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1 HILBERT SCHEMES

1 Hilbert schemes

1.1 Introduction

The lectures so far have been concerned with using geometry, such as the geometry of
moduli spaces, to solve problems in representation theory. My lectures will be about the
other direction: using representation theory to answer questions about the geometry of
moduli spaces.

Specifically, the moduli spaces we’ll be interested in parametrize curves in 3-folds: if X
is a three-fold, then we considerM = Hilb(X, curves). Here, “curve” is broadly interpreted:
we allow reducible curves, possibly with components that are non-reduced, and additional
points.

To cut down the moduli space to something reasonable, we stratify by fixed parameters
describing the curve. The fixed parameters are

• some β ⊂ H2(X,Z), which corresponds to the linear term of the Hilbert polynomial,
and

• the “constant term” n = χ(OC).

For example, in the diagram the non-reduced “doubled curve” contributes twice the homol-
ogy class of its underlying set.
Example 1.1. The “too good to be true” example is M = Hilb(P3, [L], 1). The only sub-
schemes parametrized byM are the honest lines, since all the Euler characteristic is “spent”
on the line, so that there is no room left for points. SoM = Gr(2, 4), which is a homoge-
neous space for GL(4). However, we’ll almost always want to consider the action of the
maximal torus T instead.

The moduli spaceM× X contains a universal subscheme Y. At the level of sets, every
k-point in M corresponds to a subscheme Y ⊂ X, and the fiber of Y → M is precisely
Y ⊂ X.
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1 HILBERT SCHEMES

The enumerative geometry of X is equivalent to computing within the K-theory ofM.

Example 1.2. In Gr(2, 4) we have Schubert cycles, which can be described in terms of the
universal line.

• There is a divisor consisting of all lines meeting a fixed line, since to meet a line is a
codimension one condition.

There are two classes of codimension 2: all lines in a fixed plane, or all lines through
a given point.

Finally, there is a class of codimension 3, namely the pencil of lines in a given plane
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1 HILBERT SCHEMES

through a given point.

We have dimM = 4, which is a special case of Bezrukavnikov’s formula (haha).

What is the significance of this 4? There is a dimension formula, which isn’t really a
dimension formula but an expected dimension formula:

expected dimension (M) = β · c1(X). (1)

♠♠♠ TONY: [Here c1(X) = c1(T X)] This follows from a standard deformation theory argu-
ment.

The special thing about dim x = 3 is that this formula for the expected dimension is
independent of the genus of the curve (i.e. the n parameter).

Example 1.3. For β = 0, we are considering Hilb(X, n points). The first disappointment
of our formula (1) is that it says the expected dimension is 0. The actual dimension is
certainly at least 3n, because we have a subset of M parametrize n distinct points, each
with 3 dimensions of freedom. But in fact, you can even show that dimM ≥ const · n4/3.
Why? The moduli space contains components which are not in the closure of collections of
n distinct points.

Therefore, K(M) is way too big. So we have to focus on some small part of it. Before
we do this, we ask: why are we getting expected dimension 0?

1.2 Re-interpretation of Hilbert schemes

Let’s think more generally. If X = Spec R, then what is the “Hilbert scheme of points” of
X? Well, if we have a length n subscheme then we get a surjection

OX � Osubscheme

such that dimOsubscheme = n. This determines the subscheme, so a point of length n is just
an n-dimensional R-module together with a surjection from R.
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1 HILBERT SCHEMES

Identify the n-dimensional module as Cn. Suppose R = C〈x1, x2, . . .〉/relations. To
specify an n-dimensional R-module is to interpret x1, x2, . . . as n×n matrices, satisfying the
relations. Then a surjection from R is equivalent to the data of a vector v ∈ Cn (the image
of 1 ∈ R) such that polynomials in the xi applied to v generate Cn. Finally, we have to mod
out by the action of GL(n) on everything because the choice of basis was ambiguous.

Example 1.4. If X = C3, i.e. R = C[X1, X2, X3] then we are specifying three matrices plus
a cyclic vector such that [Xi, X j] = 0, all modulo GL(n).

