Exercise 1. (a) We define the factorization morphism π^d for G = SL(r) in terms of (B_1, B_2, I, J) . Let $\pi^d([B_1, B_2, I, J]) \in S^d\mathbb{C}$ be the spectrum of B_1 counted with multiplicities. Check that π^d satisfies the properties (1),(2):

- (1) On the factor $S^{d-d'}(\mathbb{C}^2)$, it is given by the projection $\mathbb{C}^2 \to \mathbb{C}^1$, $(z_1, z_2) \mapsto z_1$.
- (2) Consider $C_1 + C_2 \in S^d \mathbb{C}^1$ such that $C_1 \in S^{d_1} \mathbb{C}^1$, $C_2 \in S^{d_2} \mathbb{C}^1$ are disjoint. Then $(\pi^d)^{-1}(C_1 + C_2)$ is isomorphic to $(\pi^{d_1})^{-1}(C_1) \times (\pi^{d_2})^{-1}(C_2)$.
- (b) Check that $\mathcal{F}|_{\mathbb{P}^1_x}$ is trivial if $B_1 x$ is invertible.

More generally one can define the projection as the spectrum of $a_1B_1 + a_2B_2$ for $(a_1, a_2) \in \mathbb{C}^2 \setminus \{0\}$, but it is enough to check this case after a rotation by the GL(2)-action.

Exercise 2. [Nak99, Remark 8.19] Define operators $P_{\pm 1}^{\Delta}(\alpha)$ acting on $\bigoplus_n H^*(S^nX)$ for a (compact) manifold X in a similar way, and check the commutation relation (1) with r = 1:

(1)
$$\left[P_m^{\Delta}(\alpha), P_n^{\Delta}(\beta)\right] = rm\delta_{m,-n}\langle \alpha, \beta \rangle \operatorname{id}.$$

Exercise 3. Let $\operatorname{Gr}(d, r)$ be the Grassmannian of *d*-dimensional subspaces in \mathbb{C}^r , where $0 \leq d \leq r$. Let $M = T^*\operatorname{Gr}(d, r)$. Determine $X = \operatorname{Spec}(\mathbb{C}[M])$. Study fibers of the affinization morphism $\pi: M \to X$ and show that π is semi-small. Compute graded dimensions of IH^* of strata, using the well-known computation of Betti numbers of $T^*\operatorname{Gr}(d, R)$.

Exercise 4. Show the assertion that the Heisenberg algebra acts trivially on the first factor $\bigoplus_d IH_{\mathbb{G}}^{[*]}(\operatorname{Bun}_{\operatorname{SL}(r)}^d)$.