
DE RHAM IN CHARACTERISTIC p AND THE CARTIER ISOMORPHISM

BY CONNOR HALLECK-DUBÉ

I. Notation and motivation

Our goal is to state and prove Cartier’s theorem following §7 of Katz. Let π : X → S be smooth,

X
F−→ X(p) W−→ X the factorization of Frobenius, π(p) : X(p) → S the base change. Also let Y ↪→ X a normal

crossings divisor relative to S, Y (p) ↪→ X(p) the base change along W .
The constructions of §1 specialize to the case of (E ,∇) = (OX/S , d) to recover “ordinary de Rham coho-

mology”

Hq
dR(X/S) := Hq

dR(X/S, (OX , d)) = Rqπ⋆(Ω
•
X/S).

and

Hq
dR(X/S(log Y )) := Hq

dR(X/S(log Y ), (OX , d(log Y ))) = Rqπ⋆(Ω
•
X/S(log Y )).

Given any smooth morphism f : S → T , since (OX , dX/S) = (OX , dX/T |Der(X/S)), we have seen that the de
Rham cohomology comes with a canonical integrable T -connection.

Proposition 1 (Spectral sequence in de Rham cohomology). There are spectral sequences

Ep,q
2 = Rpπ

(p)
⋆ (Hq(F⋆Ω

•
X/S)) =⇒ Hp+q

dR (X/S)

Ep,q
2 = Rpπ(p)(Hq(F⋆Ω

•
X/S(log Y ))) =⇒ Hp+q

dR (X/S(log Y )).

Proof. In general, there are two spectral sequences for hyper-derived functors. We recall their construction
for completeness. Let π : X → S any map. For an arbitrary complex Ω• on X, choose a flasque resolution of
(e.g. by iterating the “sheaf of discontinuous sections” construction), i.e. a double complex 0 → Ω• → A•,•

such that 0 → Ωp → Ap,•. Then the hyper-derived pushforward is by definition

Rp+qπ⋆(Ω
•) = Rp+qπ⋆(Tot(A•,•)) = Hp+q(Tot(π⋆A•,•)).

There are two spectral sequences associated to the double complex π⋆A•,• depending on whether we start
by taking vertical or horizontal cohomology, and both converge to cohomology of the total complex. If we
begin with vertical cohomology, then our spectral sequence has E1 page

IE
p,q
1 = Rqπ⋆(Ω

p) =⇒ Rp+qπ⋆(Ω
•).

This is the first spectral sequence, which is in our case the standard Hodge-to-de-Rham, or Frölicher, spectral
sequence. One part of the Hodge decomposition is that over C this degenerates at the E1-page.

On the other hand, if we begin computing cohomology horizontally first, then the E1-page is (flipping
indices so that our spectral sequences behave the same way)

Ep,q
1 := Hq(π⋆A•,p) = π⋆Hq(A•,p),

the latter equality because pushforward is exact on complexes of flasque objects. Then, noting that the p-th
column Hp(A•,q) is a flasque resolution of Hp(Ω•), our E1-page is the pushforward of this resolution and so
we have the second spectral sequence, with E2-page

IIE
p,q
2 = Rpπ⋆(Hq(Ω•)) =⇒ Rp+qπ⋆(Ω

•).

These two spectral sequences are conjugate in some abstract sense, in particular giving rise to “conjugate
filtrations” of the de Rham cohomology.

Now we leave generality behind. In our specific case, the second spectral sequence applied to π : X → S
and Ω• gives

Ep,q
2 = Rp(π(p) ◦ F )⋆(Hq(Ω•

X/S)) =⇒ Hp+q
dR (X/S).
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Note that F⋆ is a homeomorphism on topological spaces. A simple diagram chase on stalks shows that
pushforward along homeomorphisms is exact. This implies by definition that

Rp(π(p) ◦ F )⋆ = (Rpπ
(p)
⋆ ) ◦ F⋆ and F⋆Hq(Ω•) = Hq(F⋆Ω

•).(1)

The former can be checked on injective resolutions, the latter is definitional. Combining these, our spectral
sequence becomes

Ep,q
2 = Rpπ

(p)
⋆ (Hq(F⋆Ω

•
X/S)) =⇒ Hp+q

dR (X/S).

The same argument verbatim applied to Ω•(log Y ) gives the second spectral sequence in the proposition.
Someday, someone should explain to me how any of this works in derived categories. □

These spectral sequences are only useful ifHq(F⋆Ω
•
X/S) andHq(F⋆Ω

•
X/S(log Y )) have a simple description.