It is instructive to think about taking what happens if we don’t impose even these com-
mutativity relations. Note that everything makes sense even if R is not commutative. In
particular, if you have an algebra with three generators, then it is a quotient of the free alge-
bra on three generators, so we getting an embeddingM ↪→ M̃ = Hilb(Free3, n). The latter
space parametrizes the data of 3 matrices plus a cyclic vector, modulo GL(n).

Exercise 1.5. Show that M̃ is a smooth algebraic variety of dimension 2n2 + n. ♠♠♠ TONY:
[TODO: smoothness]

Now let’s go back to thinking about the equations [Xi, X j] = 0. The conditions that
these are all 0 is equivalent to a critical function equation ∂ϕ = 0 where

ϕ = tr(X1X2X3 − X1X3X2).

This is a well-defined function on M̃. It is easy to see that if you take the trace of this with
respect to Xi, you get the commutator for the other two variables.

This situation was too good to be true in general. There was something very special
about our variety. In general, what is true is that “locally you are cut out by critical points
of a section of a vector bundle.”

Now it is clear that since we’ve written the scheme in terms of variables and the critical
points of a function, then the expected dimension should be zero, since we have at least as
many equations as variables (one for each partial).

With that puzzle resolved, let’s consider

OM̃ → OM → 0.

Now, ∂ϕ can be viewed as as section of T ∗M̃. Dualizing, i.e. pairing with ∂ϕ, gives

TM̃
dϕ
−−→ OM̃ → OM → 0.

This isn’t necessarily exact because ∂ϕ is not regular. One might imagine an extension of
the complex into a resolution:

. . . ∧2 TM̃
dϕ
−−→ TM̃

dϕ
−−→ OM̃ → OM → 0.

Let’s be careful, though. Being representation theorists, we would like everything here to
be equivariant. However, the function ϕ is not invariant. Indeed, if we take T ⊂ GL(3)

5



1 HILBERT SCHEMES

acting on X = C3, then the function transforms non-trivially under T . How precisely does it
transform? The first thing in the representation theory is to clear up the difference between
a representation and its dual. Here, if T has weight κ = t(n1,n2,n3) acting on C3, then the
weight of T on ϕ is κ−1 = t(−n1,−n2,−n3) because functions transform inversely to variables.

So the correct guess for the complex (making things equivariant) is really

. . .→ ∧2TM̃ ⊗ κ−2 κ⊗dϕ
−−−−→ TM̃ ⊗ κ−1 κ⊗dϕ

−−−−→ OM̃ → OM → 0. (2)

We can interpret the cutoff

. . .→ ∧2TM̃ ⊗ κ−2 κ⊗dϕ
−−−−→ TM̃ ⊗ κ−1 κ⊗dϕ

−−−−→ OM̃ → 0

as a sheaf of differential graded algebras onM. By the Leibniz rule, the 0th cohomology,
which is OM, acts on every cohomology group. Thus, we can view each cohomology group
as a sheaf on Spec R.

Now comes the key definition. The idea is that if you want a good object to work with,
then you should take the whole complex.

Definition 1.6. We define Ovir
M

to be the complex
∧•(T M̃ ⊗ κ−1), where (by definition) for

any vector bundle V ,
∧•V =

∑
i

(−1)i ∧i V.

Remark 1.7. This object is really only an approximation to the true object, which we will
consider later.

The question that we want to address is:

Question. How many points are there in C3?

What does this question even mean? Our interpretation is that it is the same as under-
standing the function ∑

n

znχGL(3)(Mn,O
vir)

where we mean the GL(3)-equivariant Euler characteristic.
So how can we study this? The topic of my lectures is computation. Here, the compu-

tational tool is localization.

1.3 Localization formula

Localization is the subject of the first problem session. What is it about? Suppose we have a
structure M, say a smooth algebraic variety, with an action of some torus T . (In our setting,
T is the maximal torus of G.) Assume that T has a finite set of fixed points {xi}. (This will
be satisfied in our situation.)

Suppose that we want to compute χ(OM). This means that we want to compute the trace
of how T acts on functions on M.
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Imagine that your group were finite. Then the the action on functions is a “combinato-
rial representation,” with the matrices of the action being essentially permutation matrices.
Then the only things contributing to the trace are the “fixed points.”

