Problems for "Quantum Cohomology and Symplectic Resolutions"

Tony Feng

1 Problem Sheet 1

1.1 Problem 1

The normalization \widetilde{C} of *C* is a the disjoint union of the normalizations of the components of *C*. Any automorphism of $C \to X$ lifts to an automorphism of \widetilde{C} over *X*.

- A component which is not crushed by the map has only finitely many automorphisms, since for instance any automorphism of *C* → *f*(*C*) induces an automorphism of the extension of function fields, which can be at most the degree of *f*.
- Any component of \widetilde{C} having genus at least 2 has only finite many automorphisms at all (disregarded the map to X entirely).
- A component of genus 1 has infinitely many abstract automorphisms. However, in *C* such a component has at least one node since it is joined to some other component, and any automorphism of the map must send nodes to nodes. Now, there are only *finitely* many automorphisms of a smooth genus 1 curve sending a given point to another given point (an elliptic curve has only finitely many automorphisms).
- For the rational componetns of \widetilde{C} , apply the same argument as above, noting that there are only finitely many automorphisms of \mathbb{P}^1 sending a given triple of points to another given triple.

1.2 Problem 2

There are four strata, depicted below

- The open (smooth, injective) stratum consists of an isomorphism from \mathbb{P}^1 to a smooth conic in \mathbb{P}^2 . For a fixed smooth conic, there is obviously one such isomorphism up to reparametrization, so the fibers are points.
- The injective, singular stratum consists of maps from a nodal union of two \mathbb{P}^1 s to a nodal union of lines in \mathbb{P}^2 . For a given image curve, there is again only fiber since the map is an isomorphism.
- The singular, non-injective stratum consists of maps from a nodal union of two \mathbb{P}^1 s to a line in \mathbb{P}^2 . The moduli of such maps is described by the image of the node, which is evidently \mathbb{P}^1 .
- The smooth, non-injective stratum consists of 2:1 maps from \mathbb{P}^1 to a line in \mathbb{P}^2 . The moduli of such maps is described by the 2 branch points, which is evidently

$$\operatorname{Sym}^2 \mathbb{P}^1 \setminus \Delta = (\mathbb{P}^1 \times \mathbb{P}^1 - \Delta) / (\mathbb{Z}/2).$$

In particular, the only interesting fibers of $\overline{\mathcal{M}_{0,0}}(\mathbb{P}^2, 2[\text{line}])$ are over the locus of double lines, i.e. the *Veronese surface* in \mathbb{P}^5 . To see what the fibers are, we compute $\mathbb{P}^1 \times \mathbb{P}^1$ –

 $\Delta/(\mathbb{Z}/2)$. Choose affine coordinates *t* and *s* on the two copies of \mathbb{P}^1 . The Veronese embedding $\mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ is $(s, t) \mapsto (s, t, st)$. Therefore, we must take invariants under $s \leftrightarrow t$ of k[s, t, st] localized away from s = t, which is $k[t + s, st]_{s-t}$.

The reducible curves in the third category arise from semistable reduction as the branch points *s* and *t* move together. ******* TONY: [how to check this rigorously?] Since we have only worked with affine components, it is not so clear a priori which compactification we get for the full fiber. The missing points are obtained by taking $s \to \infty$ or $t \to \infty$. In terms of the coordinates s + t and *ts*, the slope is $\frac{s+t}{st}$, so it clear that as for finite *t*, as $s \to \infty$ we get an \mathbb{A}^1 , which is then completed to a \mathbb{P}^1 by allowing $t \to \infty$. So we get one line at infinity (remember that $s \leftrightarrow t$, so we don't have to the consider the case with *s* and *t* swapepd), i.e. a compactification of \mathbb{P}^1 .

As a sanity check, we mention that the space $\overline{\mathcal{M}_{0,0}}(\mathbb{P}^2, 2[\text{line}])$ is supposed to be the blowup of the space of conics \mathbb{P}^5 over the Veronese surface. Indeed, we are finding that it maps isomorphically to \mathbb{P}^5 except over the Veronese surface, at which point it has fibers \mathbb{P}^2 , which is what we expect for the blowup.

The cubic case is more complicated, but it seems fairly clear how to proceed.

