecial.

3.1.1. We recall the notion of G-bundles and affine Grassmannians, the study of
which seems to have been initiated by [PR10].

Definition 3.1. A G-bundle E is a G-torsor for the fppf topology. We define BunG
to be the (Artin) stack3 representing the functor

BunG : S 7→ {G-bundles on X × S} .

Definition 3.2. We define the global affine Grassmannian GrG to be the ind-
scheme representing the functor

GrG : S 7→

(x, E , β) :
x ∈ X(S)
E ∈ BunG(S)

β : E|XS−Γx
∼= E0|XS−Γx


where here and throughout E0 denotes the trivial G-torsor, and Γx is the graph of
x, viewed as a divisor in S ×X.

We have a map
π : GrG → X

sending (x, E , β) 7→ x.

Example 3.3. For any closed point x, the fiber GrG |x is the partial affine flag
variety associated withG|Dx , as was studied for example in [PR08]. IfG|Dx happens
to be reductive, then G|Dx ∼= (G|x) ⊗k(x) Ox, where G|x := G ×X x is a constant
group scheme, hence GrG |x is the usual affine Grassmannian attached to G|x over
k(x). If on the other hand G|Dx happens to be an Iwahori group scheme, then
GrG |x is an affine flag variety.

3For the fact that this is really an Artin stack in the generality required here, see [Bro13]. We
thank Brian Conrad for bringing this reference to our attention.
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3.1.2. Adding level structure. Let BunG,nΓ be the moduli stack of G-bundles with
“n-th order level structure”, i.e.

BunG,nΓ : S 7→

(x, E , ψ) :

x ∈ X(S)
E ∈ BunG(S)

ψ : E|nΓx
∼−→ E0|nΓx


where nΓx is viewed as a divisor in S ×X.

Let BunG,∞Γ be the moduli stack of G-bundles with “infinite level structure”, i.e.

BunG,∞Γ : S 7→

(x, E , ψ) :

x ∈ X(S)
E ∈ BunG(S)

ψ : E|Γ̂x
∼−→ E0|Γ̂x


where Γ̂x is the completion of X × S along Γx. One can also think of ψ as a
compatible family of level structures over nΓx as n→∞. We will use the notation
Γ̂◦x“ := Γ̂x − Γx” with the meaning as in [Laf18, Notation 1.7].

Let L+G be the global “arc group”, defined by

L+G : S 7→
{

(x, β) :
x ∈ X(S)

β ∈ G(Γ̂x)

}
.

We clarify that L+G is a pro-algebraic group scheme over X, as it is the restric-
tion of scalars of smooth affine group schemes over X, and BunG,∞Γ is an Artin
stack of infinite type, as it is and a L+G-torsor over BunG .

Remark 3.4. There is an action of L+G on GrG by changing the level structure
ψ.

3.1.3. Global Schubert varieties. Let T ⊂ G be a maximal torus. In [Ric16, §2]
(generalizing work in the tamely ramified case of [Zhu14, §3.3]) it is shown how
to associate to µ ∈ X∗(TF ) a global Schubert variety Gr≤µG . Of course, this is
well-known in the split case.

3.1.4. Geometric Satake. We fix some notation pertaining to the Geometric Satake
correspondence [MV07]. For a space Y over X, we denote by Y |U the fibered
product of Y with U ↪→ X (recall that §2 that U ⊂ X is the locus where G is
reductive, so G is the generic fiber of G.)

Since we want to work over Fq, we need a slightly modified version of the Geo-
metric Satake equivalence – [RZ15] for an explanation of the theory over general
fields. Fix ` and a choice of √q ∈ Q`, so we get a half Tate twist as in [RZ15,
Definition A.1], so that [RZ15, Theorem A.12] applies.

Definition 3.5. Given a finite-dimensional representation W of Langlands’ L-
group LG, we let SatGrG (W ) be the associated L+G-equivariant (for the action
of Remark 3.4) perverse sheaf on GrG |U furnished by Geometric Satake, in the
sense of [Zhu, Proposition 5.5.16]. Note that SatGrG (W ) is automatically L+G|U -
equivariant. (Strictly speaking, [RZ15] concerns the local affine Grassmannian. For
a statement of Geometric Satake for non-constant groups phrased in terms of the
Beilinson-Drinfeld Grassmannian, see [Laf18, Theorem 12.16].)

If G is split then irreducible finite-dimensional representations W of LG = Ĝ are
indexed by dominant coweights µ ∈ X∗(T )+ for a maximal split torus T ⊂ G, and
we denote by SatGrG (µ) := SatGrG (Wµ) the corresponding perverse sheaf.
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This is the primal source for constructing perverse sheaves on a plethora of
objects, which will all be denoted Sat...(W ) or Sat...(µ).

3.2. Hecke stacks.

3.2.1. We now define objects that geometrize the Hecke operators.

Definition 3.6. We define the Hecke stack HeckeG by the functor of points

HeckeG : S 7→

(x, E , E ′, ϕ) :

x ∈ X(S)
E , E ′ ∈ BunG(S)

ϕ : E ′|X×S−Γx
∼−→ E|X×S−Γx

 .

We have structure maps

HeckeG

h←

zz

h→

$$
π

��
BunG X BunG

where the map h← takes (E , E ′) 7→ E , and the map h→ takes (E , E ′) 7→ E ′.
One can think of the HeckeG as looking locally, in the smooth topology, like

BunG ×X GrG . To make this precise, recall that there is an action of L+G on
BunG,∞Γ, by changing the level structure.

Proposition 3.7. There is an isomorphism

ξ : HeckeG
∼−→ (GrG ×X BunG,∞Γ)/L+G

where the quotient is for the diagonal action of L+G.

This is actually taken as the definition of the Hecke stack in [Laf18, §12.3.1].
Although it is well-known we have not found the statement formulated in quite this
way, so we give a proof for completeness.

Proof. Giving an isomorphism HeckeG
∼−→ (GrG ×X BunG,∞Γ)/L+G is equivalent

to giving an L+G-equivariant isomorphism from an L+G-torsor over HeckeG to
GrG ×X BunG,∞Γ, so we will construct the latter.

Let H̃eckeG → HeckeG be the L+G-torsor representing (x, ϕ : E ′ 99K E) ∈ HeckeG
plus a choice of trivialization ψ : E|Γ̂x

∼= E0|Γ̂x .
There is a map

H̃eckeG → GrG ×XI BunG,∞Γ

sending
(x, ϕ : E ′ 99K E , ψ) 7→ (x, E ′, ψ ◦ ϕ), (x, E , ψ)

where we have implicitly used the Beauville-Laszlo theorem [Zhu14, Lemma 3.1]
to extend ψ ◦ ϕ, which is a priori only defined on Γ̂◦x, to X − Γx. It is easily
checked that this is an isomorphism, by defining an inverse directly, and that it is
L+G-equivariant.

�

Remark 3.8. In practice, we can always translate these statements into ones about
locally finite type Artin stacks by considering substacks obtained by bounding the
type of the modification, and noting that the action of L+G on such a substack
factors through a finite type quotient.
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3.2.2. Geometric Satake for Hecke stacks.

Definition 3.9. Denoting by Db
c(−) the bounded derived category, we define a

functor

SatHeckeG : RepLG → Db
c(HeckeG |U )

as follows (by definition, Db
c(HeckeG) is the L+G-equivariant constructible derived

category of GrG with coefficients in Q`). If W ∈ RepLG, then

SatGrG (W )�Q`,BunG,∞Γ
∈ Db

c(GrG ×X BunG,∞Γ |U )

descends to the quotient by L+G by the fact that SatGrG (W ) is L+G-equivariant.
We set SatHeckeG (W ) to be the pullback of this descent via the isomorphism ξ∗ from
Proposition 3.7.

3.2.3. Hecke stacks with bounded modification. For µ ∈ X∗(TF ) we define Hecke≤µG
as follows. First, we have the Schubert variety Gr≤µG → GrG , which has an L+G-
action. This induces a substack of (GrG ×X BunG,∞Γ)/L+G, and we define Hecke≤µG
to be the pullback via ξ∗ of Proposition 3.7.

If G = G×X is constant and split over X, then up to taking reduced substacks,
Hecke≤µG admits a very concrete definition as “modifications of G-bundles with
invariant bounded by µ”. In §3.5 we explicate this for GLn-bundles, which may
be an enlightening example.

3.3. Shtukas.

3.3.1. We now define the moduli stack of G-shtukas. At places x ∈ X where G|Dx
is a parahoric group scheme, this should be thought of as an “integral model” of the
usual moduli stacks in which the legs are demanded to be disjoint from the level
structure.

Definition 3.10. We define the moduli stack of G-shtukas by the following carte-
sian diagram

ShtG BunG

HeckeG BunG ×BunG

Id×Frob

h←×h→

More explicitly, ShtG represents the following moduli problem:

ShtG : S 7→

(x, E , ϕ) :

x ∈ X(S)
E ∈ BunG(S)

ϕ : σE|X×S−Γx
∼−→ E|X×S−Γx


where σ is the Frobenius on the S factor in X × S, and σE is the pullback of E
under the map 1× σ : X × S → X × S.

We have an evident map

π : ShtG → X sending (x, E , E ′, ϕ) 7→ x.
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3.3.2. Perverse sheaves on shtukas. From Definition 3.10 we have a tautological
map

ι : ShtG → HeckeG .

Definition 3.11. For W ∈ Rep(LG), we define SatShtG (W ) := ι∗(SatHeckeG (W )).
This is a perverse sheaf up to shift on ShtG |U , since the affine Grassmannian is
étale-locally equivalent to ShtG (see §4, or [Laf18, §1.1]).

3.3.3. Schubert varieties of shtukas. For µ ∈ X∗(T̂F ), we define Sht≤µG = ι∗Hecke≤µG .
This is a closed substack of ShtG which is the support of SatShtG (µ). We call these
“Schubert varieties of shtukas” even though they are, of course, not varieties but
(Deligne-Mumford) stacks.

3.3.4. Hecke operators on shtukas. There are Hecke correspondences of shtukas that
induce Hecke operators on ShtG , hence on their cohomology.

Definition 3.12. We define Hecke(ShtG) to be the moduli stack parametrizing
x, y ∈ X(S) along with a diagram

σE E

σE ′ E ′

x

σ(y)σ(β) yβ

x

Here we note:
• E and E ′ are G-torsors on X × S, and σE and σE ′ are their twists by 1× σ.
• The x above the horizontal arrows mean an isomorphism on the complement

of Γx.
• The y (resp. σ(y)) next to the vertical arrows means an isomorphism on

the complement of Γy (resp. Γσ(y)).
• The map σ(β) is the twist of β. We emphasize that it is determined by β,

rather than being an additional datum.

We evidently have a diagram

Hecke(ShtG) HeckeG

X
π2 π

where the horizontal arrow sends this data to (y, E , E ′, β), which allows us to define
Hecke(ShtG)≤µ for µ ∈ X∗(TF ), and SatHecke(ShtG)(W ) for W ∈ Rep(LG).

We also evidently have a diagram

Hecke(ShtG)

ShtG ShtG

h← h→

where the arrows h← and h→ send this data to (x, σE 99K E) and (x, σE ′ 99K E ′)
respectively. For v ∈ X, let

Hecke(ShtG)≤µv := π−1
2 (v).
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A choice of v ∈ X and µ ∈ X∗(TF ) induces a correspondence

Hecke(ShtG)≤µv

ShtG ShtG

X

h← h→

π π

(3.1)

which is the analogue of the classical Hecke correspondences.

Definition 3.13. Since π◦h← = π◦h→ and h←∗(SatShtG (W )) ∼= h→∗(SatShtG (W )),
from Hecke(ShtG)≤µv we get a corresponding Hecke operator on Rπ! SatShtG (W ) ∈
D+(X).

3.4. Iterated shtukas and factorization. This entire discussion carries through
to “iterated” versions of GrG , HeckeG and ShtG . We will content ourselves with
stating the essentials, leaving the reader to generalize the preceding discussion. (A
reference is [Laf18, §1,2].)

3.4.1. Iterated affine Grassmannian. The iterated global affine Grassmannian

π : GrG ×̃GrG → X2

is defined by the functor of points

GrG ×̃GrG : S 7→

(x1, x2, E1, E2, ϕ, β) :

x1, x2 ∈ X(S)
E1, E2 ∈ BunG(S)

ϕ : E1|XS−Γx1

∼−→ E2|XS−Γx1

β : E2|XS−Γx2

∼−→ E0|XS−Γx2


We may denote GrG,Xr = GrG ×̃ . . . ×̃GrG (r times), although the reader should

be warned that this notation is sometimes used elsewhere in the literature to denote
a different object. We also have Schubert cells: given µ1, . . . , µr ∈ X∗(TF ), we can
define Gr

≤(µ1,...,µr)
G,Xr in a way that is by now obvious.

3.4.2. Iterated shtukas. We now define the iterated shtukas.

Definition 3.14. We define the moduli stack ShtG,Xr by the functor of points:

ShtG,Xr : S 7→


x1, . . . , xr ∈ X(S)

E0, E1, . . . , Er
∼−→ σE0 ∈ BunG(S)

ϕi : Ei|X×S−Γxi+1

∼−→ Ei+1|X×S−Γxi+1


Remark 3.15. The stack of iterated shtukas ShtG,Xr can also be defined as a
repeated fibered product of ShtG over BunG , which is more analogous to how we
defined ShtG .