It is pretty clear here too that only the fixed points has any chance of computing the
trace of the T -action on functions. So we should have something like

χ(OM) =
∑

xi

functions on formal neighborhood of xi

Now, what are functions on formal neighborhood of xi? The “functions” are Sym• T ∗x M.
As a T -module, we get a weight decomposition

TxM =
⊕

w weight ,1

w.

(Sometimes what we denote by w is written as tw. This is just a question of notation.) If
this is the space, then of course T ∗x M =

⊕
w w−1, so

Sym• T ∗x M =
∏

w

1
1 − w−1 . (3)

The most basic form of the localization formula is then

χ(OM) =
∑

xi

Sym• T ∗x M =
∑

xi

∏
w

1
1 − w−1 . (4)

Example 1.8. Let’s apply this to compute the Euler characteristic of P1. If the tangent space
at 0 has weight t, then the tangent space at ∞ is scaled by t−1 (since the coordinate is the
inverse of that at 0).

Then the weight on the cotangent spaces are inverted, so by (4) we have

χ(OP1) =
1

1 − t−1 +
1

1 − t
= 1.
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Generalization to vector bundles. We can now replace the structure sheaf by something
that looks at least locally like a structure sheaf, namely a vector bundle. Then what is the
analogue of the localization formula? Locally the vector bundle looks trivial, so we should
still have a contribution like the one from before, but there will also be an additional piece.

χ(M,V) =
∑

xi

(?) Sym• T ∗x M

What should this additional twist be? Well, think about what’s going on locally near x.

Locally we have the T action on Vx, so it’s clear that we should throw in Vx:

χ(M,V) =
∑

xi

Vx · o Sym• T ∗x M

Exercise 1.9. Use this to compute χ(O(n)). Warning: Aut(P1) doesn’t act on O(1). To get
an action, you should take the maximal torus{(

t1
t2

)}
⊂ GL(2)
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1 HILBERT SCHEMES

Then the weights are

Localization formula. The restriction Vx of V to x is just the pullback in K-theory. So the
localization formula may be written as

χ(M,F ) =
∑

xi

i∗xi
F ⊗ Sym• T ∗x M.
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2 The Hilbert scheme of points in C3

2.1 First attempt

Let’s go back to the embeddingM ↪→ M̃. InsideM we have an embedding of the fixed
pointsMT , and an obvious diagram

M
� � // M̃

MT � � //
?�

OO

M̃T
?�

OO

Now, even ifM is not smooth, we can use localization on the ambient smooth space. We
just have to figure out whatMT ↪→ M̃T is.

The spaceMn parametrizes subscheme of C3 of length n, and you can think of this as
the same as describing the ideals of C[x1, x2, x3] of codimension n. The action of T is by
scaling the variables. How could an ideal I be fixed by scaling the variables? I claim that
this is only possible if I is a monomial ideal, i.e. generated by monomials. This is because
the xd are the eigenfunctions for T , with distinct weights, e.g. x3

1x2 has weight t−3
1 t−1

2 . Any
monomial is uniquely determined by the weights, and an invariant ideal must be generated
by eigenfunctions.

In two dimensions, any such ideal can be specified by choosing some monomials from
the table

1 x1 x2
1 x3

1 . . .

x2 x1x2 x2
1x2 x3

1x2 . . .

x2
2 x1x2

2 x2
1x2

2 x3
1x2

2 . . .

x3
2 x1x3

2 x2
1x3

2 x3
1x3

2 . . .

...
...

...
...

. . .

The condition of being an ideal says that if you choose a monomial to be in I, then you
must also have everything below and to the right of it.

So in two dimensions, the ideals are in bijection with two-dimensional partitions; in
three dimensions the ideals are in bijection with three-dimensional partitions, etc.

Now, let’s go back to the complex (
∧•(TM̃ ⊗ κ−1), dϕ ⊗ κ). We can take this complex

and restrict it to M̃T , and we claim that its restriction to M̃T is precisely a resolution of the
structure sheaf ofMT .

