SESSION 3: HITCHIN FIBRATION AND SUPPORT THEOREM FOR SL_2

We will consider a smooth connected projective curve over \mathbb{C} .

(i) Describe for SL_2 the Hitchin fibration

$$f: \mathcal{M}_D \to \mathbb{A}_D.$$

(ii) For $a \in H^0(X, 2D)$, we consider the spectral curve X_a defined on the total space of $\mathcal{O}_X(D)$ over X by the equation :

$$t^2 - a = 0.$$

We suppose that a is generically non-zero, we denote by $\mathbb{A}_D^{\heartsuit}$ this open locus. Prove that if at every closed point $v \in X$, $\operatorname{val}_v(a) \leq 1$, then the spectral curve is smooth and connected and describe the fiber \mathcal{M}_a . Describe the Picard stack which acts \mathcal{P}_a Describe the group scheme J_a over X such that $\operatorname{Bun}_J = \mathcal{P}_a$.

- (iii) Prove that $\mathcal{M}_D^{\heartsuit}$ is smooth for deg $(D) \geq 2g 1$, we will compute its tangent complex.
- (iv) For $a \in \mathbb{A}_D^{\heartsuit}$, let U_a be the locus where the morphism $\pi_a : X_a \to X$ is étale, we get in particular a map $\pi_1(U_a, a) \to W$. Show that we have an exact sequence :

$$H^0(X, \bigoplus_{x \in X - U_a} \mathbb{Z}/2\mathbb{Z}) \longrightarrow \pi_0(\mathcal{P}'_a) \longrightarrow \pi_0(\mathcal{P}_a) \longrightarrow 0$$

where \mathcal{P}'_a is the stack of J^0_a -torsors.

(v) We admit that $\pi_0(\mathcal{P}'_a) = (X_*(T))_{\pi_1(U_a,a)}$. (*)Show that $\pi_0(\mathcal{P}_a) = 0$ only if at least one ramification point is unibranch and equals $\mathbb{Z}/2\mathbb{Z}$ otherwise.

Now we assume that $\pi_0(\mathcal{P}_a) = \mathbb{Z}/2\mathbb{Z}$.

- (i) Prove that the normalisation of the spectral curve is an étale cover of X.
- (ii) Show that there exists an effective divisor D' on X such that :

$$\operatorname{div}(a) = 2D'$$

with D' such that $\mathcal{L}_{\rho} := \mathcal{O}_X(D' - D)$ is of trivial square, associated to ρ .

(iii) Deduce that there exists a section $b \in H^0(X, \mathcal{L}_{\rho} \otimes D)$ such that $b^2 = a$.

(iv) Now, for every point $\mathcal{L}_{\rho} \in \operatorname{Pic}_{X}[2]^{*}$, we can associate an elliptic torus H_{ρ} on X associated to the representation $\rho : \pi_{1}(X, x) \to \mathbb{Z}/2\mathbb{Z}$. Let $\mathbb{A}_{H_{\rho},D} = H^{0}(X, \mathcal{L}_{\rho} \otimes D)$ its Hitchin base and \mathbb{S}_{ρ} it's image in \mathbb{A}_{D} .

Show that we have an action of $\mathbb{Z}/2\mathbb{Z}$ on $f_*\overline{\mathbb{Q}}_l$ and identify the support of the « minus »part.