We have an evident map
π : ShtG,Xr → Xr

projecting to the datum of (x1, . . . , xr).
We can similarly define HeckeG,Xr and Hecke(ShtG,Xr ). For a tupleW1, . . . ,Wr ∈

Rep(LG) we can define a shifted perverse sheaf SatShtG,Xr (W1, . . . ,Wr) using Geo-
metric Satake.
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We also have Schubert cells for ShtG,Xr : given µ1, . . . , µr ∈ X∗(T̂F ), we can
define Sht

≤(µ1,...,µr)
G,Xr in a way that is by now obvious.

3.5. D-shtukas. One of the main difficulties with ShtG is that it is of infinite type
in general. To study the fundamental lemma for GLn, we can globalize to a division
algebra instead of the constant group GLn, which gives us a proper moduli problem.
We now explain the salient facts about this special case. Since the literature already
contains several excellent expositions of the theory of D-shtukas, we will content
ourselves with a brief summary. A reference for everything here is [Ngo06, §1]; see
[Laf97] or [Lau04] for more extensive treatments.

Let D be a division algebra F of dimension n2, ramified over a (necessarily
finite) set of points Z ⊂ X. We assume that our fixed (rational) point x0 /∈ Z, so
Dx0

:= D⊗F Fx0
∼= gln(Fx0

). Later we will need to assume that #Z is sufficiently
large.

We extend D to an OX -algebra D such that Dx is a maximal order in Dx for
all x, and we let G → X be the associated group scheme of units. Let G → X be
a a parahoric group scheme which is hyperspecial away from x0 but perhaps not
hyperspecial at x0; we will be most interested in the case where G is not hyperspecial
at x0.

3.5.1. Modification types. Let T ⊂ GLn be the standard maximal torus. The dom-
inant coweights are

X∗(T )+
∼= Zn+ := {µ = (µ(1), . . . , µ(n)) : µ(1) ≥ µ(2) ≥ . . . µ(n)}.

The relative position of lattices in k[[t]]n is a µ ∈ X∗(T )+ determined by the Cartan
decomposition

GLn(k((t))) =
⋃

µ∈X∗(T )+

GLn(k[[t]])tµ GLn(k[[t]]).

Let X◦ := X − Z − {x0}. For x ∈ X◦, a modification of G-bundles outside x is
an isomorphism ϕ : E ′|X◦−x

∼−→ E|X◦−x. Let Fx be the completion of F at x, and
F x = Fq⊗̂Fx, i.e. the completion of the maximal unramified extension Fx. Then
E ′|Spec Ox and E|Spec Ox induce two lattices in F

⊕n
x by using ϕ ⊗ Fx to identify

their generic fibers. Since a choice of uniformizer at x induces an isomorphism
F x ∼= F q((t)), the previous discussion applies so that we can speak of the “relative
position” µ ∈ X∗(T )+ of these two lattices (it is easily checked to be well-defined,
independently of the choice of uniformizer). We will call this the modification type
of ϕ.

3.5.2. The global affine Grassmannian. Up to taking the reduced substack, we can
interpret Gr≤µG |X◦ as the subscheme of GrG |X◦ parametrizing

β : E|XS−Γx
∼= E0|XS−Γx

such that for each geometric point of S, the modification type of β is ≤ µ. The
sheaf SatGrG (µ) is the IC sheaf of Gr≤µG , i.e. the middle extension of the constant
weight-zero sheaf on the open cell.

Proposition 3.16. The sheaf SatGrG (µ) is universally locally acyclic with respect
to the morphism GrG |X◦ → X◦.
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Proof. This is [Ngo06, §1.1 Corollaire 6]. Note that Ngô’s formulation is slightly
different, but is actually deduced from the version that we state, which is the usual
formulation in Geometric Satake. �

3.5.3. The Hecke stack. The Hecke stack Hecke≤µG |X◦ parametrizes modifications
of G-torsors over X◦

(x, ϕ : E ′|X×S−Γx
∼−→ E|X×S−Γx)

with modification type ≤ µ at all geometric points of S.

3.5.4. Shtukas and iterated shtukas. The moduli stack ShtG,(X−Z)r parametrizes
x1, . . . , xr ∈ (X − Z)(S)

E0, E1, . . . , Er ∼= σE0 ∈ BunG(S)

ϕi : Ei|X×S−Γxi+1

∼−→ Ei+1|X×S−Γxi+1


The Schubert “variety” Sht

≤(µ1,...,µr)
G,(X−Z)r associated to (µ1, . . . , µr) ∈ (X∗(T )+)r can be

interpreted, up to reduced structure, as the substack where the modification type
of ϕi is bounded by µi at all geometric points of S. For such a tuple we can also
form SatShtG ,(X−Z)r (µ1, . . . , µr) on ShtG,(X−Z)r , which is perverse up to shift and
supported on Sht

≤(µ1,...,µr)
G,(X−Z)r .

Proposition 3.17. The (shifted) perverse sheaf SatShtG ,(X−Z)r (µ1, . . . , µr)|(X◦)r
is locally acylic with respect to the morphism π : SatShtG ,(X−Z)r |(X◦)r → (X◦)r.

Proof. This [Ngo06, §1.4 Corollaire 2], but with the same remark as in the proof of
Proposition 3.16. �

3.5.5. Global geometry. The stack ShtG has infinitely many connected components
owing to the positive-dimensional center of G. We wish to and can rectify this in
the usual way: let a ∈ A×F be a non-trivial idele of degree 1, and let ShtG /a

Z be the
quotient obtained by formally adjoining an isomorphism E ∼= E ⊗ O(a). Similarly
define ShtG,(X−Z)r /a

Z. We still have the map

π : ShtG,(X−Z)r /a
Z → (X − Z)r

and the Geometric Satake sheaves descend to ShtG,(X−Z)r /a
Z, which in an effort to

curtail increasingly monstrous notation we continue to denote by SatShtG,(X−Z)r
(µ1, . . . , µr).

Furthermore, we still have:

Proposition 3.18 ([Ngo06, §1.4 Corollaire 2]). The shifted perverse sheaf SatShtG ,(X−Z)r (µ1, . . . , µr)

restricted to ShtG,(X◦)r /a
Z is locally acyclic with respect to the map

π : ShtG,(X◦)r /a
Z → (X◦)r.

We now prepare to state the properness result for the morphism ShtG,(X◦)r /a
Z →

(X◦)r. Any µ ∈ X∗(T )+ can be uniquely written as

µ = µ+ + µ−

where

µ+ := (µ+
1 ≥ . . . ≥ µ+

r ≥ 0)

µ− := (0 ≥ µ−1 ≥ . . . ≥ µ−r )
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and for all 1 ≤ i ≤ r, we have either µi = µ+
i or µi = µ−i . We define

||µ|| := max(|µ+|, |µ−|).

Proposition 3.19 ([Ngo06, §1.6 Proposition 2]). Let (µ1, . . . , µr) ∈ (X∗(T )+)r.
Suppose that the locus Z of ramification points of D satisfies

#Z ≥ n2(||µ1||+ . . .+ ||µr||).

Then the morphism
π◦ : Sht

≤(µ1,...,µr)
G,(X◦)r /aZ → (X◦)r

is proper.

We need to extend this result to our integral model X − Z = X◦ ∪ {x0}.

Proposition 3.20. Let (µ1, . . . , µr) ∈ (X∗(T )+)r. Suppose that the locus Z of
ramification points of D satisfies

#Z ≥ n2(||µ1||+ . . .+ ||µr||).

Then the morphism
π : Sht

≤(µ1,...,µr)
G,(X−Z)r /aZ → (X − Z)r

is proper.

Proof. Let G be the group scheme isomorphic to G at places away from x0 but
hyperspecial at x0. Then Proposition 3.19 applied to ShtG shows that

π′ : Sht
≤(µ1,...,µr)
G,(X−Z)r /aZ → (X − Z)r

is proper. The map G → G induces a projection

pr: Sht
≤(µ1,...,µr)
G,(X−Z)r /aZ → Sht

≤(µ1,...,µr)
G,(X−Z)r /aZ

which we claim is proper. It obviously suffices to prove the claim. For that we con-
sider the commutative diagram below, omitting some subscripts and superscripts,
etc. for clarity of presentation.

ShtG BunG

HeckeG BunG ×BunG

ShtG BunG

HeckeG BunG×BunG

Id×Frob

h←×h→

Id×Frob

h←×h→

In this diagram the squares with solid arrows are cartesian. Let Hecke′G and Sht′G
denote the fibered products

Hecke′G BunG ×BunG

HeckeG BunG×BunG

h←×h→

h←×h→
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and
Sht′G BunG

Hecke′G BunG ×BunG

Id×Frob

h←×h→

.

The map BunG → BunG is proper, hence so is pullback Hecke′G → HeckeG. Since
the map Hecke

≤(µ1,...,µr)
G → (Hecke′G)≤(µ1,...,µr) is proper, the map Sht

≤(µ1,...,µr)
G →

(Sht′G)≤(µ1,...,µr) is also proper. As the map → (Sht′G)
≤(µ1,...,µr) → Sht

≤(µ1,...,µr)

G is
also proper, so is the composition

Sht
≤(µ1,...,µr)
G → (Sht′G)

≤(µ1,...,µr)

→ Sht
≤(µ1,...,µr)

G .

�

4. The Kottwitz Conjecture for shtukas

4.1. Parahoric Hecke algebras. Let G be a split reductive group over a non-
archimedean local field Ft with uniformizer t. (The splitness assumption is not
necessary, but is certainly adequate for our eventual purposes and simplifies the
notation significantly.)

4.1.1. Spherical Hecke algebra. LetK be a hyperspecial maximal compact subgroup
of G(Ft). By Bruhat-Tits theory we may extend G to an integral model over the
valuation subring Ot ⊂ Ft such that G(Ot) = K.

Let HG,K = Func(K\G(Ft)/K,Q`) be the corresponding spherical Hecke alge-
bra. This has several canonical bases, so we fix notation for them. Let T ⊂ G be a
maximal split torus. As is well known, we have a Cartan decomposition

G(Ft) =
⋃

µ∈X∗(T )+

KtµK (4.1)

indexed by the dominant coweights X∗(T )+
∼= Zn, where tµ is the character such

that for a character χ ∈ X∗(T ), we have χ(tµ) = t〈χ,µ〉.

Definition 4.1. For µ ∈ X∗(T )+, we denote by fµ ∈ HG,K the indicator function
of KtµK.

4.1.2. Geometrization of spherical Hecke algebra. A second basis is obtained by
interpreting categorifying the Hecke algebra in terms of L+G-equivariant perverse
sheaves on the affine Grassmannian GrG. Since we want to work over Fq, we need
a slightly modified version of the Geometric Satake equivalence; see [Zhu] for an
explanation of the theory over general fields. We summarize the essential points.
Recall that GrG(kt) = G(Ft)/G(Ot) where kt is the residue field of Ft. Fixing `
and a choice of √q ∈ Q`, so we get a half Tate twist as in [RZ15, Definition A.1],
Geometric Satake furnishes a fully faithful symmetric monoidal functor

Rep(Ĝ)→ PervG(Ot)(GrG).

The simple objects in Rep(Ĝ) are indexed by µ ∈ X∗(T )+, and we denote by
SatGrG(µ) the corresponding perverse sheaf on GrG, which is the IC sheaf of the
Schubert variety Gr≤µG , Tate twisted to be pure of weight zero.
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For any F ∈ PervG(Ot)(GrG), we have under the function-sheaf dictionary
[KW01, §III.12] a trace function fF on G(Ot)\G(Ft)/G(Ot) given by

fF (x) = Tr(Frob,Fx). (4.2)

Definition 4.2. We define ψµ to be the trace function associated to SatGrG(µ).
(By [RZ15], especially Lemma A.13, this corresponds under the Satake equivalence
to the character of the highest weight representation Vµ.)

Definition 4.3. Since SatGrG (µ) is a G(Ox0
)-equivariant sheaf on GrG,x0

, its stalks
are the same on any open Schubert cell Gr=ν corresponding to KtνK in the Cartan
decomposition (4.1). We denote this common stalk by SatGrG(µ)ν .

Lemma 4.4. We have

ψµ =
∑
ν≤u

Tr(Frob,SatGrG(µ)ν)fν

Proof. This is immediate from the fact that SatGr(µ)ν is supported on Gr≤µ, which
is the union of the Gr=ν for ν ≤ µ, and the definition of fν as the characteristic
function on KtνK. �

We have a Satake isomorphism

HG(K)
∼−→ R(Ĝ) ∼= Q`[X∗(T )]W

where W is the Weyl group of T . (The Satake isomorphism is reviewed in §6.2.)
Here R(Ĝ) is the representation ring of Ĝ, which is generated by the classes of the
highest weight representations Vµ.

4.1.3. Parahoric Hecke algebras. Let J be a parahoric subgroup of G stabilizing
a facet whose closure contains the vertex corresponding to K in the Bruhat-Tits
building of G(Ft). Let HG,J = Func(J\G(Ft)/J,Q`) be the corresponding para-
horic Hecke algebra.

Theorem 4.5 (Bernstein, [Hai09, Theorem 3.1.1]). Convolution with f0 = IK (the
identity of HG,K) induces an isomorphism

− ∗J IK : Z(HG,J)
∼−→ HG,K .