In general, if you have a virtual class and a fixed locus, you can decompose the virtual
class into a “fixed” and “moving” part. The fixed part will give you a virtual class in the
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2 THE HILBERT SCHEME OF POINTS IN C3

fixed locus, which is what we’ve gotten here. Then you can use localization formula on the
ambient space to compute∑

n

znχ(Mn,O
vir) =

∑
n

znχ(M̃n, i∗Ovir).

Now, by the claim i∗Ovir =
∧•(TM̃ ⊗ κ−1), so we can write a localization formula:

χ(Mn,O
vir) =

∑
3D partitions π

z|π|
contribution from

∧• TM̃

contribution from Sym• T ∗M̃

The convenient way to write this contribution is in terms of the virtual tangent space. Define
it at the partition π ∈ M to be

T vir
π = Deformations − Obstructions.

The obstruction class is dϕ ⊗ κ ∈ Obs = T ∗M̃ ⊗ κ (think of this as the equations imposed
on deformations by ϕ). So that gives

T vir
π = TπM̃ − κ ⊗ T ∗πM̃

=
⊕
±wi

where the torus weights wi can be computed from knowledge of the action Tπ and T ∗π . For
every such wi, you stick a factor into the contribution to the localization formula. What
factor? It should be ∑

±wi :=
⊕
±wi 7→

∏
(1 − w−1

i )∓1.

Let’s think about this. If you have a tangent direction, corresponding to a positive wi, then
you get something in the denominator, which is as expected. If you have an obstruction,
then you get something in the numerator.

Now we need to compute TπM̃ − κ ⊗ T ∗πM̃. Since M̃, there is nothing stopping you
from computing it. You can then put everything into the generating function,and what do
you get? Garbage - there doesn’t seem to be anything nice about the function (at least that
I can tell). That seems to indicate that we haven’t really been working with the “right”
objects here. Next time we’ll refine our analysis.
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2 THE HILBERT SCHEME OF POINTS IN C3

2.2 The refined virtual class

Let’s review our setup. We had realizedM = Mn = Hilb(C3, n) ↪→ M̃ as the zero section
of s = dϕ ⊗ κ, and Obs = T ∗M̃ ⊗ κ.

We defined a fundamental class

Ovir = [. . .
s
−→ ∧2 Obs∨

s
−→ Obs∨

s
−→ O

M̃
]

and then considered the generating function for its Euler characteristic. We computed this
by pushing Ovir forward to M̃, and describing the result in terms of the “virtual tangent
space”

T vir
x = TxM̃︸︷︷︸

Def

−Obsx

=
∑

ai −
∑

bi

where the ai are the weights of the deformations not counted by obstructions, and the bi are
the opposite.

In localized K-theory at a point x ∈ M, we obtain

Ovir
x = Ox

∏ 1 − b−1
i

1 − a−1
i

. (5)

In the exercises, you are asked to compute for Hilb(C3, n) and x a 3D partition. You’ll find
that ∑

n

znχ(M,Ovir) =
∑

3D partitions π

z|π|
∏ . . .

. . .
.

This function doesn’t seem to have any nice properties, so we seek to refine our approach.

Motivation. Let M be a complex Kähler manifold. Then we have a Dolbeault resolution

0→ C→ OM
∂
−→ Ω0,1 ∂

−→ Ω0,2 ∂
−→ . . .→ Ω0,dim M → 0.
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2 THE HILBERT SCHEME OF POINTS IN C3

When you look in physics textbooks, you never see the Dolbeault resolution. Instead, you
see Dirac’s resolution instead. That is the resolution obtained by tensoring the Dolbeault
resolution with a square root of the canonical bundle (assuming a spin structure), and using
the symmetrized operator ∂ + ∂

∗
:

0→ C→ OM ⊗K1/2
M

∂+∂
∗

−−−−→ Ω0,1 ⊗K1/2
M

∂+∂
∗

−−−−→ Ω0,2 ⊗K1/2
M

∂+∂
∗

−−−−→ . . .→ Ω0,dim M ⊗K1/2
M → 0.

This complex is better because it is more symmetric.

