Goal. 1) Define global rippotence.
2) Bound the local nilpotence.
3) Local to global.

Main Thereon. $T:$ global affine variety. $S \rightarrow T:$ smooth. $S:$ connected.
$X / S: \operatorname{sm}$. proper and $Y: N C D / S \longrightarrow X$.
Let $h(i):=\left\{0 \leq p \leq i: H_{i=0 \text { pe }}^{i-p}(X / S(\log Y))\right.$ is nonzero $\}$.
Then, $H \dot{d k}(X / S(\log Y))$ is globally rilpotent of level $h(i)$.
§ Global vilpotence
Def. A global affine variety is Spec R for R. iut.dom $f \cdot g(\mathbb{R}$ with char(Frack) $=0$.
Consider $S \rightarrow T$ sm and primes not invertible on S.

Given $(\mu, \nabla) \in M I C(S / T) \rightarrow\left(\mu_{T_{p}}, \nabla_{T_{p}}\right) \in M I C\left(S_{\mathbb{T}_{p}} / T_{T_{p}}\right)$ Via pullback.
μ : locally free.
Def. (μ, ∇) is globally reptant of level ν on S / T if

$$
\left(\mu_{\mathbb{T}_{p}}, \nabla_{T_{p}}\right) \in \operatorname{Nil}_{p}^{v}\left(S_{T_{p}}\left(T_{T_{p}}\right)\right.
$$

Prop. Let $(\mu, \nabla) \in M L C(S I T)$ Nth $\mu:$ fin. locally free on S. Then, if $(\mu, \nabla) \in N-l_{p}(S I T)$ then $(g, h)^{*}(\mu, \nabla) \in N-l_{p}^{\nu}\left(S^{\prime} / T^{\prime}\right)$.

$$
=\left(g^{*} \mu_{1}(g . h)^{*} \nabla\right)
$$

pf. Rose's talk.

$$
S_{\pi \bar{p}}=\phi \Rightarrow \text { initial element }
$$ so -t's fine.

§ Local nibpotence level
canjuycte Spectral sequence.

$$
\pi s_{5}\left(\pi^{(\varphi)}\right.
$$

Conner proved Cartier isomorphism $C^{-1}: \Omega_{x^{(9 / 7 / s}}^{i} \leadsto \mathcal{H}^{i}\left(F_{*} \Omega_{x / s}^{*}\right)$ ($O_{x p}$-modules). The conj ss becomes $R^{p} \pi_{*}^{(p)}\left(\Omega_{x}^{q}(\rho) / s\right) \Rightarrow R^{n} \pi_{*}\left(\Omega_{x}(s)\right.$.

Theorem. Assume either

- the formation of $R^{R} \pi_{*}\left(S^{2} k(s)\right.$ commutes eth arb. base. change.
- Fobs: $S \rightarrow S$ is $f(a t(\Leftrightarrow S:$ regular by kun theorem) .

Then, the canonical integrable T-connection on $H_{d R}^{n}(X(S)$ is rilptent.
pf.

$$
\begin{aligned}
& F_{a b S}=W_{S T T} F_{S / T} \longrightarrow F_{S T}^{*}\left(W_{S T}^{*} R^{p} \pi_{S}\left(\Omega_{K S}^{i}\right)\right)
\end{aligned}
$$

: p-currature 0 connection (Cartier Descent. Tayystak.)
Corollary. For $i \geq 0$ int. let $h(i):=\#\left\{p \leq i: E_{2}^{R i-p}\right.$ is non -zeno 1 .
Then for any smooth maphom $f_{1} S \longrightarrow T$,

$$
H_{d i}^{i}(X / S) \in N_{i l} l_{p}^{\text {his }}(S(T) .
$$

§ Local to global
Kat's base change. S:noetterian scheme. $\pi: x \rightarrow S$ proper. $K^{\prime}:$ complex of ab. shears on S
st. 1) $K^{i}=0$ for $i<0 \& i \gg 0$.
as logy as $\operatorname{dim} X_{5}$ is
2) K^{i} : coherent $Q_{x}-\mathrm{mod}$. flat $/ \mathrm{S}$.
bounded above, $H^{P}\left(X_{5}, F\right)=0$
3) The diff of K° is $\pi^{-1}\left(\Theta_{s}\right)$-linear.
for all $p>d$ for amy $a b$. sher of X.
TFAE. i) \quad azo, $R^{n} \pi_{k}\left(k^{\prime}\right)$ is lo.free. $\quad \Rightarrow$ Graver't's the mem: S :reduced
ii) ${ }^{\forall} g: S^{\prime} \rightarrow S, \quad g^{*} R^{n} \pi_{*}(K) \leadsto R^{n} \pi_{*}^{\prime}\left(g^{*} k^{*}\right) \quad \forall n \geq 0 . \quad y 1 \rightarrow L^{p}\left(x_{1}, \pi_{n}\right)$ cunt
iii) $\forall \mathrm{g}: \mathrm{pt} \rightarrow \mathrm{S}$.

$R^{f} f_{f} F \circ k(y) \rightarrow H^{P}($,
\Rightarrow bsechaye am. and go dom arelewel.
(Deligne) $H_{H \text { tod }}^{\text {p. }}(X / S)$ and $H_{d R}^{n}(X / S)$ are (local free or S.
proof of Main Thu.
$R^{i} \pi_{k} \Omega_{x_{s}}^{p}$. $R^{n} \pi_{k} \Omega_{x i s}$ commits sooth base change: $S_{t_{p}}$.
$\Rightarrow h(i)$ bounds the \# pts it $H^{p i n i p}$ is nonzero.
$\Rightarrow H_{d i}(X(S)$ is globally virpotent of level $\leq h(i)$.