Definition 4.6. For µ ∈ X∗(T )+,
• We denote by f ′µ the unique element of Z(HG,J) such that f ′µ ∗ IK = fµ.
• We denote by ψ′µ ∈ Z(HG,J) the unique element such that ψ′µ ∗ IK = ψµ ∈
HG,K .

4.1.4. Geometrization of parahoric Hecke algebras. There is a geometrization of the
parahoric Hecke algebra analogous to §4.1.2, which goes as follows (it will be elabo-
rated on later in §6). Briefly, let G be the parahoric group scheme corresponding to
J by Bruhat-Tits theory. Then the Hecke algebra HG,J the Grothendieck ring (i.e.
the group completion of equivalence classes of objects, with ring structure induced
by the convolution) of PervG(O)(GrG).

Note that if J = I is an Iwahori subgroup (the stabilizer of full alcove), then GrG
is the affine flag variety FlG. In general GrG is a partial affine flag variety, which
one can think of as a mix between the affine Grassmannian and affine flag variety.

One might ask which sheaves the functions ψ′µ correspond to. The answer is that
they can be realized as nearby cycles of certain global degenerations, and it is the
key point underlying this section.
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4.2. Nearby cycles. We recall the definition and essential (for us) properties of
the nearby cycles functor. For a reference, see [Del73, Exposé XIII].

A Henselian trait is a triple (S, s, η) where S is a the spectrum of a discrete
valuation ring, s is the special point of S and η is the generic point of S. Choose
geometric points s and η lying over s and η, respectively. Let S be the normalization
of S in η. We denote by

i : s→ S

j : η → S

the obvious maps.
Let f : Y → S be a finite type scheme over S. One defines a topos Y ×s η as in

[Del73, Exposé XIII §1.2], so that the category Db
c(Y ×s η,Q`) is the category of

F ∈ Db
c(Y ×s s,Q`) together with a continuous Gal(η/η)-action compatible with

the Gal(s/s)-action on Ys via the natural map Gal(η/η)→ Gal(s/s).

Definition 4.7. Given F ∈ Db
c(Yη,Q`) we define the nearby cycles RΨ(F) ∈

Db
c(Y ×s s,Q`) by

RΨ(F) := i
∗
Rj∗(Fη)

with the Gal(η/η)-action obtained by transport of structure from that on Fη.

Remark 4.8. When the nearby cycles construction is performed with S = Spec Fq[[t]],
the sheaf RΨ(F) is a priori only defined over YFq , but can be descended to YFq
by choosing a splitting Gal(Fq/Fq) → Gal(Fq((t))/Fq((t))). When dealing with
nearby cycles on affine Grassmannians (or related objects) this is often what we
mean (see [Gai01, Footnote 4 on page 8]). Only after such a descent one can as-
sociate a trace function to RΨ(F). We shall point out when this descent is being
used, but as a blanket rule it is necessary every time we wish to talk about a trace
function.

Lemma 4.9. If f : Y → S is proper, then the base change homomorphism

RΨf∗ → f∗RΨ

is an isomorphism.

Proof. This is [Del73, Exposé XIII (2.1.7.1)]. �

Corollary 4.10. If f : Y → S is proper, then the natural map

Hi
c(Yη,Q`)→ Hi

c(Ys, RΨ(Q`)).

is an isomorphism.

Lemma 4.11. If f : Y → S is lisse, then the base change homomorphism

f∗RΨ→ RΨf∗

is an isomorphism.

Proof. This is [Del73, Exposé XIII (2.1.7.2)]. �
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4.3. Degeneration to affine flag varieties. Let X be a smooth curve (not nec-
essarily projective) over Fq and let G → X be a parahoric group scheme, with
parahoric level structure at x0. We consider the global affine Grassmannian for G
as in §3.1:

π : GrG → X.

Consider the restriction GrG |Dx0
, where Dx0

:= Spec Ox0
is the spectrum of the

completed local ring at x0. We apply the nearby cycles construction of §4.2 and in
the form of Remark 4.8, to

• S = Dx0 , Y = GrG |Dx0
, and

• F = SatGrG (µ)|D∗x0
, where D∗x0

= Spec Fx0
is thought of as a local “punc-

tured disk” around x0.
This produces a L+G-equivariant perverse sheaf RΨ(SatGrG (µ)|D◦x0

) on GrG |x0
,

which we will abbreviate by RΨ(SatGrG (µ)).

Theorem 4.12 (Gaitsgory [Gai01], Zhu [Zhu14]). The sheaf RΨ(SatGrG (µ))) is
central.

Remark 4.13. In the present formulation and level of generality, this theorem
is actually due to X. Zhu in [Zhu14, Theorem 7.3]. Gaitsgory proved the first
prototype of Theorem 4.12, but working with constant group schemes G, and a
slightly different degeneration.

Corollary 4.14. Assume that G := G|Fx0
is split. Then the trace function (in the

sense of (4.2)) associated to RΨ(SatGrG (µ))) is ψ′µ (Definition 4.6).

Remark 4.15. Note that we need to use Remark 4.8 to descend RΨ(SatGrG (µ)))
to GrG |x0 , so that it makes sense to speak of the trace function.

Proof. Since RΨ(SatGrG (µ)) is a L+G-equivariant perverse sheaf on GrG |x0
, which

is central by Theorem 4.12, we have a priori that its trace function

Tr(Frob, RΨ(SatGrG (µ)))

lies in Z(HG,G(Ox0 )(Fx)). Since G is split we can extend it to a constant group
scheme over Dx0 , which we continue to denote G, such that G(Ox0) =: K is a
hyperspecial maximal compact subgroup of G(Fx). Write also J := G(Ox0) for the
parahoric subgroup. By the Bernstein isomorphism (Theorem 4.5)

− ∗ IK : Z(HG,J)
∼−→ HG,K

it suffices to check that

Tr(Frob, RΨ(SatGrG (µ))) ∗ IK = ψµ. (4.3)

By [Gai01, Theorem 1 (d)] the map (4.3) is realized sheaf-theoretically by the
pushforward via the proper map

pr: GrG → GrG

or in other words,

Tr(Frob, RΨ(SatGrG (µ))) ∗ IK = Tr(Frob,pr!RΨ(SatGrG (µ))).

Now, by Lemma 4.9 and the fact that pr is an isomorphism over D∗x0
(since G|D∗x0

∼=
G|D∗x0

) we have
pr!RΨ(SatGrG (µ)) = RΨ(SatGrG(µ))
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but since G0|Dx → Dx is constant, we simply have

RΨ(SatGrG(µ)) = SatGrG(µ)|x0 ,

whose trace function is ψµ by definition. �

Schubert stratification. Let GrG,x0 be the fiber of GrG over x0. We discuss the
stratification induced by the G(Ox0

)-action on GrG,x0
.

The analogue of the Cartan decomposition (4.1) is

G(Ox0
)\G(Fx0

)/G(Ox0
) ∼= W̃J\W̃/W̃J

where W̃ is the extended affine Weyl group, and W̃J is the subgroup corresponding
to the parahoric subgroup J := G(Ox0

). We refer to [Hai09, §2.6] for the notation
and definitions; all that we require are the following abstract facts:

• The G(Ox0
)-orbits on GrG,x0

are indexed by ν ∈ W̃J\W̃/W̃J . We denote
the orbit corresponding to ν ∈ W̃J\W̃/W̃J by Gr=ν

G,x0
and its closure by

Gr≤νG,x0
.

• There is a partial order on W̃J\W̃/W̃J , which can be characterized by the
property that µ ≥ ν if and only if Gr≤µG,x0

⊃ Gr=ν
G,x0

.

Definition 4.16. Since RΨ(SatGrG (µ)) is a perverse sheaf on GrG,x0
, equivariant

for the proalgebraic group underlying J [Gai01, Theorem 1], its stalks are the same
on any open Schubert cell Gr=ν

G . We denote this common stalk by RΨ(SatGr(µ))ν .

Lemma 4.17. We have

ψ′µ =
∑
ν≤µ

Tr(Frob, RΨ(SatGrG (µ))ν)fν

Proof. The argument is the same as for Lemma 4.4. �

4.4. Local models for shtukas.

Definition 4.18. Let X and Y be Artin stacks. We say that Y is a smooth local
model for X if there exists an Artin stack W and a diagram

W

X Y

smooth
f

smooth
g

A diagram as above is called a (smooth) local model diagram.

Theorem 4.19. The stack Gr
≤(µ1,...,µr)
G,Xr is a smooth local model for Sht

≤(µ1,...,µr)
G .

Remark 4.20. We learned from the referee that Theorem 4.19 – in fact, the
stronger statement that one gets an étale local model – has already been proved
for smooth affine group schemes in [RH, §3]. (Our proof also only uses that G is
smooth and affine.)

Proof. For ease of presentation, we assume that r = 1 in the proof; the argument
for the general case is a completely straightforward generalization.

As in [Laf18, Proposition 2.11] (beginning of the proof) we can add a level
structure at a closed subscheme N ⊂ X to rigidify all spaces under consideration
from stacks to schemes. Since this addition of level structure induces smooth covers
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of all objects, we will suppress it from the notation; the upshot is that we can reason
with all objects as if they were schemes.

We let BunG,nΓ be the smooth torsor over BunG as in §3.1.2, and HeckeG,nΓ

the pullback torsor over HeckeG . Informally, HeckeG,nΓ parametrizes modifications
(x, ϕ : E 99K E ′) together with the additional datum of a trivialization of E ′ on Γnx.

Since for any given µ the L+G-action on Hecke≤µG and Gr≤µG factors through a
quotient group scheme of finite type, Proposition 3.7 implies that for n sufficiently
large relative to fixed µ, there is an isomorphism Hecke≤µG,nΓ → Gr≤µG ×BunG,nΓ.

Consider the diagram below, where all squares are cartesian:

Sht≤µG,nΓ Sht≤µG BunG

HeckeG,nΓ Hecke≤µG BunG ×BunG

BunG,nΓ×Gr≤µG

smooth

Id×Frob

smooth

∼

h←×h→ (4.4)

It suffices to show that map Sht≤µG,nΓ → Gr≤µG , induced by the composition of
the leftmost vertical arrows, is smooth. This follows by the same transversality
calculation in [Var04, Lemma 4.3] applied to the outer diagram in (4.4)

Sht≤µG,nΓ BunG

HeckeG,nΓ BunG ×BunG

BunG,nΓ×Gr≤µG

Id×Frob

∼

(4.5)

using that BunG,nΓ → BunG is smooth. �

Corollary 4.21. Let µ ∈ X∗(T )r. There is a local model diagram

W≤µ

Sht
≤µ
G Gr

≤µ
G

Xr

smooth
f

smooth
g

with

f∗ SatShtG (µ) = g∗ SatGrG (µ).

Proof. This follows from the diagram (4.4) and the definition of the Satake sheaves,
taking W≤µ = Sht

≤µ
G,N . �
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4.5. The trace function of nearby cycles. Recall that the nearby cycles RΨ(F)
has an action of the inertia group. We have a decomposition

RΨ(F) ∼= RΨ(F)un ⊕RΨ(F)non−un

into unipotent and non-unipotent parts for this inertial action. The associated
trace function is independent of the choice of splitting in Remark 4.8 if RΨ(F)
is unipotent, i.e. if RΨ(F)non−un = 0. (Otherwise, to get a well-defined trace
function we need to project to the unipotent summand – this is the “semisimple
trace of Frobenius”.)

Lemma 4.22. The complex RΨx0(SatShtG (µ)) is unipotent, i.e.

RΨx0(SatShtG (µ))non−un = 0.

Proof. By Corollary 4.21 plus the compatibility of the inertia action with the iso-
morphism of Lemma 4.11, it suffices to know that RΨx0

(SatGrG (µ))non−un = 0.
This is established in [Gai01, §5.1 Proposition 7.]. �

Let µ ∈ X∗(T )r. By Corollary 4.21, we may set

SatW(µ) := f∗ SatShtG (µ) = g∗ SatGrG (µ).

We write RΨx0 to emphasize that we are taking nearby cycles over the point x0.
By Lemma 4.11, and implicitly using Corollary 4.21, we have

f∗RΨx0
(SatShtG (µ)) = RΨx0

(SatW(µ)) = g∗RΨx0
(SatGrG (µ)).

Thus, for w ∈ W≤µ(k) lying over y ∈ Sht
≤µ
G (k) and z ∈ Gr

≤µ
G (k), we have

Tr(Frob, RΨx0
(SatShtG (µ))y) = Tr(Frob, RΨx0

(SatW(µ))w) = Tr(Frob, RΨx0
(SatGrG (µ))z).

Therefore, the stalks of RΨx0
(SatShtG (µ)) are constant along the stratification

Sht
≤µ
G =

∐
ν≤µ

Sht
=ν
G ,

and we deduce:

Corollary 4.23. For ν ∈ X∗(T )+, we have

Tr(Frob, RΨx0
(SatShtG (µ))ν) = Tr(Frob, RΨx0

(SatGrG (µ))ν).

Remark 4.24. We will actually need to work with ShtG /a
Z instead. Since this

is obtained from ShtG by gluing isomorphic components, the result is exactly the
same.