So this suggests that we should replace Ovir with Ôvir ⊗ (Kvir)1/2, where Kvir is some
appropriate “virtual canonical bundle.” What should it be, precisely? Well, we have a
virtual tangent bundle, so Kvir should be the top exterior power of the dual of the virtual
tangent bundle, so

Kvir =
det Obs
det Def

=
det(T ∗M̃ ⊗ κ)

det(T M̃)
.

But does a “square root” of this always exist? We see that Kvir � κ · (det T ∗M̃)2, where the
second factor is manifestly a square and κ is a character, so it always has a square too.

Putting our new candidate virtual bundle into (5),

Ôvir
x = Ox

∏ 1 − bi

1 − ai︸          ︷︷          ︸
Ovir

x

⊗(Kvir)1/2
x .

I prefer to put this in a more symmetric form. Recalling that
∏

ai and
∏

bi are precisely
det Def and det Obs, we can rewrite the above as

Ôvir
x =

∏ b1/2
i − b−1/2

i

a1/2
i − a−1/2

i

. (6)

2.3 Nekrasov’s formula

Now we study the generating function

Z :=
∑

n

znχ(M, Õvir).

You can interpret zn as an element of the K-theory of some torus, and Ôvir as a representation
of the maximal torus T ⊂ GL(3), say with coordinates

T =


t1 t2

t3


 .
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2 THE HILBERT SCHEME OF POINTS IN C3

Nekrasov’s formula says that Z should be Sym• of something, but what is that something?
Define t4 = z

√
t1t2t3

and t5 = 1
z
√
κ
. Recalling that κ = t1t2t3, we then have

t1t2t3t4t5 = t1t2t3
1

t1t2t3
= 1.

This maybe motivates us to think of the situation as arising from some larger (five-dimensional)
torus action on some larger space, and that the answer will take the form

Sym•
?∏5

i=1(t1/2
i − t−1/2

i )
.

To guess what ? is, we should ask ourselves, for π a 3D partition what is Tπ? Remember
to think of the (virtual) tangent space as deformations minus obstrutions. Obviously it has
three directions t1, t2, and t3. What about the obstructions? For these we have to subtract
off t1t2 + t1t3 + t2t3 ♠♠♠ TONY: [I didn’t really understand the motivation why]. So the
numerator ? above should correspond to t1t2 − t1t3 − t2t3; in symmetrized terms,

Sym•
∏

1< j≤3(tit j)1/2 − (tit j)−1/2∏5
i=1(t1/2

i − t−1/2
i )

.

Here is another way to think about it. Let Z be the total space of the vector bundle L4 ⊕L5.
Since L4 ⊗ L5 = KX , we have KZ = OZ .

Now Z is five-dimensional, and has a five-dimensional torus action by the weights t1, . . . , t5.
It turns out that

(tit j)1/2 − (tit j)−1/2∏5
i=1(t1/2

i − t−1/2
i )

= χ(Z, sheaf)

where the sheaf is a constant plus T ∗Z − TZ . You can check this by localizing T ∗Z − TZ at
a point: you’ll see that the right hand side is the left hand side plus something on which z
doesn’t act.
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2 THE HILBERT SCHEME OF POINTS IN C3

Theorem 2.1 (Nekrasov’s formula). In the preceding notation, we have

Z :=
∑

n

znχ(M, Ôvir) = Sym•
∏

1< j≤3(tit j)1/2 − (tit j)−1/2∏5
i=1(t1/2

i − t−1/2
i )

.

Remark 2.2. Sym• replaces weights with an infinite product, so the right hand side is some
massive infinite product.

2.4 Proof of Nekrasov’s formula

2.4.1 Step 1

We will show that
Z = S •χ(C3,F )

for some sheaf
F = zF1 + z2F2 + . . . ∈ Kequiv(C3)[[z]].

We will construct the Fi inductively. The first term is

F1 = −Ôvir
Hilb1(C3).

The key statement has to do with the “Hilbert-Chow map”

Hilb(C3, n)
p
−→ S nC3.

Then we can push forward along p in K-theory, and the claim is that p∗Ôvir factors. The
upshot is that this implies

χ(C3,Fk) = Sym•
???∏3

i=1(1 − t−1
i )

This follows from a very general argument, that also applies for example to Ovir. We’re
going to just assume it and proceed.

