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I’m going to talk about a basic set of questions in harmonic analysis, which have an
interpretation in terms of varieties and formal arc spaces. As usual, any new theory comes
with a new set of questions. We do know how to do some calculations in this area, but on
the other hand we lack even some basic definitions. I hope some people will get interested
in these sorts of questions.

1 Formal arc spaces

1.1 Arc space and formal models

Let X be an algebraic variety over a field k.

Definition 1.1. There is an nth jet space Jn(X) with the property that

JnX(k) = X(k[t]/tn+1).

The formal arc space LX is the projective limit of the jet spaces, and satisfies

LX(k) = X(k[[t]]).

If X is smooth, then JnX and LX are all smooth. In general, the singularities of LX have
finite-dimensional formal models, by results of Drinfeld and Grinberg-Kazhdan. Namely,
for any non-degenerate point x ∈ LX, there exists an isomorphism of formal neighborhoods

(LX)x � Yy × D
∞

where Y is a finite-dimensional k-scheme.
One of the main problems with this result is that you have it only for formal neighbor-

hoods, whereas you’d like it for (say) étale neighborhoods.

Perverse sheaves. What we really want is to define the notion of perverse sheaf on these
formal arc spaces. In particular, can we define the notion of intersection complexes?

At the moment, the answers to these questions are not known. However, we do at least
know that we can define “trace functions.”
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Assume that k = Fq is a finite field. Then is is a theorem that

x 7→ tr(σq, ICy(Y))

is well-defined, independent of the formal model Y used to model a neighborhood of x.

1.2 Reductive monoids

Definition 1.2. A reductive monoid is a G × G-equivariant normal embedding j : G ↪→ M
of a reductive group G.

Semisimple groups have no G ×G-equivariant normal embedding. You need some Gm

in the center to make a normal embedding.
L-monoids. We describe a construction for L-functions attached to certain reductive monoids.

Vinburg gave many constructions of reductive monoids. For instance, one can construct
Mρ out of the data:

• A short exact sequence
0→ G′ → G → Gm → 0.

• Taking Langlands dual of the above sequence, we get

0→ Gm → Ĝ → Ĝ′ → 0.

• A representation ρ : Ĝ → GL(Vρ) such that the restriction to Gm gives rise to the
scalar multiplication on Vρ. The is the setting of defining automorphic L-functions in
Langlands’ theory.

In the classical setting, Langlands showed that you get all the local L-functions by
integrating over integral matrices. In the reductive monoids setting, one replaces integral
matrices by

L◦Mρ(k) := Mρ(O) ∩G(F).

Here F is a local field, O its ring of integers, and k the residue field. We don’t know how
to define IC sheaves, but we can define the associated trace function ψρ on G(F), which is
G(O) ×G(O)-invariant.

Theorem 1.3 (Bouthier-Ngô-Sakellaridis).

tr(ψρ, π ⊗ | det |s) = L(s, π, ρ)

for all unramified representations π of G(k((t)).

We have ψ =
∑

n ψn where ψn is the spherical Hecke function whose Satake transform
is the trace of the nth symmetric power of ρ. The functions ψn have disjoint support.
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1.3 Braverman-Kazhdan conjecture

Conjecture. There exists a Schwartz spaceSρ(G(F)) with ψρ as a typical member, equipped
with a Fourier-type transform that locally satisfies the Poisson summation formula.

From this the analytic continuation and functional equation of automorphic L-functions
would follow.

Another expectation is that S ρ(G) should be generated by trace functions of perverse
sheaves on L◦Mρ. In fact, it should be the space of compactly supported sections of some
sheaf.

1.4 Use of quotient stacks

A standard trick is to replace the formal arc space by some stack, and then replace the
formal disk with some curve.

The quotient stack [Mρ/G] contains the point G/G as an open substack. Instead of
L◦Mρ, we can consider the space of maps x : D → [Mρ/G] sending the generic point to
[G/G].

We can globalize this: let C be a smooth projective curve and T a line bundle on C. Let
M be the space of maps φ : C → [M/G] ∧Gm T mapping the generic point of C in [G/G].
Then M is a finite-dimensional model of singularities of L◦M. In fact, this space is very
well known: it is an invariant closed subscheme of the Beilinson-Drinfeld Grassmannian.
The calculation of the trace function for its IC sheaves is standard.

2 Relative situation: loop geometry

We are interested in the space of maps D→ [M/G] containing the point as an open subset.
We might be interested in f : Y → X where Y is an Artin stack, X is a scheme, and f is
generically an isomorphism. We want to study the space of maps D→ Y over a given map
D→ X.

We think of Y being “slightly different” from X, and this relative problem as capturing
this difference between Y and X.

2.1 Jacquet-Rallis integral

Let G = GLn and g = Lie(G), H = GLn−1 a subgroup of G acting on g by the adjoint
representation. We say that x ∈ g is H-regular if StabX(H) is trivial and Hx is closed. Let S
be the space of locally constant functions with compact support on g(F). For every φ ∈ S,
we want to understand the function

JR(x) :=
∫

H
φ(ad(h)x) dh

on the set of H-regular elements of g(F).
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The quotient stack formalism. The natural setting for the computation is the stack Y
classifying quadruples (V, x, v, v∨) where V is an n-dimensional vector space, x ∈ End(V),
and v ∈ V, v∨ ∈ V∨. Then [g/H] is the closed substack of Y defined by the equation
〈v∨, v〉 = 1.

We have a map f : Y → b = An × An, with coordinates ai = tr(∧ix) and b j = 〈v∨, x jv〉.
If φ = 1g(O), then we expect that

JRx(φ) =

n∑
i=0

ψi(x)

where ψi is the trace function on the closed subset of L◦b defined by val(γ) ≥ i. A similar
equality in the global setting was proved by Zhiwei Yun. We expect that for every φ ∈ S,
then function x 7→ JRx(φ) has an asymptotic of the same form.

2.2 The adjoint action

Let G = GLn act on g = gln by the adjoint action. Invariant theory provides a G-invariant
map f : g → a where a = An. The quotient [g/G] → a is not an isomorphism because the
stabilizers are large (even the generic one).

There exists an open subshceme arss (regular semisimple subset) of a that is the com-
plement of the discriminant divisor. An element x ∈ grss := f −1(a) is a regular semisimple
matrix. The centralizer Gx is a torus depending only on a.

For φ ∈ C∞c , we introduce the orbital integral

Ox(φ) =

∫
G(F)/Gx(F)

φ(ad(g)−1x)dg/dt.

This is a coset space, so you have to put a measure on the centralizer. We won’t go into this,
but it is possible. There is a naïve way which is traditionally used, but there is also a better
way.

When x→ 0, there exists a germ expansion

Ox(φ) =
∑
ξ

Γξ(x)Oξ(φ)

where ξ ranges over the set of nilpotent orbits. You want to think of Ox(φ) as a sheaf, and
x → 0 is like taking the stalk. This is called the Shalika expansion. A priori this is only
a germ, but you can extend it to define a function Γξ : L◦a(k) → C. Note that these do not
depend on φ.

Question: Are these functions connected to perverse sheaves on L◦a?

I believe that the answer is yes. Of course, we expect to see non-trivial local systems,
because we have stabilizers.
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Let a : D → a send the generic point of D to arss. The stack of maps a : D → [g/G]
lying over a is not locally of finite type.

The advantage of the global situation is that if C is a smooth projective curve and T
a Gm-torsor over C, then the stack of maps a : C → [g/G] ∧Gm T is locally of finite type.
(The twist is needed for the resulting stack to be geometrically nice.) The Hitchin fibration
is a special case of this.
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