This is the content of Cartier’s isomorphism.

II. Ordinary Cartier

Theorem 2. There is a unique isomorphism of OX(p)/S-modules

C−1 : Ωi
X(p)/S

∼−→ Hi(F⋆Ω
•
X/S)

which satisfies

• C−1(1) = 1,
• C−1(ω ∧ τ) = C−1(ω) ∧ C−1(τ), and
• C−1(d(W−1(f)) = [fp−1df ].

Example 3. Let S a characteristic p scheme (e.g. S = Spec k for k a characteristic p field) and X = An
S .

Then X(p) = An
S also, and F : X → X(p) corresponds to the OS-map OS [x1, . . . , xn] → OS [y1, . . . , yn] given

by

xk 7→ ypk.

(We distinguish the coordinates on X and X(p) for clarity). In this case, Ωi
X/S is the free OX -module

generated by the dyi1 ∧ · · · ∧ dyik . Pushing this forward along F gives a module with the same underlying
set and the xi acting through ypi . This is still free over OX(p) , but with larger basis

F⋆Ω
j
X/S = OX(p)⟨yw1

1 · · · ywn
n dyα1

∧ · · · ∧ dyαj
: αi ̸= αk∀i ̸= k, 0 ≤ wi ≤ (p− 1)∀i⟩.

The exterior derivative maps are still given by total derivatives (with respect to the yi).
In order to compute Hi(F⋆Ω

•
X/S), we can factor out the OX(p) -linearity via

F⋆Ω
j
X/S

∼= OX(p) ⊗Fp Kj(n),

where Kj(n) is the Fp-vector space with the same basis as above. The differentials descend to the Kj(n)
because the exterior derivative is OS [y

p
1 , . . . , y

p
n]-linear. Since everything is faithfully flat over a field, we get

Hi(F⋆Ω
•
X/S)

∼= OX(p) ⊗Fp
Hi(K•(n)).

Consider the case of A1, i.e. the complex K•(1):

0 Fp⟨1, . . . , yp−1⟩ Fp⟨dy, ydy, . . . , yp−1dy⟩ 0 .

The exterior derivative lets us compute

Hi(K•(1)) =


Fp · [1] i = 0

Fp · [yp−1dy] i = 1

0 otherwise.

Comparing this to Ω•
X(p)/S

= OX(p)⟨1, dx⟩, we can define the isomorphism by 1 7→ 1, dx 7→ yp−1dy. This will

be our model in general.
For a general An

S , notice that as complexes

K•(n) = K•(1)⊗n
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(where the tensor products are over Fp). So by Kunneth,

H0(K•(n)) = Fp, H1(K•(n)) = Fp⟨yp−1
1 dy1, . . . , y

p−1
n dyn⟩,

and

Hi(K•(n)) =

i∧
H1(K•(n)) = Fp⟨(yk1 · · · yki)

p−1dyk1 ∧ · · · ∧ dyki⟩.
So we have

Hi(F⋆Ω
•
X/S) = OX(p)⟨(yk1

· · · yki
)p−1dyk1

∧ · · · ∧ dyki
⟩

On the other hand,
Ωi

X(p)/S = OX(p)⟨dxk1
∧ · · · ∧ dxki

⟩.

So the map in degree 1 given by dxk 7→ yp−1
k dyk∀k extends multiplicatively to the desired isomorphism. This

isomorphism, of course, satisfies the conditions of the theorem.

This example also constitutes the essential part of the proof.

Proof. Let X,S,X(p), π, etc., as in the statement of the theorem. The multiplicativity condition implies that
C−1 is determined by its degree-one part (the degree-zero part is determined by linearity and the constant

term condition). Since Ωi
X(p)/S

=
∧i

Ω1
X(p)/S

, we can extend any OX(p)/S-map on the degree-1 piece. So it

suffices to construct the map in degree 1.
An OX(p) -map C−1 : Ω1

X(p)/S
→ H1(F⋆Ω

•
X/S) is, by the universal property of the sheaf of differentials,

the same as a (π(p))−1(OS)-linear derivation OX(p) → H1(F⋆Ω
•
X/S). Since OX(p) = OX ⊗π−1(OS) π

−1(OS)

(π−1(OS) acting on itself by absolute Frobenius), this is the same data as a bi-“linear” map:

δ : OX × π−1(OS) → H1(F⋆Ω
•
X/S)

which is bi-additive and satisfies

• δ(fs, s′) = δ(f, sps′),
• δ(gf, s) = gpδ(f, s) + fpδ(g, s), and
• δ(f, 1) = [fp−1df ] (corresponding to the third bullet in the theorem).