5. Counting parahoric shtukas

Our eventual goal is to establish a formula for the trace of an operator, formed as
a composition of Hecke operators and Frobenius, on the cohomology of the nearby
cycles sheaf of (a variant of) ShtG /a

Z → X, at a place of parahoric bad reduction.
The mold for such calculations was set by Kottwitz in [Kot92], who computed this
sort of trace for certain PEL Shimura varieties, at places of good (hyperspecial)
reduction. It has since been extended vastly by work of many authors; we note
that in particular that Kisin and Pappas constructed integral models for Shimura
varieties with parahoric level structure (a problem which itself has a long history,
with contributions from many authors – see the references in [KP]) and computed
the trace of Frobenius on nearby cycles for unramified groups in [KP], and for
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tamely ramified groups in [HaRi]. Our result is a function field analogue of this
computation.

In this section we carry out one step of this calculation, which deals with counting
the number of fixed points of Frobenius composed with Hecke correspondences.
(The precise setup will be explained in §5.1.) In fact most of the work has already
been done by B.C. Ngô and T. Ngô Dac, who studied the case of moduli of shtukas
with hyperspecial reduction in the series of papers [Ngo06], [NND08], [ND13], and
[ND15]. The only new element here is that we are considering parahoric reduction.
We note also that our results should follow from work of Hartl and Arasteh Rad
proving the analogue of the Langlands-Rapoport Conjecture for shtukas [HaRa].

5.1. Setup. Throughout this section X◦ is an unspecified open subset X, which in
the case of D-shtukas will be X −Z where Z is the set of ramification places of D.
We let G be a quasi-split, connected reductive group over F with simply-connected
derived group, or the group attached to a division algebra D as in §3.5. (This
unwieldy hypothesis is in place because the statements of [NND08] and [ND13] use
the first general hypothesis, but apply also D-shtukas, cf. [Ngo06, §4], and we are
also interested in the latter.) Let G → X a parahoric group scheme, with parahoric
reduction at x0.

Let Kv = G(Ov). Let Kvt
βvKv ∈ Kv\G(Fv)/Kv be a choice of double coset for

all v, trivial for almost all v. Let T ′ ⊂ X◦ be the set of all v where βv 6= 0, i.e.
where the corresponding Hecke operator hβv is not the identity. We assume that
Kv is hyperspecial for all v ∈ T ′.

There is a Hecke correspondence (§3.3.4)

Hecke(ShtG)≤βvv /aZ

ShtG /a
Z ShtG /a

Z

X

h← h→

π π

(5.1)

for each βv. This induces a Hecke operator hβv on the cohomology of ShtG /a
Z

(Definition 3.13). See [NND08, §3] for more discussion about the Hecke correspon-
dences.

We abbreviate β := (βv)v∈T ′ and denote the corresponding Hecke operator
∏
hβv

by hβ,T ′ . We want to compute (a variant of)

Tr(hβ,T ′ ◦ Frob, π!RΨx0(SatShtG (µ)))

where x0 is our fixed place of parahoric reduction. By the Grothendieck-Lefschetz
trace formula, we have

Tr(hβ,T ′ ◦ Frob, RΨx0(SatShtG (µ)))

=
∑

ξ∈Fix(hβ,T ′◦Frob)

1

# Aut ξ
Tr(hβ,T ′ ◦ FrobΞ, RΨx0

(SatShtG (µ))Ξ).

We will compute this by focusing first on counting Fix(hβ,T ◦ Frob). This was
done by [Ngo06] for D-shtukas at points of with no level structure (good reduc-
tion), and extended by [NND08] for general reductive groups and [ND13] for more
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complicated setups; however, these counts only account for the contribution from
the “elliptic part”.

In the case where GF is anisotropic mod center, the elliptic part will obviously
compose everything. This is one of the reasons why it is convenient to work with
division algebras, and one of the difficulties in carrying out the strategy for general
groups. Since ShtG is of infinite type in general, it will have infinitely many points
even over finite fields.

5.2. The groupoid of fixed points. We consider a slightly more general situa-
tion. We will define a groupoid C(α, β;T, T ′; d) which occurs as the fixed points
of a composition of Hecke and Frobenius operators on a certain moduli stack of
shtukas. Then we will count its mass in the sense of groupoids.

Definition 5.1. If C is a finite groupoid with finite automorphism groups then we
define

#C :=
∑
c∈C

1

# Aut(c)
.

Note that the Fq-points of a finite type Deligne-Mumford stack, which includes any
Schubert cell in a moduli stack of shtukas, satisfies this assumption.

Definition 5.2 ([NND08, §4]). Let T, T ′ ⊂ |X| − I. Let
α = (αv ∈ Kv\G(Fv)/Kv)v∈T

β = (βv ∈ Kv\G(Fv)/Kv)v∈T ′ .

(In terms of the notation of §5.1, we are identifying βv with Kvt
βvKv.) We define

the groupoid of fixed points C(α, β;T, T ′; d) as follows: its objects are triples (E , t, t′)
with

(1) t : Eσ|X−T
∼−→ E|X−T , with modification type α on T , and

(2) t′ : Eσd |X−T ′
∼−→ E|X−T ′ , with modification type β on T ′,

(3) satisfying the following compatibility:

Eσd+1 |X−T−T ′ Eσd |X−T−T ′

Eσ|X−T−T ′ E|X−T−T ′

σd(t)

σ(t′) t′

t

The automorphisms of (E , t, t′) are defined to be automorphisms of E commuting
with t and t′.

The relation to our initial problem is given by the following.

Lemma 5.3. Suppose x ∈ |X| is a point of degree d. Then we have an isomorphism
of groupoids

Fix(hβ,T ′ ◦ Frob,Sht=µ
G |x) ∼= C(µ, β; {x}, T ′; d).

Proof. This is immediate upon writing down the definitions. �

We actually want to study the truncated space Sht=µ
G /aZ, so we modify the

discussion accordingly. Let Ξ ⊂ Z(G)(A) be a cocompact lattice. Then Ξ acts
on Sht=µ

G via Hecke correspondences, and we define Sht=µ
G /Ξ to be the quotient.

Similarly we define C(µ, β; {x}, T ′; d)Ξ to be the quotient by the Ξ-action. (See
[NND08, near the end of §4], for more details.)
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Lemma 5.4. Suppose x ∈ |X| is a point of degree d. Then we have an isomorphism
of groupoids

Fix(hβ,T ′ ◦ Frobx,Sht=µ
G /Ξ|x) ∼= C(µ, β; {x}, T ′; d)Ξ.

Proof. Immediate by taking the quotient of Lemma 5.3 with respect to the Ξ-
action. �

Hence we want to study #C(µ, β; {x}, T ′; d)Ξ. The strategy for these counts
goes back to Kottwitz’s study of points of Shimura varieties (with hyperspecial
level structure) over finite fields [Kot92].

(1) We first show that there is a cohomological invariant, the Kottwitz invari-
ant, which controls the possible “generic fibers” of members of C(α, β;T, T ′; d).

(2) We then express the size of an isogeny class as a product of (twisted) orbital
integrals.

(3) We then express the number of isogeny classes associated to each Kottwitz
invariant in terms of certain cohomology groups.

These steps have been carried out in papers of B.C. Ngô and T. Ngô Dac, as
already mentioned, but not quite in the generality required here. In particular,
these previous papers avoid the case where T meets a point with non-trivial level
structure (because the moduli problem was not defined over such points), which is
exactly the situation that we are interested in. So we will describe the modifications
needed to extend the argument to our setting, and only briefly summarize the parts
that are already covered in the papers of B.C. Ngô and T. Ngô Dac.

5.3. Kottwitz triples and classification of generic fibers. Our first step is to
define a category that looks like the category of “generic fibers of C(α, β;T, T ′; d)”.

Definition 5.5 ([NND08, §5]). Let T, T ′ ⊂ |X| − I. We define the groupoid
C(T, T ′; d) as follows: its objects are triples (V, τ, τ ′) with

(1) V a G-torsor over Fk := F ⊗k k,
(2) an isomorphism τ : V σ

∼−→ V , where V σ = V ⊗Fk,σ Fk,
(3) τ ′ : V σ

d ∼−→ V ,

satisfying the following conditions:

(1) (“commutativity”) The following diagram commutes:

V σ
d+1

V σ
d

V σ V

σd(τ)

σ(τ ′) τ ′

τ

(2) For x /∈ T , (Vx, τx) is isomorphic to the trivial isocrystal (G(Fx⊗̂FqFq), Id ⊗̂Fqσ).
(3) For x ∈ T , (Vx, τ

′
x) is isomorphic to the trivial isocrystal (G(Fx⊗̂FqFq), Id ⊗̂F

qd
σd).

The automorphisms of (V, τ, τ ′) are automorphisms of E commuting with τ and τ ′.

The operation of “taking the generic fiber” defines a functor [NND08, §5.2]

C(α, β;T, T ′; d)→ C(T, T ′; d).
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5.3.1. Kottwitz triples. Recall that aKottwitz triple is a datum (γ0, (γx)x/∈T , (δx)x∈T )
where:

• γ0 is a stable conjugacy class of G(F ),
• γx is a conjugacy class of G(Fx) for each x /∈ T , and is stably conjugate to
γ0,

• δx is a σ-conjugacy class of G(Fx⊗̂FqFqd), whose norm

N(δx) := δx · σ(δx) · . . . · σd−1(δx)

is stably conjugate to γ0.

Construction 5.6. We now recall from [NND08, §6.1] how to attach to each
(V, τ, τ ′) ∈ C(T, T ′; d) a Kottwitz triple (γ0, (γx)x/∈T , (δx)x∈T ).

First a remark on notation: for a map τ : V σ → V , we denote by τn : V σ
n → V

the map τ ◦ σ(τ) ◦ . . . ◦ σn−1(τ).
(1) Definition of γ0. Since Fk has cohomological dimension 1, the G-torsor V

is split over Fk. Consider γ = τd(τ ′)−1, which is a linear automorphism of
V . Using the “commutativity” axiom we find that

σ(γ) = σ(τ) ◦ σ2(τ) ◦ . . . ◦ σd(τ) ◦ σ(τ ′)−1 = τ−1γτ.

This shows that the conjugacy class of γ is stable under σ, hence defined
over F . Since G was assumed to be quasi-split with simply connected de-
rived subgroup, this conjugacy class must then contain an F -point. Thus,
we have an element γ0 ∈ G(F ) whose stable conjugacy class is well-defined.

(2) Definition of γx, x /∈ T . By assumption, we can pick an isomorphism

(Vx, τx) ∼= (G(Fx⊗̂FqFq), Id ⊗̂Fqσ).

Since τ and τ ′ commute, so do τx and τ ′x, so that τ ′x defines an automor-
phism of (G(Fx⊗̂FqFq), Id ⊗̂Fqσ). We can then write τ ′x = γ−1

x ⊗ σd, for
some γx ∈ G(Fx) which is stably conjugate to γ0. (The point is that pick-
ing this trivialization of τx amounts to setting “τx = Id” in the equation
γx = τdx (τ ′x)−1.)

(3) Definition of δx, x ∈ T . By assumption, we can pick an isomorphism

(Vx, τ
′
x) ∼= (G(Fx⊗̂FqFq), Id ⊗̂Fdq

σd).

Since τ and τ ′ commute, so do τx and τ ′x, so that τx defines an automor-
phism of (G(Fx⊗̂FqFq), Id ⊗̂Fqσ). We can then write τx = δx ⊗ σ, for
some δx ∈ G(Fx), well-defined up to σ-conjugacy, whose norm N(δx) =
δx · σ(δx) · . . . · σr−1(δx) is stably conjugate to γ0.

Definition 5.7. We say that (V, τ, τ ′) ∈ C(T, T ′; d) is semisimple if γ0 is semisim-
ple, and elliptic if γ0 is elliptic.

We say (E , t, t′) ∈ C(α, β;T, T ′; d) is semisimple (resp. elliptic) if the associated
(V, τ, τ ′) is semisimple (resp. elliptic).

5.3.2. The Kottwitz invariant. Following [NND08, §6.2] we can attach to the Kot-
twitz triple (γ0, (γx), (δx)) a character inv(γ0, (γx), (δx)) ∈ X∗(Z(Ĝγ0

)Γ). Briefly,
this is done as follows.
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• For x /∈ T , since γx and γ0 are stably conjugate, by a theorem of Steinberg
we can find g ∈ G(Fx⊗̂kk) such that

gγ0g
−1 = γx.

Then (using that γ0 ∈ G(F )) we have

gγ0g
−1 = γx = σ(γx) = σ(g)γ0σ(g)−1.

This shows that g−1σ(g) is in the centralizer of γ0 in G(Fx⊗̂kk), hence
defines a class in B(Gγ0,x) = Gγ0(Fx⊗̂kk)/σ-conjugacy.

• For x ∈ T , we have g ∈ G(Fx⊗̂kk) such that Nδx = gγ0g
−1. Then g−1σd(g)

is in Gγ0
(Fx⊗̂kk) and defines a class in B(Gγ0,x).

For each x, we apply the map B(Gγ0,x) → X∗(Z(Ĝγ0
)Γx) of [Kot90, §6] to get

a local character invx(γ0, (γx), (δx)) ∈ X∗(Z(Ĝγ0
)Γx). Almost all of the resulting

characters are trivial, so that it makes sense to sum the restrictions of all these
characters to Z(Ĝγ0

)Γ, and we define this sum to be inv(γ0, (γx), (δx)).