2.4.2 Step 2

Now we have to do something specific to the sheaf Ôvir that we so carefully constructed.
The next step is to determine the numerator of the factorization discussed in the first step.
We first claim that it has a factor:

χ(C3,Fk) =
�·??∏3

i=1(1 − t−1
i )

.

Why? It is an elementary exercise to show if t1t2 = 1, then Z = 1 identically. By symmetry,
this holds for all three pairs, so the numerator should be divisible by (t1t2−1)(t2t3−1)(t3t1−
1). We can rewrite everything in a symmetric manner: since κ = t1t2t3 we can write t1t2 =

κ/t3, etc. So there is a Laurent polynomial � such that

Z = Sym•
� ·∏

i

(κ/ti)1/2 − (ti/κ)1/2

t1/2
i − t−1/2

i

 . (7)
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2 THE HILBERT SCHEME OF POINTS IN C3

2.4.3 Step 3

Next we claim that the Laurent polynomial � ∈ Z[t±1/2
1 , t±1/2

2 , t±1/2
3 ][[z]] from (7) depends

only on κ1/2. This is called “rigidity.” The idea is to send t±1
i → ∞while keeping κ constant.

On one hand, the localization formula (see 6) tells us that Z has the form

Z =
∑

z|π|
∏

ai weight of π

(κ/ai)1/2 − (ai/κ)1/2

a1/2
i − a−1/2

i

The inner expressions
(κ/ai)1/2 − (ai/κ)1/2

a1/2
i − a−1/2

i

(8)

have the property that if ai → 0 or∞ then they remain bounded. Of course, the same holds
for ∏

i

(κ/ti)1/2 − (ti/κ)1/2

t1/2
i − t−1/2

i

Therefore, specializing t±1
i → ∞ so that κ remains constant, we find that both sides of (7)

must remain bounded, hence � must remain bounded. But as it is a Laurent polynomial,
this is only possible if it is independent of the all the ti.

2.4.4 Step 4

We’re now going to determine � ∈ Z[t±1/2
1 , t±1/2

2 , t±1/2
3 ][[z]] by a judicious choice of spe-

cialization. The nice thing about Laurent polynomials is that they are independent of how
we send the variables to infinity.

Consider (8) again. If ai → ∞ then (8) tends to −κ−1/2, and if ai → 0 then it tends to
−κ1/2. So ∏ (κ/ai)1/2 − (ai/κ)1/2

a1/2
i − a−1/2

i

→ (−κ1/2)virtual index of fixed point

where the virtual index is #{ai → 0} − #{ai → ∞}.
A nice choice of specialization is t1, t3 → ∞ with t3 negligible compared to t3, and

that determines t2 by the constraints that κ = t1t2t3 be constant. For instance, imagine
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2 THE HILBERT SCHEME OF POINTS IN C3

t1 = s1010−1, t2 = s−1010
, and t3 = s as s→ ∞.

Imagine each partition π as being stacked out of cubes in the first quadrant. Since t3 is
basically negligible, the boundary between whether ai → 0 or ai → ∞ is completely
determined by the relative values of i1 and i2. For a cube at location (i1, i2, i3) the index is
the number of boxes with i1 − i2 ≥ 0 minus the number of boxes with i1 − i2 < 0.

So the sum is then ∑
π

∏
�=(i1,i2,i3)

qi1−i2

17
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where . . . = q−2 = q−1 = κ−1/2z, and q0 = q1 = . . . = κ1/2z. It is an exercise to prove that
this is equal to ∏

a≤0≤b

1
1 − qaqa+1 . . . qb

= Sym• (what we want).

Now we are done.

Remark 2.3. If you take all qi = z in the formula, then you get
∏ 1

(1−zn)n .

18
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3 Introduction to enumerative K-theory

3.1 Initial discussion

We are now ready to move on from counting points to counting curves.
To being, we take a special threefold of the form X = C × C2. This doesn’t have so

many interesting cycles, since any connected, proper curve must be collapsed to a point
via the map to C2 (since it’s affine). However, the Hilbert scheme Hilb(X, d[C], n) is non-
trivial, because we can things such as nonreduced curves “rotating” around the fibers, and
extraneous points

We replace Hilb(X, d[C], n) with a better space PT (X, d[C], n) (PT stands for Pandharipande-
Thomas). The Hilbert scheme parametrizes surjections

OX → OC → 0.