We define our map as the one corresponding to δ(f, s) = [sfp−1df ]. This satisfies the conditions above.
It is in particular bi-additive:

δ(f + g, s)− δ(f, s)− δ(g, s) = s((f + g)p−1(df + dg)− fp−1df − gp−1dg) = d

(
s · (f + g)p − fp − gp

p

)
,

so at the level of cohomology δ is biadditive, and we have constructed a global morphism. Note that this
C−1 agrees with the map constructed in our affine space example.

We can check that C−1 is an isomorphism Zariski-locally. Smooth morphisms are Zariski-locally of the
form étale-over-affine-space. If X → An

S → S is this factorization, then we choose coordinates x1, . . . , xn on
X corresponding to the standard coordinates on An

S . The étale map induces an isomorphism Ω1
X/S = Ω1

An
S/S ,

compatible with exterior differentiation and the relative Frobenius maps. All of our arguments above for
the case of X = An

S carry over mostly verbatim to this case, so we reduce to the case of affine space above,
where we saw that our map is an isomorphism.1 □

III. Cartier with log singularities

Now let i : Y ↪→ X the inclusion of a normal crossing divisor over S. Write Y (p) ↪→ X(p) for the

pullback along relative Frobenius. The canonical composition d(log Y ) : OX
d−→ Ω1

X/S ↪→ Ω1
X/S(log Y ) makes

(OX , d(log Y )) into an integrable vector bundle for X/S with log singularities along Y , so we define

Hq
dR(X/S(log Y )) := Rqπ⋆(Ω

•
X/S(log Y )).

We have an analogous spectral sequence

Ep,q
2 (log Y ) = Rpπ

(p)
⋆ (Hq(F⋆Ω

•
X/S(log Y ))) =⇒ Rp+qπ⋆(Ω

•
X/S(log Y )) = Hp+q

dR (X/S(log Y )).

1Arthur corrected me on this point. There is one subtlety in knowing that pullback along the étale map is compatible with
pushforward along F . This uses that F is not only a homeomorphism, a universal homeomorphism, and maybe more besides.
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Theorem 4 (Cartier with log singularities). The map C−1 induces an isomorphism

Ωi
X(p)/S(log Y

(p)) ∼= Hi(F⋆Ω
•
X/S(log Y ))

As before, the proof will boil down to the case of (an open subset of) affine space, so let’s do that example
first. It is a fact of algebraic geometry that in the theorem “smooth = étale over affine” one can take a
normal crossings divisor to be the pullback of a union of coordinate hyperplanes, so without loss of generality
we have the following.

Example 5. Let X = An
S with coordinates yi and Y = V (y1 · · · yv) for some v ≤ n. We write X(p) with

coordinates xi, so Y (p) = V (x1 · · ·xv). Then we have

Ωi
X/S(log Y ) = OX(p)⟨ωk1

∧ · · · ∧ ωki
⟩

where ωk is dyk/yk if k ≤ v and dyk otherwise. Pushing forward gives

F⋆Ω
•
X/S(log Y ) = OX(p)⟨xw1

1 · · ·xwn
n ωk1

∧ · · · ∧ ωki
: 0 ≤ wi < (p− 1)⟩ = OX(p) ⊗ L•(n, v)

with differentials descending to L•, so

Hi(F⋆Ω
•
X/S(log Y )) = OX(p) ⊗Fp

Hi(L•(n, v)).

We have a tensor product decomposition

L•(n, v) = L•(1, 1)⊗v ⊗K•(1)⊗(n−v),

so again we reduce by Kunneth to L•(1, 1), where

Hi(L•(1, 1)) =


Fp · 1 i = 0

Fp · dy/y i = 1

0 otherwise

.

So on An we can take

C−1 : Ω1
X(p)/S(log Y

(p)) −→ H1(F⋆Ω
•
X/S(log Y ))

dxk

xk
7−→ dyk

yk
0 ≤ k ≤ v

dxk 7−→ yp−1
k dyk v < k ≤ n

and extend by multiplicativity.

Proof of Theorem. We will deduce this from the regular Cartier isomorphism applied to (X − Y )/S. Note
that we have natural inclusions

Ωi
X(p)/S (log Y

(p)) ⊆ Ωi
(X(p)−Y (p))/S = Ωi

(X−Y )(p)/S .