Proposition 5.8 ([NND08] Proposition 7.1). For elliptic (V, τ, τ ′) ∈ C(T, T ′; d),
and (γ0, (γx), (δx)) the associated Kottwitz triple, if γ0 is semisimple then we have
inv(γ0, (γx), (δx)) = 0.

Proposition 5.9. There exists (V, τ, τ ′) ∈ C(T, T ′; d) having a given elliptic Kot-
twitz triple (γ0, (γx), (δx)) if and only if inv(γ0, (γx), (δx)) = 0. If the set of such is
non-empty, then the number of isogeny classes within C(T, T ′; d) having the same
Kottwitz triple is the cardinality of

ker1(F,Gγ0) := ker(H1(F,Gγ0)→
∏
x

H1(Fx, Gγ0)).

Proof. This follows from the proof of [NND08, Proposition 11.1] combined with
[ND13, Proposition 4.3]. �

5.3.3. Automorphisms of the generic fiber. Let (V, τ, τ ′) ∈ C(T, T ′; d) with elliptic
Kottwitz triple (γ0, (γx), (δx)). By [ND13, §3.9], the automorphisms of (V, τ, τ ′) are
the Fx-points of an inner form Jγ0

of Gγ0
defined over F .

Remark 5.10. As pointed out in [ND13, §3.9], the Hasse principle implies that
Jγ0 is determined by its local components:

• For x /∈ T , Jγ0,x is the centralizer of γx in G(Fx),
• For x ∈ T , Jγ0,x is the twisted centralizer of δx in G(Fx ⊗Fq Fqd).

5.4. Counting lattices. We now study the fibers of the functor C(α, β;T, T ′; d)→
C(T, T ′; d).

Proposition 5.11. Fix an elliptic (V, τ, τ ′) ∈ C(T, T ′; d). Suppose (E , t, t′) ∈
C(α, β;T, T ′; d) lies over (V, τ, τ ′). The size of the isogeny class of (E , t, t′) is

vol(Ξ · Jγ0(F )\Gγ0(A)) ·
∏
x/∈T

Oγx(φβx)
∏
x∈T

TOδxσ(φαx).

Here we normalize Haar measures as in §1.3.1.

Proof. Promoting (V, τ, τ ′) to (E , t, t′) amounts to choosing a Gx⊗̂kk-bundle over
Spec Ox for all x ∈ X, plus an I-level structure, such that

• for v /∈ |T |, Ex is fixed by τ ,
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• for v /∈ |T |′, Ex is fixed by τ ′,
• for x ∈ |T |, the relative position of Ex and τ(Ex) is given by αx,
• for v ∈ |T |′ (hence outside |T |), the relative position of Ev and τ ′(Ev) is

given by βv.

As is well-known (cf. [NND08, §9] or [ND13, §5] for the present situation; the
earliest reference we know is [Kot80]), this is counted by∫

Ξ·Jγ0
(F )\

∏
x∈T G(Fx⊗FqFqd )×G(AT )

⊗
x∈T

φαx(h−1
x δxσ(hx))

⊗
x/∈T

φβx(h−1
x γxhx) dh.

Here we use Remark 5.10 to view Jγ0
(F ) as a subset of G(Fx). The statement of

the proposition is a straightforward rewriting of this formula. �

5.5. Count of elliptic elements. Define

#C(α, β;T, T ′; d)ell :=
∑

(E,t,t′) elliptic

1

# Aut(E , t, t′)
.

Combining Proposition 5.9, §5.3.3, and Proposition 5.11, we obtain:

Theorem 5.12. We have

#C(α, β;T, T ′; d)ell =
∑

(γ0,(γx),(δx))
inv(γ0,(γx),(δx))=0

γ0 elliptic

ker1(F,Gγ0) · vol(Ξ · Jγ0(F )\Jγ0(AF )) · dg(K)−1

·

(∏
x/∈T

Oγx(fβv )

) ∏
x∈|T |

TOδxσ(fαx)

Remark 5.13. This is the analogue of [ND13, Théorème 5.1]. The expressions look
almost the same, but one should keep in mind that in our applications T = {x0},
and fαx0

should be thought of as an indicator function on a partial affine flag variety
rather than an affine Grassmannian. In addition, the measure of Kx0 is adapted
accordingly.

Corollary 5.14. Let Sht≤µG /aZ be the moduli stack of D-shtukas with parahoric
level structure at x0, as in §3.5. Then

# Fix(hβ,T ′ ◦ Frob,Sht=µ
G /aZ|x0

) =
∑

(γ0,(γx),(δx))
inv(γ0,(γx),(δx))=0

ker1(F,Gγ0
) · vol(aZ · Jγ0

(F )\Jγ0
(AF ))·

· dg(K)−1 ·

(∏
x/∈T

Oγx(fβv )

)
· TOδx0σ

(fµ).

Proof. This is immediate from Lemma 5.4 and the observation that every non-
zero element of a division algebra is elliptic, since the associated group of units is
anisotropic mod center. (As mentioned at the beginning of §5, the results used from
[NND08] and [ND13] also apply to D-shtukas, and in fact were originally proved
for this case in [Ngo06, §4].) �
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6. Geometrization of base change for Hecke algebras

In this section we present a geometric interpretation of the base change homo-
morphism for spherical Hecke algebras, and then for the center of parahoric Hecke
algebras. The results here are a generalization to arbitrary split reductive groups
G of results from [Ngo99], which proved the result for GLn.

Using the work of Gaitsgory on realizing central sheaves on the affine flag variety
as nearby cycles, we then deduce a geometric interpretation of base change for the
center of the parahoric Hecke algebra.

6.1. Definition of base change homomorphism. For this section only, we let F
be a local field and G be a reductive group over F . Given a compact open subgroup
H ⊂ G(F ), we have the Hecke algebra

HG,H := Func(H\G(F )/H,Q`).

We begin by defining base change homomorphisms for some Hecke algebras with
respect to a degree r unramified extension of local fields E/F .

For simplicity we assume that G is split over F . (Our results should extend
at least to quasi-split G without much difficulty.) We let E/F be the unramified
extension of degree r.

Definition 6.1 ([Hai09, §1]). Let K ⊂ G(F ) be a hyperspecial maximal com-
pact subgroup. The base change homomorphism for spherical Hecke algebras (with
respect to E/F ) is the homomorphism of C-algebras

HG(E),K → HG(F ),K

characterized by the following property. Let WF be the Weil group of F . For an
admissible unramified homomorphism ψ : WF → LG let ψ′ : WE → LG denote the
restriction to WE ⊂WF . Let πψ and πψ′ denote the corresponding representations
of G(E) and G(F ) under the Local Langlands Correspondence. Then for any
φ ∈ HG(E),K we have

〈trace πψ′ , φ〉 = 〈trace πψ, b(φ)〉

Definition 6.2 ([Hai09, §1]). Let J ⊂ K be a parahoric subgroup and IK denote
the characteristic function of K ⊂ G(F ). By a theorem of Bernstein (cf. [Hai09,
Theorem 3.1.1]), convolution with IK defines an isomorphism

− ∗J IK : Z(HG,J)
∼−→ HG,K .

We define the base change homomorphism for parahoric Hecke algebras to be the
homomorphism

b : HG(E),J → HG(F ),J

making the following diagram commute:

Z(HG(E),J) Z(HG(F ),J)

HG(E),K HG(F ),K

b

−∗J IK∼ −∗J IK∼

b

(6.1)
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6.1.1. Interpretation under Satake isomorphism. Let T ⊂ G be a maximal split
torus. We have the Satake isomorphism

S : HG,K
∼−→ Q`[X∗(T )]W

where W is the Weyl group of G relative to T . We also have the Bernstein isomor-
phism

B : Z(HG,J)
∼−→ HG,K .

We can define the base change homomorphism on the Satake side as follows. We
define the norm homomorphism

N : Q`[X∗(TE)]W → Q`[X∗(TF )]W

to be that induced by the norm TE → TF . Since we are working in the split setting,
this simply corresponds to multiplication by r on X∗(TE)

∼−→ Zn.
Then b : HG(E),J → HG(F ),J is determined by the commutativity of the following

diagram ([Hai09, §3.2])

Z(HG(E),J) Z(HG(F ),J)

HG(E),K HG(F ),K

Q`[X∗(TE)]W Q`[X∗(TF )]W (F )

b

−∗J IK∼ −∗J IK∼

b

S∼ S∼

N

(6.2)

For more on the base change homomorphism, see [Hai09, §3].

6.2. Geometrization of the Satake transform. In this section we will recall a
geometric interpretation of the Satake transform.

6.2.1. The classical Satake transform. We first review the Satake transform [Gro98].
Let HG,K be the spherical Hecke algebra of G(F ) with respect to a hyperspecial
maximal compact subgroup K. The Hecke algebra for T may be identified as
HT = Q`[X∗(T )].

We choose a Borel subgroup B containing T and let N be its unipotent radical.
There is a Satake transform S : HG,K → HT given by

Sf(t) = δ(t)1/2

∫
N

f(tx)dx,

where the Haar measure dx is normalized to assign volume 1 to N(Ot).

Theorem 6.3 (Satake). The Satake transform gives a ring isomorphism

S : HG,K ∼= HWT ∼= R(Ĝ),

where R(Ĝ) is the representation ring of Ĝ with Q`-coefficients.

For λ ∈ X∗(T ), write tλ for the corresponding element of X∗(T ). Viewing
Sf ∈ HT ∼= Q`[X∗(T )] as functions on X∗(T ), we may write

Sf(tλ) = δ(tλ)1/2

∫
N

f(tλx)dx. (6.3)
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6.2.2. Interpretation via semi-infinite orbits. We will interpret the function (6.3)
geometrically, as the trace function associated to a certain subscheme Sλ, studied
by Mirkovic-Vilonen in [MV07, §3], in the sense that if fF is the trace function
associated to F , then

SfF (tλ) = q−ρ(λ) Tr(Frob, RΓc(Sλ ⊗k k,F))

where ρ is the usual half sum of the positive roots.
Following the notation of [MV07], for λ ∈ X∗(T ) we let Lλ = tλG(O) denote the

image of λ in the affine Grassmannian GrG, and Sλ be its orbit under NF .

Lemma 6.4. Let F be a sheaf on GrG defined over k, and fF its associated trace
function (cf. (4.2)). Then we have

SfF (tλ) = q−ρ(λ) Tr(Frob, RΓc(Sλ ⊗k k,F)).

Proof. We study the rational points Sλ(k), in preparation for an application of the
Grothendieck-Lefschetz trace formula. The stabilizer of tλ is

StabN(F )(Lλ) = {n ∈ N(F ) : ntλG(O) = tλG(O)}

= {n ∈ N(F ) : t−λntλ ∈ G(O)}.

This says that the map n 7→ t−λntλ defines a bijection betweenN(O) and StabN(F )(Lλ).
Therefore the map n 7→ tλn defines a bijection between Sλ = [N(F )/ StabN(F )(Lλ)]·
Lλ and N(F )/N(O). An application of the Grothendieck-Lefschetz trace formula
then yields

Tr(Frob, RΓc(Sλ ⊗k k,F)) =
∑

n∈Sλ(k)

fF (n) =
∑

n∈N(F )/N(O)

fF (tλ · n)

which is exactly what was claimed upon recalling that δ(tλ) = qρ(λ). �

Theorem 6.5 (Mirkovic-Vilonen). There is a natural equivalence of functors

H∗(−) ∼=
⊕

λ∈X∗(T )

H2ρ(λ)
c (Sλ,−) : PGO (GrG,Q`)→ ModQ`

.

Proof. In the required generality, this is a consequence of [HaRi, Theorem 3.16].
For some historical perspective, this is a result of Mirkovic-Vilonen for the affine
Grassmannian over C [MV07, Theorem 3.6]. See also [Zhu, Theorem 5.3.9] and the
references indicated in [Zhu, Remark 5.3.10]. �

Proposition 6.6. We have

H∗c (Sλ,Fµ ∗ Fµ′) ∼=
⊕

λ1+λ2=λ

H∗c (Sλ1
,Fµ)⊗H∗c (Sλ2

,Fµ′)

Proof. In the required generality, this is a consequence of [HaRi, Theorem 3.16]. For
some historical perspective, this statement is proved implicitly in [MV07, Propo-
sition 6.4] for the affine Grassmannian over C. In fact, in view of Theorem 6.5 it
is equivalent to [MV07, Proposition 6.4]. It is formulated in the general setting in
[Zhu, Proposition 5.3.14], and a proof is sketched there.

�



NEARBY CYCLES OF PARAHORIC SHTUKAS, AND A FUNDAMENTAL LEMMA 33

6.3. Base change for spherical Hecke algebras. For r ∈ N, let kr be the
(unique) extension of k of degree r and Fr denote the unique unramified field
extension of F of degree r. For each µ ∈ X∗(T ), we let SatGrG,r(µ) be the associated
perverse sheaf on GrG,kr and we let ψr,µ be the trace function on GrG(kr) associated
to SatGrG,r(µ). We will give a geometric interpretation for b(ψr,µ).

6.3.1. Weil restriction. It will be useful to adopt a different perspective on the
Hecke algebra HG(Fr),Kr , where Kr denotes the maximal compact subgroup of
G(Fr) corresponding to our chosen hyperspecial vertex. As is usual, we can think
of HG(Fr),Kr as functions on GrG(kr)→ Q` which are invariant with respect to the
left Kr-action. However, using the identification

GrG(kr) = (Reskr/k GrG,kr )(k)

we can instead consider HG(Fr),Kr as functions on (Reskr/k GrG,kr )(k). Let τ be
the cyclic permutation on GrrG given by

τ(y1, . . . , yr) = (yr, y1, . . . , yr−1).

