SESSION 2, 2 1/2: ESTIMATE OF KLOOSTERMAN SUMS

Exercise 1 : Lang Isogeny Let G_0 a connected commutative group over \mathbb{F}_p , $\mathcal{L}: G_0 \to G_0$ the Lang isogeny.

(i) Show that :

$$\mathcal{L}_*\overline{\mathbb{Q}}_l \simeq \bigoplus_{\chi \in \widehat{G_0(\mathbb{F}_q)}} \mathcal{F}(\chi).$$

(ii) Deduce that for any $\chi \in \widehat{G_0(\mathbb{F}_q)}, H_c^*(G, \mathcal{F}(\chi)) = 0.$

Exercice 2 : Generalized Kloosterman sums (after Deligne) Let \mathbb{F} be an algebraic closure of \mathbb{F}_q , for $a \in \mathbb{F}$, we consider the hypersurface V_a on \mathbb{A}^n defined by $x_1x_2\ldots x_n = a$. Let $\psi : \mathbb{F}_q \to \mathbb{C}^*$ be a non-trivial additive character. We want to study the Kloostermann sums :

$$K_{n,a} = \sum_{x_1\dots x_n = a} \psi(x_1 + \dots + x_n)$$

and give some estimates. We note $\pi, \sigma : \mathbb{A}^n \to \mathbb{A}^1$ the product and sum of coordinates. In order to do that, we want prove the following theorem :

Theorem 1. The cohomology groups of V_a with coefficients in $\mathcal{F}(\psi\sigma)$ verify

- (i) $H_c^i = 0$, for $i \neq n 1$,
- (ii) $H_c^{\bullet} \simeq H^{\bullet}$,
- (iii) For $a \neq 0$, dim $H^{n-1} = n$,
- (iv) If a = 0, $H_c^{n-1} \simeq \overline{\mathbb{Q}}_l$ canonically.

This theorem has a global analog we will prove alongside

Theorem 2. We have the following assertions :

- (i) The sheaf $R^{n-1}\pi_1 \mathcal{F}(\psi \sigma)$ is smooth of rank n over $\mathbb{A}^1 \{0\}$,
- (ii) The extension by 0 of $R^{n-1}\pi_!\mathcal{F}(\psi\sigma)$ from \mathbb{A}^1 to \mathbb{P}^1 is the same as the direct image of the restriction to \mathbb{G}_m .
- (iii) At 0, the monodromy is tame.
- (iv) At ∞ , the wild inertia acts whithout non zero fixed point and the Swan conductor equals 1.
- (v) We have $R\pi_{!}\mathcal{F}(\psi\sigma) \simeq R\pi_{*}\mathcal{F}(\psi\sigma)$.

We proceed by induction and show that

$$1(n) \Rightarrow 2(n) \Rightarrow 1(n+1).$$

We assume 1(n):

- (i) Using Ex.1, show 2(n)(i).
- (ii) Let \mathcal{G} the direct image of the restriction of $R^{n-1}\pi_{!}\mathcal{F}(\sigma\psi)$ to \mathbb{G}_{m} . Using an appropriate exact sequence, show first that $\mathcal{G} = R^{n-1}\pi_{!}\mathcal{F}(\sigma\psi)$.
- (iii) We consider Δ the cone of the map $j_!R\pi_!\mathcal{F}(\sigma\psi) \to j_*R\pi_*\mathcal{F}(\sigma\psi)$, where $j: \mathbb{A}^1 \to \mathcal{P}^1$. Show that Δ has finite support and compute $H^*(\mathcal{P}^1, \Delta)$. Deduce 2(ii) and (v).

Computation of Swan conductors : Let D the Galois group of a nonarchimedean local field K, I the inertia group and P the wild inertia. Let V be a finite dimensional $\overline{\mathbb{Q}}_l$ -representation of D

- (i) Show that : $\operatorname{Swan}_0(R^{n-1}\pi_!\mathcal{F}(\psi\sigma)) + \operatorname{Swan}_\infty(R^{n-1}\pi_!\mathcal{F}(\psi\sigma)) = 1$
- (ii) Using the fact that if $V^I = 0$ and $(V \otimes \chi)^I = 0$ for every character χ of I/P, then V is wildly ramified, show that $R^{n-1}\pi_!\mathcal{F}(\psi\sigma)) =$ is tamely ramified at 0.

We can now deduce 1(n+1) for $a \neq 0$ (a = 0 is treated separetly).

(i) Using a cohomological reflection of the identity :

$$K_{n+1,a} = \sum_{x \in \mathbb{F}_q^*} \psi(x) K_{n,a/x},$$

and Leray exact sequence, show 1(ii).

- (ii) Deduce 1(i).
- (iii) By spectral sequence argument, obtain 1(iii).

Exercice 3 : Estimates Show from the previous exercices that, when $a \neq 0$:

$$|K_{n,a}| \le nq^{n-1/2}$$