EXERCISES

1. Lecture 2

Exercise 1.1. (1) Show that $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^1, d) = \overline{\mathcal{M}}_{0,0}(T^*\mathbb{P}^1, d)$ and compare the expected dimensions of the two spaces.

- (2) In order to compare the two virtual fundamental classes on the same space, compare the space of obstructions $H^1(C, f^*T_X)$ to extending deformations of a map $f: C \to X$. This will define a vector bundle on $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^1, d)$ whose Euler class gives the virtual class for $T^*\mathbb{P}^1$.
- (3) Suppose we work equivariantly with respect to the \mathbb{C}^* -action that scales the cotangent fiber with weight \hbar (and acts trivially on \mathbb{P}^1), what is the equivariant virtual class for $\overline{\mathcal{M}}_{0,0}(T^*\mathbb{P}^1, d)$?

A similar argument can be used to relate the virtual classes for $T^*(G/B)$ to G/B; by sending $\hbar \to \infty$ (after rescaling), one can recover quantum operators on G/B from those on $T^*(G/B)$, which in lecture, we reduced to $T^*\mathbb{P}^1$ via deformation. So in a sense, embedding in the cotangent bundle allows us to reduce to a simpler geometry.

Exercise 1.2. Suppose we have the action of a torus T on \mathbb{P}^1 so that the tangent space at fixed point 0 has T-weight α (and the tangent space at ∞ has weight $-\alpha$. Given a T-equivariant invertible sheaf L on \mathbb{P}^1 such that the fibers over 0 and ∞ have weights χ_0, χ_∞ .

- (1) Show that the degree of L is $d = \frac{\chi_0 \chi_\infty}{\alpha}$
- (2) If $d \ge 0$, show that $H^0(\mathbb{P}^1, L)$ has *T*-weights given by $\chi_{\infty}, \chi_{\infty} + \alpha, \ldots, \chi_{\infty} + d\alpha = \chi_0$ (and the analogous statement for $d \le -2$ and H^1 .)
- (3) Let $T = (\mathbb{C}^*)^2$, acting on $X = T^*\mathbb{P}^1$ with tangent weights $t, \hbar t$ at 0 and $-t, \hbar + t$ at ∞ . Suppose we have the (unique) T-fixed map $C = \mathbb{P}^1 \to T^*\mathbb{P}^1$ of degree d; after passing to a finite cover, C inherits a T-action with tangent weights t/d, -t/d. Compute the T-weights of the obstruction space $H^1(C, f^*T^*\mathbb{P}^1)$ and check that \hbar occurs.
- (4) In the case d = 3, write out all *T*-fixed stable maps in $\overline{\mathcal{M}}_{0,2}(X, d)$ which send the first marked point to 0 and the second marked point to ∞ .

In calculating the equivariant Gromov-Witten invariant $\langle [0], [\infty] \rangle_{0,d}^X$ by torus localization, the contribution of each fixed locus includes the

EXERCISES

product of weights of the obstruction space at that map. Using this exercise, every non-contracted component of a fixed stable map contributes a weight of \hbar to this product. Therefore, all such loci (except for the locus corresponding to irreducible domain), contribute \hbar^2 . If we are calculating modulo \hbar^2 , we can ignore all fixed loci except for the one corresponding to an irreducible domain.