By the definition of Weil restriction, we have a canonical bijection

GrG(kr)
∼−→ Fix(Frob ◦τ,GrrG) sending y 7→ (y,Frob(y), . . . ,Frobr−1(y)).

Definition 6.7. For each µ ∈ X∗(T ), we let Fµ := SatGrG(µ) be the perverse sheaf
on GrG. Consider the perverse sheaf

F (1)
µ � . . .� F (r)

µ ∈ Db
c(GrrG)

where F (i)
µ
∼= Fµ; the superscripts are just labellings. The endomorphism τ on GrrG

lifts to an endomorphism τ̃ of F (1)
µ � . . .�F (r)

µ in an obvious way. Define a function

ζr,µ : Fix(Frob ◦τ,GrrG)→ Q`

by
ζr,µ(y) := Tr(Frob ◦τ̃ , (F (1)

µ � . . .� F (r)
µ )y).

Proposition 6.8. The ζr,µ form a basis for HG(Fr),Kr .

Proof. This is well-known. It amounts to the fact that the change-of-basis ma-
trix between the standard (double coset) basis of the Hecke algebra and the basis
consisting of the ζr,µ is upper-triangular for the Bruhat order. �

6.3.2. Convolution product. Recall that there is a convolution product ∗ on PervG(O)(GrG)
[Zhu, §5].

Definition 6.9. Consider rth convolution product

F∗rµ := F (1)
µ ∗ . . . ∗ F (r)

µ

as a perverse sheaf on GrG. This has an automorphism κ′ of order r given by the
composition

F (1)
µ ∗ . . . ∗ F (r)

µ
κ−→ F (r)

µ ∗ F (1)
µ ∗ . . . ∗ F (r−1)

µ
ι−→ F (1)

µ ∗ . . . ∗ F (r)
µ

where
• κ is the cyclic permutation obtained from the commutativity constraint
F ∗ B ∼= B ∗ F of Geometric Satake [Zhu, Proposition 5.2.6], and

• ι is the tautological isomorphism F (i mod r)
µ

∼= F (i+1 mod r)
µ coming from the

fact that all the F (i)
µ are defined to be the same perverse sheaf.
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Define φr,µ : Fix(Frob,Grg(k))→ Q` by

φr,µ(y) = Tr(Frob ◦κ′, (F (1)
µ ∗ . . . ∗ F (r)

µ )y).

6.3.3. The base change identity. We now explain the relationship between these
functions and the base change homomorphism.

Proposition 6.10. We have b(ζr,µ) = φr,µ.

Proof. By Theorem 6.3 it suffices to equate the Satake transforms of both sides. In
other words, we must prove the following identity:∫

N(F )

b(ζr,µ)(tλx) dx =

∫
N(F )

φr,µ(tλx) dx for all λ ∈ X∗(T ).

By (6.2), this is equivalent to establishing the two equations∫
N(Fr)

ζr,µ(tλxr) dxr =

∫
N(F )

φr,µ(trλx) dx (6.4)∫
N(F )

φr,µ(tλx) dx = 0 if λ /∈ r ·X∗(T ) . (6.5)

To do this we use the Lefschetz trace formula4:∑
y∈Fix(Frob ◦τ,Y (k))

Tr(Frob ◦τ̃ ,Fy) = Tr(Frob ◦τ̃ , RΓc(Y ⊗k k,F)). (6.6)

∑
y∈Fix(Frob ◦κ′,Y (k))

Tr(Frob ◦κ′,Fy) = Tr(Frob ◦κ′, RΓc(Y ⊗k k,F)). (6.7)

Applying (6.6) to Y := Sλ × . . . × Sλ and F := F (1)
µ � . . . � F (r)

µ and using
Lemma 6.4 plus the Künneth theorem gives∫

N(Fr)

ζr,µ(tλxr)dxr = q−ρ(λ) Tr(Frob ◦τ̃ , RΓc(Sλ ⊗k k,Fµ)⊗r).

We note that here τ̃ acts by cyclically permuting the tensor factors RΓc(Sλ ⊗k
k,Fµ)⊗r, and Frob acts factorwise.

Applying (6.7) to Y = Sλ and F = F∗rµ = F (1)
µ ∗ . . . ∗F (r)

µ and using Lemma 6.4
gives ∫

N(F )

φr,µ(tλx)dx = q−ρ(λ) Tr(Frob ◦κ′, RΓc(Sλ ⊗k k,F∗rµ )). (6.8)

We first digest the expression (6.8). By Proposition 6.6 we have

RΓc(Sλ ⊗k k,F (1)
µ ∗ . . . ∗ F (r)

µ ) ∼=
⊕

λ1+...+λr=λ

r⊗
i=1

RΓc(Sλi ⊗k k,Fµ).

Let’s try to understand the action of κ′, which is a composition κ′ = ι ◦ κ. The
map κ acts by cyclic permutation of both the spaces and sheaves, so it induces the
permutation

κ∗ : H∗c (Sλ1
⊗k k,F (1)

µ )⊗H∗c (Sλ2
⊗k k,F (2)

µ )⊗ . . .⊗RΓc(Sλr ⊗k k,F (r)
µ )

→ H∗c (Sλr ⊗k k,F (r)
µ )⊗H∗c (Sλ1

⊗k k,F (1)
µ )⊗ . . .⊗RΓc(Sλr−1

⊗k k,F (r−1)
µ ).

4Note that this is applicable because Frob ◦τ is the Frobenius for a twisted form of Y : see the
discussion beginning in the last sentence of [Ngo99, p. 651].
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Next, the map ι relabels the sheaves only, so the conclusion is that κ′ induces

(κ′)∗ : H∗c (Sλ1 ⊗k k,F (1)
µ )⊗H∗c (Sλ2 ⊗k k,F (2)

µ )⊗ . . .⊗RΓc(Sλr ⊗k k,F (r)
µ )

→ H∗c (Sλr ⊗k k,F (1)
µ )⊗H∗c (Sλ1

⊗k k,F (2))⊗ . . .⊗RΓc(Sλr−1
⊗k k,F (r)

µ ).

In particular, we emphasize that the composition, at the level of cohomology, effects
a permutation of the spaces. Now, Frobenius preserves each tensor and summand.
Therefore, Frob ◦κ′ acts on the summands of the form

r−1⊕
j=0

r⊗
i=1

H∗c (Sλi+j (mod r)
⊗k k,Fµ)

by a cyclic permutation followed by a factorwise endomorphism. From this form
we see that if λ1, . . . , λr are not all equal then Frob ◦κ′ permutes the summands
freely, so Frob ◦κ′ has trace 0. In particular, if λ is not divisible by r then the λi
cannot be all equal, so that the trace is 0. This establishes (6.5).

On the other hand, our analysis above implies that if λ = rλ′ then the contribu-
tion to Tr(Frob ◦κ′) all comes from the terms with all λ1 = . . . = λr = λ′, and we
have

Frob ◦κ′|H∗c (Sλ′⊗kk,Fµ)⊗r = Frob ◦τ̃ |H∗c (Sλ′⊗kk,Fµ)⊗r

so that ∫
N(Fr,t)

ψr,µ(tλ
′
xr)dxr =

∫
N(Ft)

φr,µ(tλx) dx

which establishes (6.4). �

Lemma 6.11. We have ζr,µ = ψr,µ.

Proof. By Theorem 6.3 it suffices to check equality of the Satake transforms of both
sides. Using Lemma 6.4, this amounts to showing

Tr(Frobr, RΓc(Sλ ⊗k k,Fµ)) = Tr(Frob ◦τ̃ , RΓc(Sλ ⊗k k,Fµ)⊗r).

This follows from the general linear algebra fact asserted in Lemma 6.12 below. �

Lemma 6.12 (Saito-Shintani5). Let V be a finite-dimensional representation over
a field k. Let τ be the endomorphism of V ⊗r defined by

v1 ⊗ . . .⊗ vr 7→ vr ⊗ v1 ⊗ . . .⊗ vr−1.

Then for all T1, . . . , Tr ∈ End(V ), we have

Tr(T1 . . . Tr, V ) = Tr((T1 ⊗ . . .⊗ Tr)τ, V ⊗r).

Proof. If {ei} is a basis for V , then

(T1 ⊗ . . .⊗ Tr)τ · (ei1 ⊗ . . .⊗ eir ) = T1(eir )⊗ . . .⊗ Tr(eir−1).

We expand out both sides of the desired equality:

Tr((T1 ⊗ . . .⊗ Tr)τ) =
∑

i1,...,ir

〈ei1 ⊗ . . .⊗ eir , T1(eir )⊗ . . .⊗ Tr(eir−1)〉

=
∑
i1...,ir

〈ei1 , T1(eir )〉 . . . 〈eir , Tr(eir−1
)〉

5We first found this explicitly stated, without proof, in [Ngo06], where it is said to be implicit
in the work of Saito and Shintani on base change.
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and
Tr(T1 . . . Tr) =

∑
i

〈ei, T1 · · ·Trei〉.

Thus want to show that∑
i1,...,ir

〈ei1 , T1(eir )〉 . . . 〈eir , Tr(eir−1)〉 =
∑
i

〈ei, T1 · · ·Trei〉.

This follows by repeated iteration of the following more general identity. �

Lemma 6.13. Let V be a finite-dimensional vector space with basis {ei}. For any
T ∈ End(V ), we have ∑

j

〈x, Tej〉〈ej , y〉 = 〈x, Ty〉. (6.9)

Proof. It suffices to establish the equation for y ranging over a basis of V ; taking
y = ei the left hand side is 〈x, Tei〉, and so is the right hand side. �

Combining these results, we obtain the main formula of interest:

Theorem 6.14. We have b(ψr,µ) = φr,µ.

Proof. This follows immediately upon combining Proposition 6.10 and Lemma 6.11.
�

6.4. Base change for the centers of parahoric Hecke algebras. We now
establish an identity for central functions of parahoric Hecke algebras analogous to
Theorem 6.14. This is based on a degeneration from the spherical case.

6.4.1. Setup. We first set some notation. Pick a smooth global curve X/Fq (not
necessarily projective) with a rational point x0 ∈ X(Fq). (The reader may imagine
that X,x0 are as previously fixed, but this discussion applies more generally.) Let
G → X be a parahoric group scheme, such that G|X−x0

∼= G×X and G(Ox0
) = J

is a parahoric subgroup. We form the affine Grassmannian

π : GrG → X.

Note that for x ∈ X − x0 we have

GrG |x ∼= GrG×kk(x).

For each µ ∈ X∗(T ), we let Fµ := SatGrG (µ) be the (shifted) perverse sheaf on
GrG and Fµ,x0

be the restriction to GrG,x0
. (We have normalized our shifts so that

Fµ,x0 is perverse.) We let ψ′r,µ ∈ HG(Fx0
⊗FqFqr ),J be the function as in Definition

4.6.

6.4.2. Convolution product. By Theorem 4.12, RΨ(Fµ) := RΨx0(Fµ) is a central
sheaf on GrG,x0 . We therefore have, as in Definition 6.9, an automorphism

κ′ : RΨ(Fµ)(1) ∗ . . . ∗RΨ(Fµ)(r) κ−→ RΨ(Fµ)(r) ∗RΨ(Fµ)(1) ∗ . . . ∗RΨ(Fµ)(r−1)

ι−→ RΨ(Fµ)(1) ∗ . . . ∗RΨ(Fµ)(r).

Definition 6.15. Let

RΨ(Fµ)∗r := RΨ(Fµ)(1) ∗ . . . ∗RΨ(Fµ)(r)︸ ︷︷ ︸
r times

.
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Define φ′µ : Fix(Frob,GrG,x0
(k))→ Q` by

φ′µ(y) = Tr(Frob ◦κ′, (RΨ(Fµ)∗r)y).

Theorem 6.16. We have b(ψ′r,µ) = φ′µ.

Proof. By Theorem 4.12, φ′r,µ(y) is in the center of the Iwahori-Hecke algebra.
(Since RΨ(Fµ) is central by Theorem 4.12, φ′r,µ(y) clearly commutes with all the
other functions of the form φ′r,ν(y); then use that such things form a basis for the
Iwahori Hecke algebra as ν runs over the extended affine Weyl group.)

Now the argument is essentially the same as for Corollary 4.14. Consider the
map

pr: Gr≤µG → Gr≤µG×X
induced by forgetting the level structure at x0. Since pr is proper, by Lemma 4.9
and the fact that pr is an isomorphism away from x0 we have

pr!RΨGrG
x0

(Fµ) = RΨGrG×X
x0

(SatGrG×X (µ)).

By Lemma 4.11 and the fact that GrG×X → X is smooth, we have

RΨGrG×X
x0

(SatGrG×X (µ)) ∼= SatGrG×X (µ).

Since pr! corresponds to − ∗J IK at the level functions, this implies

φ′µ ∗J IK = φµ.