Consider for the moment the case where X is a surface, say C2. Then we can view OC

as being specified by choosing certain polynomials which are not in the ideal of C. For
simplicity, imagine a monomial ideal as in the picture.

19
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The surjection OX → OC can be viewed as “hitting” the top left box with 1 ∈ OX .
What part of this picture don’t we like? The hanging boxes, which form a 0-dimensional

subsheaf of OC .

Curves with no zero-dimensional subsheaf are Cohen-Macaulay, but this is not: the hanging
block corresponds to an embedded point. The idea of Pandariphande-Thomas is to prohibit
these hanging blocks. But that’s not a closed condition, so we have to allow something else,
and that something else is for OX → C to be non-surjective. That is, we can cut off the
hanging boxes at the price of allowing a kernel.

So we consider instead complexes

OX → F︸︷︷︸
pure dim 1

→ coker︸︷︷︸
dim 0

→ 0.

20
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Here “pure dimension 1” means that F has no subsheaf supported on a set of dimension 0.
Now we go back to the situation X = C × C2. Let π : X → C denote the projection. If

F is a torsion-free sheaf on X, then π∗F is a torsion-free sheaf on a smooth curve, hence
a vector bundle V. Multiplication by coordinates in C2 give X1, X2 ∈ End(V). Given a
section s ofV, we demand that

P(X1, X2)s→V → coker︸︷︷︸
dim 0

→ 0.

Now we recognize this as QMaps(C → Hilb(C2)).
More generally, we can replace X by the total space of a sum of two line bundlesL1⊕L2

over C.
X = L1 ⊕ L2

π

��
C

What is the corresponding PT space? Now multiplication by xi is not an endomorphism
but a map V → V ⊗ L−1

i (since xi is really a “function” on Li, i.e. an element of L∗i ).
Everything else is the same. This leads to the notion of “twisted quasi-map to Hilb.”

3.2 Nakajima varieties

A representation of the quiver consists of

• a vector space Vi for each vertex,

• for each i, j an element of Hom(Vi,V j ⊗ Ei j) where Ei j is a multiplicity space with
dimension equal to the number of edges from i to j.

The corresponding Nakajima variety M is a vector bundle version. By definition, a map
to M is equivalent to the data of

• vector bundlesVi for each vertex (varying in moduli),
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• for i, j an element of Hom(Vi,V j ⊗ Ei j) where Ei j is as before.

Remark 3.1. Nakajima considers “double” the data, consisting also of maps in Hom(V j,Vi⊗

E ji) where E ji = E∨i j ⊗ ~
−1. It is better to keep this.

The tangent bundle. What is the tangent bundle of M? In terms of the tautological bundles
on M, labelled Vi, the class of T M in K-theory is

T M =
⊕

i, j

Hom(Vi,V j ⊗ Ei j) − (1 + ~)
⊕

i

Hom(Vi,Vi).

♠♠♠ TONY: [some reference was mentioned, couldn’t understand the names... Badesh,
Jonatan????]

From this we see that there is a polarization

T = T 1/2 + ~−1 · (T 1/2)∨,

where
T 1/2 =

⊕
half of

double arrows

R Hom(Vi,V j ⊗ Ei j) −
⊕

i

R Hom(Vi,Vi).

This is upgraded into a bundle version on the moduli space of stable maps to M:

T vir = T 1/2 + ~−1 · (T 1/2)∨.

where
T 1/2 =

⊕
half of

double arrows

Hom(Vi,V j ⊗ Ei j) −
⊕

i

Hom(Vi,Vi).

Now specialize to the case C = P1, with the action of C×q . Let p1 = 0 and p2 = ∞. Then
KC = −[p1] − [p2]. By localization,

T vir = T
1/2
p1 + T

1/2
p2 + � − ~−1 · �∨.

