NAKAJIMA PROBLEM SET 2

Exercise 5. (1) In terms of T-weights on tangent spaces T_pM at various fixed points $p \in M^T$, describe the hyperplanes.

(2) Show that the chamber structure for $M = T^*(\text{flag variety})$ is identified with usual Weyl chambers.

(3) Show that the chamber structure for $M = \widetilde{\mathcal{U}}_r^d$ is identified with the usual Weyl chambers for SL(r).

(4) Compute the chamber structure for $M = \widetilde{\mathcal{U}}_r^d$, but with the larger torus $T \times \mathbb{C}^{\times}_{hyp}$.

Exercise 6. (1) Determine \mathcal{A}_M for $M = T^*$ (flag variety).

(2) Determine \mathcal{A}_M for $M = \widetilde{\mathcal{U}}_r^d$ with respect to $T \times \mathbb{C}_{hvp}^{\times}$.

Exercise 7. See $\S4(i)$ for the definition of the nearby cycle functor.

Suppose that the followings are given: two families $f_{\mathfrak{X}} \colon \mathfrak{X} \to \mathbb{C}$, $f_{\mathcal{M}} \colon \mathcal{M} \to \mathbb{C}$, together with a proper morphism $\Pi \colon \mathcal{M} \to \mathcal{X}$ such that $f_{\mathcal{M}} = f_{\mathcal{X}} \circ \Pi.$ (1) Check

$$(1)$$
 Cheo

$$\psi_{f_X} \Pi_* = \pi_* \psi_{f_M}$$

from the base change.

(2) Suppose that $f_{\mathcal{M}} \colon \mathcal{M} \to \mathbb{C}$ is a topologically trivial fibration, i.e., there is a homeomorphism $\mathcal{M} \to M \times \mathbb{C}$ such that $f_{\mathcal{M}}$ is sent to the projection $M \times \mathbb{C} \to \mathbb{C}$. Check

$$\psi_{f_M} \mathcal{C}_{\mathcal{M}} = \mathcal{C}_M[1].$$

Exercise 8. Give a proof of Proposition 4.7, i.e., We have a natural isomorphism

$$H_*(Z_{\mathcal{A}}) \cong \operatorname{Ext}_{D^b(X_0^T)}^*(\pi_*^T(\mathcal{C}_{M^T}), p_*j^!\pi_*(\mathcal{C}_M)).$$