Thus by Theorem 6.14 and (6.1), we have that

φ′µ ∗J IK = φµ = b(ψr,µ) = b(ψ′r,µ) ∗J IK . (6.10)

In view of the Bernstein isomorphism (Theorem 4.5), the fact that φ′µ and b(ψ′r,µ)
are central plus (6.10) implies that they are equal. �

6.4.3. A global reformulation. We now recast Theorem 6.16 into a form that will
be more suitable for our eventual needs.

Let G and GrG be as in §6.4.1. We first recall a construction of the convolution
product Fµ ∗ Fµ′ . Recall the iterated global affine Grassmannian GrG,X2 from
§3.4.1. We can form the twisted tensor product Fµ�̃Fµ′ := SatGrG,X2 (µ, µ′) on

GrG,X2 [Zhu, §A], which is supported on the Schubert variety Gr
≤(µ,µ′)
G,X .

Restricting to the diagonal X ⊂ X2, we have the multiplication map

m : Gr
≤(µ,µ′)
G,X2 |∆ → Gr≤µ+µ′

G

defined on points by

(x, x, E1
ϕ
99K E2

β
99K E0) 7→ (x, E1

β◦ϕ
99K E0).

Then the convolution product is defined by (cf. [MV07, §4] or [Zhu, §5.1])

Fµ ∗ Fµ′ := Rm!(Fµ�̃Fµ′) ∈ PervL+G(Gr≤µ+µ′

G ). (6.11)

Let us now write down our particular situation of interest. Consider the diagram

Gr
≤(µ1,...,µr)
G,Xr |∆ ∆(X) ⊂ Xr

Gr≤µ1+...+µr
G,X X

m
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Then by (6.11) we have

F(µ1) ∗ . . . ∗ F(µr) = Rm!(SatGrG ,Xr (µ1, . . . , µr))

Now Theorem 6.16 can be reformulated as follows, using Corollary 4.9 to commute
Rm! and nearby cycles.

Proposition 6.17. Let r.µ := (µ, . . . , µ) ∈ X∗(T )r+. Let fν,x0 ∈ HG(Fx0
),J be

the function fν viewed in the parahoric Hecke algebra of Fx0
, and define ψ′rµ,x0

∈
Z(HG(Fx0

),J) similarly. Then we have

b(ψ′r,rµ,x0
) =

∑
ν≤rµ

Tr(σ ◦ κ′, RΨX
x0

(Rm! Sat
Gr
≤r.µ
G ,Xr

(r.µ))ν)fν,x0 .

7. Comparison of two moduli problems

7.1. Setup. We now let G be the group scheme of units of a global algebra D as in
§3.5 and G a parahoric group scheme corresponding to some choice of level structure
at x0, so ShtG are the D-shtukas studied in §3.5. We continue to assume, that G
is reductive away from x0 (though we could avoid this simply by shrinking X◦ to
remove the points where G is not reductive).

Let Z ⊂ X be the set of places of ramification for D. We assume throughout
that #Z ≥ n2(||µ1||+ . . .+ ||µr||), so as to be able to apply Proposition 3.19.

Let X◦ := (X−Z−{x0}). We will now define and compare two different moduli
stacks of shtukas.

7.2. Situation A. Let
ShtµA := (Sht≤µG,X /a

Z)r.

We have a map
πA : ShtµA |(X−Z)r → (X − Z)r.

By Proposition 3.19 the restriction π◦A := πA|(X◦)r is proper.

Definition 7.1. Let r.µ = (µ, . . . , µ)︸ ︷︷ ︸
r times

. We define Aµr ∈ Db
c((X

◦)r) as follows:

Aµr := Rπ◦A∗(SatShtµA
(r.µ)).

We have the following easy but crucial property.

Proposition 7.2. The complex Aµr ∈ Db
c((X

◦)r) is locally constant on (X◦)r, in
the sense that each Riπ◦A∗(SatShtµA

(r.µ)) is a local system.

Proof. By the properness of π◦A∗ we know that Riπ◦A∗(SatShtµA
(r.µ)) is constructible,

and the local acyclicity from Proposition 3.18 then implies that it is locally constant.
�

Note that by the Künneth formula, we have

Aµr ∼= (Aµ1 )�r

Choose a basepoint x ∈ X◦, and let xr ∈ (X◦)r denote the diagonal point (x, . . . , x).
Then the symmetric group Sr acts on (X◦)r, hence also π1((X◦)r, xr). This lifts to
an Sr-equivariant structure on the local system Aµr , i.e. an action of π1((X◦)r, xr)o
Sr on (Aµr )xr , commuting with the action of the global Hecke algebra H⊗r.
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7.3. Situation B. Let
ShtµB := Sht≤r.µG,Xr /a

Z

where r.µ = (µ, . . . , µ)︸ ︷︷ ︸
r times

. We have a map

πB : ShtµB |(X−Z)r → (X − Z)r.

By the assumption that D is totally ramified at sufficiently many places, the map
π◦B := πB |(X◦)r is proper by Proposition 3.19.

Definition 7.3. We define Bµr ∈ Db
c((X

◦)r) as follows:

Bµr := Rπ◦B∗(SatShtµB
(r.µ)).

Proposition 7.4. The complex Bµr ∈ Db
c((X

◦)r) is locally constant on (X◦)r, in
the sense that each Riπ◦B∗(SatShtµB

(r.µ)) is a local system.

Proof. The proof is the same as for Proposition 7.2. �

Again, we have commuting actions of the Hecke algebraH and π1((X◦)r, xr)oSr
on Bµr .

7.4. The comparison theorem.

Theorem 7.5 ([Ngo06]). Let τ ∈ Sr be an r-cycle, i.e. 〈τ〉 ∼= Z/rZ. For g ∈
π1((X◦)r, xr) and h ∈ H we have

Tr((h⊗ 1 . . .⊗ 1)gτ, (Aµr )xr ) = Tr(hgτ, (Bµr )xr ).

Proof. This is [Ngo06, §3.3 Theorem 1]. Since this is really crucial for us, we outline
for the sake of exposition how the proof goes. Keep in mind that Aµr and Bµr are
both local systems.

By an application of the Cebotarev density theorem, it suffices to prove the
equality for g = Frob(x1,...,xr) for a dense open subset of Xr, and in particular on
the locus (x1, . . . , xr) where the xi are pairwise distinct. On this locus (and under a
certain further restriction on the points (x1, . . . , xr)) Ngô independently computes
both sides of the equation, following the Langlands-Kottwitz paradigm, and verifies
that they are equal by direct comparison.

Let us say a little more about this computation, which is carried out in [Ngo06,
§5]. Using the Grothendieck-Lefschetz trace formula to re-express both sides, there
are two main inputs: (1) a count of fixed points, and (2) a computation of the trace
of Frobenius on the stalks of the relevant sheaves. The counting step is done as in
§5, and the analysis of the stalks enters via results as in §6.3. The interesting feature
is that the pairwise distinctness of the points (x1, . . . , xr), plus the extra restriction
that we have omitted, turns out to imply that the point counting formulas involve
no twisted orbital integrals. Therefore, no fundamental lemma is required to prove
the desired equality.

�

Remark 7.6. For a heuristic that underlies the theorem, coming from a conjectural
description of the cohomology of shtukas, see [Ngo06, §2.2, 3.3]. The punchline
is that after admitting this conjectural description, the identity in Theorem 7.5
reduces to Lemma 6.12.
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Definition 7.7. Let

RΨxr0
(Aµr ) := RπA!RΨxr0

(SatShtµA
(r.µ)|∆(X◦)) ∈ Db

c(x0)

be the cohomology of nearby cycles at xr0 ∈ ∆(X − Z), and let

RΨxr0
(Bµr ) := RπB!RΨxr0

(SatShtµB
(r.µ)|∆(X◦)) ∈ Db

c(x0)

be the cohomology of nearby cycles at xr0 ∈ ∆(X − Z).6 Again we apply Remark
4.8 to equip RΨxr0

(Aµr ) and RΨxr0
(Bµr ) with Fq-structures.

Thanks to Proposition 7.2 and Proposition 7.4, the complexRΨxr0
(Aµr ) is equipped

with commuting actions of π1((X◦)r, xr) o Sr and (H)⊗r, while RΨxr0
(Bµr ) is

equipped with commuting actions of π1((X◦)r, xr) o Sr and H.
Corollary 7.8. For g ∈ π1((X◦)r, xr) and h ∈ H we have

Tr((h⊗ 1 . . .⊗ 1) ◦ Frob ◦τ,RΨxr0
(Aµr )) = Tr(h ◦ Frob ◦τ,RΨxr0

(Bµr )). (7.1)

Proof. This immediate from Theorem 7.5, Proposition 3.20 plus Corollary 4.10,
and the Cebotarev density theorem. �

8. Calculation of traces on the cohomology of nearby cycles

Our next step is to combine the work of §4, §5 and §6 to prove Kottwitz-style
formulas for both sides of (7.1). We maintain the notation of those preceding
sections.

8.1. Calculating the trace in situation A.

Definition 8.1. For a Kottwitz triple (γ0, (γx), (δx)) write

c(γ0, (γx), (δx)) := ker1(F,Gγ0
) · vol(Ξ · Jγ0

(F )\Jγ0
(AF )) · dg(K)−1

where the notation is as in §5.

Theorem 8.2. Let T ′ ⊂ |X◦|. Assume that Kv := G(Ov) is spherical at all v ∈ T ′.
Let

β = (βv ∈ Kv\G(Fv)/Kv)v∈T ′

and hβ ∈ H be the corresponding Hecke operator. Let RΨxr0
(Aµr ) be as in Definition

7.7, let τ be as in Theorem 7.5, let fβv be as in Definition 4.1, and let ψr,µ′ be as
in §6.4.1. Then we have

Tr((hβ ⊗ 1 . . .⊗ 1) ◦ Frobx0 ◦τ,RΨxr0
(Aµr ))

=
∑

(γ0,(γx),(δx))
inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·

∏
v 6=x0

Oγv (fβv )

TOδx0
σ(ψ′r,µ)

Proof. We’ll use the Lefschetz trace formula to rewrite the trace in terms of a sum
of traces over fixed points. The effect of στ on a point of ShtA is illustrated below:

σE1|X−x0

≤µ−−→ E1|X−x0

σE2|X−x0

≤µ−−→ E2|X−x0

...
σEr|X−x0

≤µ−−→ Er|X−x0


στ−−→



σ2Er|X−x0

≤µ−−→ σEr|X−x0

σ2E1|X−x0

≤µ−−→ σE1|X−x0

...
σ2Er−1|X−x0

≤µ−−→ σEr−1|X−x0 .


.

6This is a small abuse of the notation used in §4.2.
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Therefore, a fixed point of the correspondence (hβ⊗1 . . .⊗1)◦Frobx0
◦τ corresponds

to a point as above such that

E2 = σE1
...
Er = σEr−1

E1
=β−−→ σEr.

By substitution this can be rewritten in terms of E1, and we find that a fixed point
is equivalent to the data of commuting modifications

t : σE1|X−x0

≤µ−−→ E1|X−x0

t′ : σ
r

E1|X−T ′
=β−−→ E1|X−T ′ .

Hence in the notation of §5 we see that

Fix((hβ ⊗ 1 . . .⊗ 1) ◦ Frobx0 ◦τ) =
⋃
ν≤µ

C(νx0 , β;x0, T
′; r).

By Lemma 4.9 plus Proposition 3.20, we have

RΨxr0
(Aµr ) ∼= RπA!(RΨxr0

(SatShtA(r.µ))).

Now invoking the Grothendieck-Lefschetz trace formula, we have

Tr((hβ ⊗ 1 . . .⊗ 1) ◦ Frobx0
◦τ,RΨxr0

(Aµr ))

=
∑
ν≤µ

∑
ξ∈C(νx0

,β;x0,T ′;r)

Tr((hβ ⊗ 1 . . .⊗ 1) ◦ Frob ◦τ,RΨxr0
(SatShtA(r.µ))ξ).

By Corollary 4.23, for all ξ ∈ C(νx0 , β;x0, T
′; r) we have

RΨxr0
(SatShtA(r.µ))ξ = RΨxr0

(SatGrrG
(r.µ))ν .

Now using Corollary 5.14, we can rewrite our formula as

Tr((hβ ⊗ 1 . . .⊗ 1) ◦ Frobx0 ◦τ,RΨxr0
(Aµr ))

=
∑

(γ0,(γx),(δx))
inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·
∏
v 6=x0

Oγv (fβv )

·
∑
ν≤µ

TOδx0σ
(fν) · Tr((hβ ⊗ 1 . . .⊗ 1) ◦ Frob ◦τ,RΨxr0

(SatGrrG
(r.µ))ν).

(8.1)

Since the Hecke operator hβ supports a modification at T ′, which is disjoint from x0,
it acts trivially on all the stalks lying over xr0, so we may ignore it when computing
the trace in (8.1). Since

RΨxr0
(SatGrrG

(r.µ)) ∼= RΨx0
(SatGrG (µ))�r, (8.2)

the trace of Frob ◦τ coincides with the trace of Frobenius for the Satake sheaf on
the Weil restriction Reskr/k(Gr≤µG ⊗FqFqr ). Therefore, by [Ngo06, §5.2 Proposition
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3], we have7

Tr(Frob ◦τ,RΨxr0
(SatGrrG

(r.µ))ν) = Tr(Frobr, RΨxr0
(SatGrG (µ))ν). (8.3)

Substituting (8.3) into (8.1) we arrive at

Tr((hβ ⊗ 1 . . .⊗ 1) ◦ Frobx0 ◦τ,RΨxr0
(Aµr ))

=
∑

(γ0,(γx),(δx))
inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·
∏
v 6=x0

Oγv (fβv )

·
∑
ν≤µ

TOδx0σ
(fν) · Tr(Frobr, RΨxr0

(SatGrG (µ))ν). (8.4)

By Lemma 4.17 we have the following identity:

ψ′r,µ =
∑
ν≤µ

Tr(Frobr, RΨxr0
(SatGrG (µ))ν)fν .