1.3 Problem 3

Recall that

$$\langle 1, \gamma_1, \dots, \gamma_n \rangle_{0,\beta}^X = \overline{\mathcal{M}_{0,n+1}}(X,\beta)^{\text{vir}} \frown (\text{ev}_1^* \ 1 \smile \text{ev}_2^* \ \gamma_2 \smile \dots \smile \text{ev}_n^* \ \gamma_n)$$

= $f^* \overline{\mathcal{M}_{0,n}}(X,\beta)^{\text{vir}} \frown (\text{ev}_2^* \ \gamma_2 \smile \dots \smile \text{ev}_n^* \ \gamma_n).$

Now, for since the right hand side is non-zero we must have that $(ev_2^* \gamma_2 \smile ... \smile ev_n^* \gamma_n) \in H^d(\overline{\mathcal{M}_{0,n}}(X,\beta))$ where *d* is the expected dimension of $\overline{\mathcal{M}_{0,n}}(X,\beta)$. But then $ev_1^* 1 \smile ev_2^* \gamma_2 \smile ... \smile ev_n^* \gamma_n \in H^d \overline{\mathcal{M}_{0,n+1}}(X,\beta)$ whereas $f^* \overline{\mathcal{M}_{0,n}}(X,\beta)^{\text{vir}}$ is in $H_{d+1}(\overline{\mathcal{M}_{0,n+1}}(X,\beta))$ so the cap product vanishes by formal degree incompatibilities.

For the second equality

$$\langle D, \gamma_1, \ldots, \gamma_n \rangle_{0,\beta}^X = (D \cdot \beta) \langle \gamma_1, \ldots, \gamma_n \rangle_{0,\beta}^X$$

we make an intuitive argument. The left hand side counts maps from rational curves to X with fundamental class β with n + 1 marked points p_1, \ldots, p_{n+1} passing through the cycles $D, \gamma_2, \ldots, \gamma_n$. The right hand side counts maps from rational curves to X with fundamental class β and n marked points p_2, \ldots, p_n passing through $\gamma_2, \ldots, \gamma_n$. For any such map counted by the right hand side, there are " $\#D \cap \beta$ " = $D \cdot \beta$ choices for markings of p_1 to augment it to a map counted by the left hand side.

♦♦♦ TONY: [how to make this rigorous?]

1.4 Problem 4

Noting that $H_k^{\vee} = H_{n-k}$ and $H_2(\mathbb{P}^n) \cong \mathbb{Z}$ generated by the dual to H_{n-1} , we have by definition of the quantum product

$$H_{i} \bullet H_{j} = \sum_{\beta} q^{\beta} \langle H_{i}, H_{j}, H_{k} \rangle H_{k}^{\vee}$$
$$= \sum_{n} q^{n} \langle H_{i}, H_{j}, H_{k} \rangle H_{n-k}$$

Now, by definition $\langle H_i, H_j, H_k \rangle$ is non-zero only when i + j + k equals the dimension of the virtual fundamental class, which is

$$\dim X + (n-3) - K_X \cdot \beta = n + (3-3) + (n+1)\beta = n + (n+1)\beta.$$

Since $0 \le i, j, k \le n$, the only possibilities for β are 0 and 1.

1. If $i + j \le n$, then we must be in the first case. Then we are *constant* maps from \mathbb{P}^1 to \mathbb{P}^n with three marked points passing through three linear spaces of complementary dimension. Since that intersection is obviously a single point, there is obviously only one such map (up to reparametrization).

Therefore, in this case $\langle H_i, H_j, H_k \rangle = 1$, so $H_i \bullet H_j = H_{i+j}$.

2. If i + j = 2n + 1, then we are counting the number of *lines* in \mathbb{P}^n with three marked points passing through linear spaces of codimension i + j + k = 2n + 1. We can represent a map $\mathbb{P}^1 \to \mathbb{P}^n$ with image a line by n + 1 choices of linear polynomial, up to scalar. The condition that the corresponding marked point passes through H_i imposes *i* homogeneous linear conditions on the coefficients, which are generically independent, so there is in the end only one linear dimension, which collapses to a single map after modding out by scalars.

Therefore, in this case $\langle H_i, H_j, H_k \rangle = 1$, so $H_i \bullet H_j = H_{i+j-n-1}$.

1.5 Problem 5

The "quantum connection" ∇_{λ} is flat if

$$\nabla_{\lambda}\nabla_{\mu} - \nabla_{\mu}\nabla_{\lambda} = \nabla_{[\lambda,\mu]}.$$

It is not quite clear to me in what sense this is a connection, but it seems like it should be the case that $[\lambda, \mu] = 0$, since what else could the commutator of two characters be?