Thus, we should set

Ôvir = Ovir ⊗

Kvir =
detT 1/2

p2

detT 1/2
p1

1/2

.

We apologize for the confusing notation. The 1/2 above the tangent spaces refer to tangent
sheaf polarizations, and the outer 1/2 is an honest square root.

Goal. Define vectors, operators, etc. in K(M) by pushing forward Ôvir under evaluation
maps.

For all but finitely many points, the quasimap takes values in the stable locus. However,
at unlucky points we hit the singular locus. Let’s investigate by example.
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3.3 I-function

We consider the open subset of QMaps(P1 → X) which are non-singular at p2 = ∞.

We would like to push forward

ev∗(QMaps(P1 → X)nonsing at p2 , Ô
vir).

Now we can use equivariant localization. We can make a torus C×q act on the domain of
C. Then for any fixed point in the moduli space, the singularities have to form a finite C×-
invariant subset, which are then necessarily concentrated at the origin. This fixed locus is
proper, so we can define localization.

The degree of a quasi-map is the vector (degVi) ∈ ZI . If we consider

ev∗(QMaps(P1 → X)nonsing at p2., Ô
virzdeg)

then we get an element of Kequiv(X)loc[[z]].
There is a balance between numerators and denominators. If you don’t have numerators,

then your function is stupid.
The evaluation map at∞ only makes sense on the open locus away from curves singular

at x, so we only have a rational map from QMaps(C,M).

QMaps

ww ""
QMapsnonsing at p

// X

However, there is another compactification in which it will extend to a morphism on the
entire compatification:

QMapsrelative to p

vv %%
QMapsnonsing at p

// X
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Let’s explore how this alternate compactification looks in a special case. Let X = T ∗P0 =

C/C×. This is the quiver variety corresponding to the pictured quiver:

Now what’s a quasi-map to X? For every vertex you get a bundle of that rank, so we get
a line bundle L on C. Then, we get a non-zero arrow (corresponding to a) from the trivial
bundle to L, which is the same as a non-zero section

OC
s
−→ L.

Since L � O(D), we find that

QMaps(X) = {OC → OC(D)} =
⊔

n

Symn C.

Going back to the picture

the singularities are the zeros of the section s, and the open subset QMapsnonsing at p consists
of quasimaps whose s doesn’t vanish at p.
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How can we compactify this? Well it’s clear from the picture!

Algebraic geometers are angry people: when they see something they don’t like, they just
blow up. In the figure above, we have a family of curves with (basepoint) divisors avoiding
p, with at least one point limiting to p over the central fiber of the family. When we blow
up, we get an exceptional divisor, and the blue section and the red don’t intersect anymore.
So we get two curves C0 = C and C1.

If you reparametrize this curve, it shouldn’t affect the result. Any reparametrization has a
differential at 0, which will scale the exceptional fiber, so we have an action of Aut(Ct, 0)
on the curve. For example, if there is one singular point on the exceptional fiber then there
is no moduli of the “location” of the singular points (the moduli is C×/C×), but if there are
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more points then the moduli is larger.

In general, you may have to blow up many times.

The singularities are away from the nodes and the marked point. There is a torus action by
(C×)#exceptional divisors, and the stabilizer subgroup is finite.

Capped vertex. The picture above is assembled out of two parts. One is the collection of
exceptional components, and the other is the “original” C. Now we can attempt to use C×q
equivariant localization on this new compactification.

As before, all the singularities must be over 0. So the capped vertex is a combination of
the “bare vertex,” which comes from the pileup of singularities at 0 ∈ C, multiplied by an
operator J := ev∗(QMapsnonsing. at p1

relative p2

).

capped vertex = bare vertex · ev∗(QMapsnonsing. at p1
relative p2

).
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3 INTRODUCTION TO ENUMERATIVE K-THEORY

The operator J is a fundamental solution of a certain q-difference equation. The logic is
the following. The object bare vertex contains a lot of information, while the capped virtex
has very little information (you could make it better by replacing the virtual class with
something more interesting like a tautological class). You get the interesting object from
the silly object by applying a q-difference equation.

The remaining lectures will focus on understanding this q-difference equation from the
perspective of geometric representation theory.
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