Substituting this in (8.4), we finally find

Tr((hβ ⊗ 1 . . .⊗ 1) ◦ Frobx0
◦τ,RΨxr0

(Aµr ))

=
∑

(γ0,(γx),(δx0
))

inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·

∏
v 6=x0

Oγv (fβv )

 · TOδx0
σ(ψ′r,µ)

which is what we wanted to show. �

8.2. Calculating the trace in situation B. We now want to prove an analogous
formula for the trace in situation B. The computation in this case is a little more
involved. The main reason is that the action of Sr on Bxr0 is difficult to express
explicitly, since it is obtained by “continuation” from a locus where it is described
explicitly. More precisely, it was obtained from the fact that B|U was a local system,
so that we could extend it over X. However, this process obfuscates the geometric
meaning of this action, and we will need to use the results of §6, particularly the
geometric model of base change studied in §6.4.3, in order to understand it.

Theorem 8.3. Let T ′ ⊂ |X◦|. Assume that Kv := G(Ov) is spherical at all v ∈ T ′.
Let

β = (βv ∈ Kv\G(Fv)/Kv)v∈T ′

and hβ ∈ H be the corresponding Hecke operator. Let RΨxr0
(Bµr ) be as in Definition

7.7, let τ be as in Theorem 7.5, and let ψr,µ′ be as in §6.4.1. Then we have

Tr(hβ ◦ Frobx0
◦τ,RΨxr0

(Bµr ))

=
∑

(γ0,(γx),(δx))
inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·

∏
v 6=x0

Oγv (fβv )

 ·Oγx0
(b(ψ′r,µ)).

7The proof of this formula, which is not explicitly written in [Ngo06], goes as follows. By (8.2)
we have

Tr(Frob ◦τ, RΨxr0 (SatGrrG
(r.µ))ν) = Tr(Frob ◦τ, RΨx0 (SatGrG (µ))�rν )

= Tr(Frobr, RΨx0 (SatGrG (µ))ν),

where in the last equality we used Lemma 6.12.
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Proof. Let X(r) = Symr(X) by the rth symmetric power of X, and

Shtµ
B,X(r) := Sht≤r.µG,X(r) /a

Z.

The idea here is to push down the computation from Xr to X(r), which trivializes
the Sr action on the fiber ShtB,X(r) over a point, transferring the effect of this
action completely to the sheaf theory, where it was studied in §6. Consider the
following commutative diagram, in which the front cartesian square is the fiber of
the back cartesian square over the diagonal copy of X in X(r).

ShtµB Xr

Shtµ
B,X(r) X(r)

ShtµB |∆ ∆(X)

Sht≤rµG,X /aZ ∆(X)

m add

m add

π

(8.5)

The map add: Xr → X(r) is totally ramified over the diagonal ∆(X) ⊂ Xr, so for
any étale sheaf F on Xr the stalk of F at xr ∈ Xr is canonically identified with
the stalk of add∗F at add(xr) ∈ X(r). Therefore, from the front cartesian square
we have

Tr(hβ ◦ Frobx0
◦τ,RΨxr0

(Bµr )) = Tr(hβ ◦ Frobx0
◦τ,RΨxr0

(Rπ◦! Rm! SatShtµB
(r.µ)))

where π◦ is the restriction of π to the fiber over X◦. We now proceeding as before,
using the Grothendieck-Lefschetz trace formula to rewrite the trace in terms of
a sum of traces over fixed points. We begin by describing the fixed points of
hβ ◦ Frobx0 ◦τ on Sht≤rµG,X /aZ.

Now, on Shtµ
B,X(r) the permutation τ evidently acts trivially. A point of ShtG,X /a

Z|x0

is a modification
σE1|X−x0

≤rµ−−−→ E1|X−x0

occurring over x0. The map σ takes this to

σ2

E1|X−x0

≤rµ−−−→ σE1|X−x0 .

Therefore, a fixed point of the correspondence hβ ◦ Frobx0
◦τ is equivalent to the

data of commuting modifications

t : σE1|X−x0

≤rµ−−−→ E1|X−x0

t′ : σE1|X−T ′
=β−−→ E1|X−T ′ .

Hence we see that (remember that x0 is assumed to have degree 1)

Fix(hβ ◦ Frobx0 ◦τ) =
⋃
ν≤rµ

C(νx0 , β;x0, T
′; 1)
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so by the Grothendieck-Lefschetz trace and arguing as in §8.1 for situation A,

Tr(hβ ◦ Frobx0
◦τ,RΨxr0

(Bµr )) =
∑
ν≤rµ

#C(νx0
, β;x0, T

′; 1)

· Tr(hβ ◦ Frob ◦τ,RΨxr0
(Rm! SatShtµB

(r.µ))ν).

Using Corollary 5.14, we rewrite this as

Tr(hβ ◦ Frobx0
◦τ,RΨxr0

(Bµr ))

=
∑

(γ0,(γx),(δx))
inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·
∏
v 6=x0

Oγv (fβv )

·
∑
ν≤µ

TOδx0
(fν) · Tr(hβ ◦ Frob ◦τ,RΨxr0

(Rm! SatShtµB
(r.µ))ν).

(8.6)

As in the previous calculation for situation A, the Hecke operator acts trivially
on the stalk at x0 because is supported on a disjoint set of points. We use the affine
Grassmannian as a local model to calculate Tr(Frobx0

◦τ,RΨxr0
(Rm!SatShtB (r.µ))ν).

By Theorem 4.19, we have

Tr(Frobx0
◦τ,RΨxr0

(Rm! SatShtµB
(r.µ))ν) = Tr(Frobx0

◦κ′, RΨxr0
(Rm! Sat

Gr
≤r.µ
G,Xr

(r.µ))ν),

(8.7)
where the notation on the right hand side is as in Corollary 6.17, if we can show
that the permutation τ on the left side is carried by Theorem 4.19 to the permu-
tation κ′ studied in §6.4.3. (The same issue is raised and explained in [Ngo06, §5.6
Proposition 3].) To prove it, consider the diagram

W̃≤r.µXr

Gr≤r.µG,Xr W̃≤rµ
X(r) ShtµB Xr

Gr≤rµG,X(r) Shtµ
B,X(r) X(r)

étalem

m étale m add

Here W̃≤r.µXr expresses Gr≤r.µG,Xr as a local model for Sht≤r.µB |∆ and W̃≤rµ
X(r) expresses

Gr≤rµG,X(r) as a local model for Shtµ
B,X(r) . The existence of such a commutive diagram

is immediate from the proof of Theorem 4.19. The claim is then that the permu-
tation actions on RΨxr0

(Rm! SatGrG,Xr (r.µ)) and RΨxr0
(Rm!SatShtB (r.µ)), induced

by middle extension from (X◦)r to (X − Z)r, are compatible. This is clear from
the diagram and the fact that the identity can be checked on the locus where the
points (x1, . . . , xr) are distinct, where it is evidently given by the same geometric
permutation action in both cases.

Now combining Proposition 6.17, Corollary 4.23, and Lemma 4.17, we have

b(ψ′r,µ) =
∑
ν≤rµ

Tr(Frob ◦κ′, RΨxr0
(Rm! SatGrG (µ))ν)fν . (8.8)
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Putting together (8.6), (8.7), and (8.8) gives

Tr((hβ ⊗ 1 . . .⊗ 1) ◦ Frobx0
◦τ,RΨxr0

(Bµr ))

=
∑

(γ0,(γx),(δx0 ))

inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·

∏
v 6=x0

Oγv (fβv )

TOδx0
(b(ψ′r,µ)),

which is what we wanted to show. �

8.3. The base change fundamental lemma for parahoric Hecke algebras.
We can now deduce some cases of the base change fundamental lemma.

Corollary 8.4. Let T ′ ⊂ |X◦|. Assume that Kv := G(Ov) is spherical at all v ∈ T ′.
Let

β = (βv ∈ Kv\G(Fv)/Kv)v∈T ′

and hβ ∈ H be the corresponding Hecke operator. Let ψr,µ′ be as in §6.4.1 and the
base change homomorphim ψr,µ′ 7→ b(ψr,µ′) be as in §6.1. Then we have

∑
(γ0,(γx),(δx))

inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·

∏
v 6=x0

Oγ0(fβv )

 · TOδx0
σ(ψ′r,µ)

=
∑

(γ0,(γx),(δx0 ))

inv(γ0,(γx),(δx))=0

c(γ0, (γx), (δx)) ·

∏
v 6=x0

Oγ0
(fβv )

 ·Oγ0
(b(ψ′r,µ))

Proof. This follows immediately from substituting Theorem 8.2 and Theorem 8.3
into Corollary 7.8, and the following comment about changing the γv to γ0: since
by definition of X−Z we have that G(Fx) ∼= GLn(Fx) for all x ∈ X−Z, the notion
of stable conjugacy coincides with the notion of conjugacy. �

It seems to be “well-known” how to deduce a fundamental lemma from a state-
ment such as Corollary 8.4.8 Nevertheless, let us give a proof for completeness,
following [Ngo06, §5.7 Théorème 1]. First we introduce a piece of notation.

Definition 8.5. For µ = (µ1, . . . , µn) ∈ X∗(GLn) ∼= Zn, we define

|µ| := µ1 + . . .+ µn.

The stack Sht≤µG is non-empty if and only if |µ| = 0, because a G-bundle has the
notion of degree on X, which is preserved by the Frobenius twist σ on S. Let

Z(HG(Fx0,r),J)0 ⊂ Z(HG(Fx0 ),J)

be the subspace generated by the ψ′r,µ with |µ| = 0, which is the same as the
subspace generated by the ψr,µ with |µ| = 0.

Theorem 8.6. Let Ft be a local field of characteristic p, and Ft,r/Ft the un-
ramified extension of degree r. Let δ be a σ-conjugacy class in GLn(Ft,r), with
norm Nδt = γt ∈ GLn(Ft). Assume γt is regular semisimple and separable. If
φ ∈ Z(HG(Ft,r),J)0, then we have

TOδtσ(φ) = Oγt(b(φ)).

8It is remarked on p.84 of the Arxiv version 2 of [Ngo06] that this is “standard”, and a reference
is given to [Clo90].
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Proof. Let Fq be the residue field of Ft. Choose a global curve X over Fq having
a rational point x0, and function field F , so that Fx0

∼= Ft ∼= Fq((t)). Choose a
division algebra D as in §7.1, and define G and G as in §3.5. We can then apply
Corollary 8.4.

For a fixed function h ∈ HG,K(A) the orbital integrals and twisted orbital in-
tegrals are locally constant near regular semisimple separable elements. Therefore,
by weak approximation we can choose γ̃ ∈ G(F ) close enough to γt in the t-adic
topology so that γ̃ = N(δ̃x0) ∈ G(Ft ⊗Fq Fqr ) for some δ̃x0 ∈ G(Ft ⊗Fq Fqr ), and
such that

Oγx0
(b(ψµ)) = Oγ̃(b(ψµ))

TOδx0
σx0

(ψµ) = TOδ̃x0
σx0

(ψµ).

We can choose an appropriate Hecke operator h = (hv) ∈ HG(A) so that Oγ̃(hv) 6=
0 for v 6= x.

Because a fixed choice of h is the identity at all but finitely many places, any
Kottwitz triple for which the product of orbital integrals is non-zero forces the γv to
be inKv at all but finitely many v. Then by [Kot86b, Proposition 7.1] there are only
finitely many possibilities for the Kottwitz triple, as all γv outside a fixed finite set
must be (rationally) conjugate to γ. (Technically this discussion is unnecessary here
because we are only dealing with GLn at this point.) Therefore, since the support of
any adelic Hecke operator is compact open in G(A), while G(F ) is discrete, for any
fixed h ∈ HG,K(A) there are only finitely many non-zero summands in Corollary
8.4.

For GLn, different conjugacy classes of γ0 are also different stable conjugacy
classes. Hence we may choose the Hecke operator at an unramified auxiliary place
appropriately to ensure that∏

v 6=x0

Oγ0
(hv)

 · TOδx0σ
(ψ′r,µ) and

∏
v 6=x0

Oγ0
(hv)

 ·Oγ0
(b(ψ′r,µ))

vanish except for the chosen γx0
. Then we have

c(γ0, (γx), (δx)) ·

∏
v 6=x0

Oγ0(hv)

 · TOδx0
σ(ψ′r,µ)

= c(γ0, (γx), (δx)) ·

∏
v 6=x0

Oγ0(hv)

 ·Oγ0(b(ψ′r,µ))

Since |µ| = 0, Sht≤µG is non-empty so these terms are not 0. Dividing out by the

common (necessarily non-zero) factor c(γ0, (γx), (δx))·
(∏

v 6=x0
Oγ0(hv)

)
then yields

the desired equality for all ψ′r,µ with |µ| = 0. We conclude by observing that these
span Z(HG(Fx0,r

),J)0. �
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