It suffices to test this on "monomials" of the form γq^{α} , which we compute below:

$$\begin{split} \nabla_{\lambda}\nabla_{\mu}(q^{\alpha}\gamma) &= \nabla_{\lambda}\left[(\alpha \cdot \mu)q^{\alpha}\gamma - q^{\alpha}\sum_{\beta}\sum_{\eta}q^{\beta}\langle\mu,\gamma,\eta\rangle_{\beta}\eta^{\vee} \right] \\ &= (\alpha \cdot \lambda)(\alpha \cdot \mu)q^{\alpha}\gamma - q^{\alpha}\sum_{\beta,\eta}(\lambda \cdot \beta + \lambda \cdot \alpha)q^{\beta}\langle\mu,\gamma,\eta\rangle_{\beta}\eta^{\vee} \\ &- (\alpha \cdot \mu)q^{\alpha}\sum_{\beta',\eta}q^{\beta'}\langle\lambda,\gamma,\eta\rangle_{\beta}\eta^{\vee} + q^{\alpha}\sum_{\beta,\eta}q^{\beta}\langle\mu,\gamma,\eta\rangle_{\beta}\sum_{\beta',\delta}\langle\lambda,\eta^{\vee},\delta\rangle_{\beta'}\delta^{\vee}. \end{split}$$

Since most of the terms are symmetric, we see that $\nabla_{\lambda}\nabla_{\mu} = \nabla_{\mu}\nabla_{\lambda}$ if and only if

$$\sum_{\beta} (\lambda \cdot \beta) q^{\beta} \langle \mu, \gamma, \eta \rangle_{\beta} \eta^{\vee}$$

is symmetric in λ and β . But by §1.3, this is equal to

$$\sum_eta q^eta \langle \lambda, \mu, \gamma, \eta
angle_eta \eta^ee$$

which is manifestly symmetric in λ and μ .

2 Problem Sheet 2

2.1 Problem 1

(1) As we have seen many times in the lectures, $T^*\mathbb{P}^1$ is the blowup of the singular quadric cone in \mathbb{C}^3 at the cone point. In particular, if $C \to T^*\mathbb{P}^1$ is proper, then we can compose to obtain a map from *C* to the (affine) quadric cone, which must be constant. Therefore *C* maps to a fiber, but the only positive-dimensional fiber is the exceptional fiber, which is isomorphic to \mathbb{P}^1 . That shows that

$$\overline{\mathcal{M}_{0,0}}(\mathbb{P}^1,d) = \overline{\mathcal{M}_{0,0}}(T^*\mathbb{P}^1,d).$$

Now, we recall the expected dimension formula:

expected dim $\overline{\mathcal{M}_{0,n}}(X,\beta) = \dim X + (n-3) - K_X \cdot \beta$.

Using this on $\overline{\mathcal{M}_{0,0}}(\mathbb{P}^1, d)$, we find that

expected dim
$$\mathcal{M}_{0,0}(\mathbb{P}^1, d) = 1 + (-3) - (-2d) = 2d - 1.$$

On the other hand, using it on $\overline{\mathcal{M}_{0,0}}(T^*\mathbb{P}^1, d)$ yields

expected dim
$$\mathcal{M}_{0,0}(T^*\mathbb{P}^1, d) = 2 + (-3) - 0 = -1$$

because $T^*\mathbb{P}^1$ has trivial canonical bundle, since $T^*\mathbb{P}^1$ is a symplectic manifold and hence has a non-vanishing two-form.

(2) For
$$X = \mathbb{P}^1$$
, we have $T_X = O(2)$, so $f^*T_X = O(2d)$. Then $H^1(\mathbb{P}^1, f^*T_X) = H^1(\mathbb{P}^1, O(2d)) = 0$.

For $X = T^* \mathbb{P}^1$, any map from \mathbb{P}^1 to X must compose with the projection $X \to \mathbb{P}^1$ to be a finite morphism of degree d. This reduces us to considering the restriction of TX to its *zero* section. But the normal bundle of the zero section of X in any vector bundle V on X is X itself, so we have

$$f^*T_X \cong f^*(T_{\mathbb{P}^1} \oplus T^*_{\mathbb{P}^1}) \cong O(-2d) \oplus O(2d).$$

Then $H^1(\mathbb{P}^1, f^*T_X)$ has dimension 2d - 1.

The Euler class of the corresponding vector bundle on $\overline{\mathcal{M}_{0,0}}(T^*\mathbb{P}^1, d)$ lives in degree H^{2d-1} .

(3) ******* TONY: [????]

2.2 Problem 2

(1) This follows directly from the Atiyah-Hirzebruch localization theorem, which says that ••• TONY: [the rest of this doesn't make any sense to me]

3 Problem Sheet 3

ADD TONY: [to be continued...]