On the other hand,

F⋆Ω
i
X/S(log Y ) ⊆ F⋆Ω

i
(X−Y )/S ,

so we get OX(p)-morphisms of cohomology sheaves

hi : Hi(F⋆Ω
•
X/S(log Y )) → Hi(F⋆Ω

•
(X−Y )/S)

(not a priori injective). We wish for a factorization

Ωi
(X−Y )(p)/S

Hi(F⋆Ω
•
(X−Y )/S)

Ωi
X(p)/S (log Y

(p)) Hi(F⋆Ω
•
X/S(log Y ))

C−1

?
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First we show the right map is injective. This can be checked locally, so we reduce to the case of affine
space. There we can take advantage of our explicit bases:

Hi(F⋆Ω
•
(X−Y )/S) O(X−Y )(p) ⊗Fp Hi(K•(n))

Hi(F⋆Ω
•
X/S(log Y )) OX(p) ⊗Fp

Hi(L•(n, v))

The left vertical map is restriction, so the right map is given in degree 1 by

1⊗
[
dyk
yk

]
7−→

[
yp−1
k dyk
ypk

]
7−→ 1

xk
⊗
[
yp−1
k dyk

]
0 ≤ k ≤ v

1⊗ [yp−1
k dyk] 7−→ 1⊗ [yp−1

k dyk] v < k ≤ n,

which is injective as the image of the basis is linearly independent. Since wedge power is exact, this implies
the same in all higher degrees.

Since the right map is injective, if a factorization of the Cartier isomorphism exists, it is unique, and so
we can check that the map factors locally. This reduces again to affine space, where we can check it on the
basis of ωk. For each k ≤ v:

1
xk

dxk
1
xk

[yp−1
k dyk]

dxk

xk

which of course factors through the bottom right as desired. For k > v, we have dxk 7→ [yp−1
k dyk], which

is in the image also. So locally the Cartier isomorphism factors through the logarithmic differentials. By
uniqueness of the factorizations, these glue to give a global restricted map

C−1(log Y ) : Ωi
X(p)/S (log Y

(p)) → Hi(F⋆Ω
•
X/S(log Y )).

Note that this map is locally an isomorphism: in the étale-over-affine case, we saw above that the map bijects
our OX(p)-bases. So C−1(log Y ) is an isomorphism. □

IV. Application

We have seen that

Corollary 6. The spectral sequences for (log) de Rham cohomology reduce to

Ep,q
2 = Rpπ

(p)
⋆ (Ωq

X(p)/S
) =⇒ Hp+q

dR (X/S)

Ep,q
2 (log Y ) = Rpπ

(p)
⋆ (Ωq

X(p)/S
(log Y (p))) =⇒ Hp+q

dR (X/S(log Y )).

Assume now that either

(1) Fabs : S → S is flat, as in the case of S smooth over a field, or
(2) the formation of the Rpπ⋆(Ω

q
X/S) and Rpπ⋆(Ω

q
X/S(log Y )) commute with arbitrary base change of

X/S.

Either of these hypotheses ensures the cohomology and base change theorem holds for the Cartesian diagram

X(p) X

S S

W

π(p) π

Fabs

(see for example, Stacks [02KH] for the flat case) and so the natural map

F ⋆
absR

pπ⋆(Ω
q
X/S) → Rpπ

(p)
⋆ (W ⋆(Ωq

X/S)) = Rpπ
(p)
⋆ (Ωq

X(p)/S
)
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is an isomorphism. Our final version of the spectral sequence is

Ep,q
2 = F ⋆

absR
pπ⋆(Ω

q
X/S) =⇒ Hp+q

dR (X/S),

likewise with log differentials.
We already had a spectral sequence that looked like this, but it began on the E1 page, without the F ⋆

abs.
So why do we care? The first reason is that it gives an alternate construction of the Gauss-Manin connection
on these Ep,q

2 as the canonical integrable connection coming from the pullback. More importantly, recall the
following result from Tony’s talk.

Theorem 7. If a coherent sheaf with integrable connection is of the form F ⋆
abs(F ,∇), then it has p-curvature

zero.

So the E2-page of our spectral sequence consists only of elements of MIC(X/S) (with their Gauss-Manin
connections) which have p-curvature zero. Taking kernels and cokernels preserves this property, of course,
so the E∞ page also consists entirely of p-curvature zero elements of MIC. Since Hn

dR(X/S) has a filtration
by the Ep,n−p

∞ and p-curvature is additive in extensions (Rose’s talk), we have shown

Corollary 8. The number of nonzero Ep,q
2 with p+ q = n is an upper bound on the exponent of nilpotence

of Hn
dR(X/S) with Gauss-Manin connection.

This is at least as good a bound as ≤ (n+ 1) and will often be better!
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