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1 INTRODUCTION

1 Introduction

1.1 The objects of interest

This lecture series is about quantum cohomology and symplectic resolutions, so I’ll start
with some remarks about what these are.

Quantum cohomology. Let me start off by describing the idea of quantum cohomology.
If I have a smooth variety X/C, then very roughly the quantum cohomology QH•(X) is
a ring deformation of the usual cohomology ring H•(X) where the structure constants are
given by “counting” rational curves on X.

This is very hard in general, but the theme of the lectures is that for certain families of
varieties the answer is extremely well-behaved. That brings us to the next point.

Symplectic resolutions. A symplectic resolution is a map from X → X0, where X0 is
affine singular and X is holomorphic symplectic.

Example 1.1. We have seen that T ∗P1 maps to the singular quadric cone in C3 as the blowup
of the cone point.

In these cases the quantum cohomology QH•(X) is comparatively well-behaved. More
precisely, H•(X) carries an action of an explicit non-commutative algebra, we expect to
realize QH•(X) within this non-commutative algebra.

The goal is to give examples of this phenomenon, and explain the proofs in those cases.
Then we’ll indicate what’s known and not known in general.

1.2 Motivation

Why do we care?

1. There is an expectation that QH•(X) is related to non-commutative deformations of
X. In particular, there are explicit properties of the deformations that can be read off

from the quantum cohomology.

2. The symplectic resolutions are a gateway for understanding curve counting on more
complicated geometries.
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

2 Quantum Cohomology and Quantum Connections

2.1 Counting rational curves on X

For now, X is a smooth projective variety. What do we mean by “counting” curves on X?

Given X and some cycles Z1,Z2,Z3 ⊂ X, we are interested in counting the number of P1s
of degree d passing through Z1,Z2,Z3. We would like to model this problem by doing
intersection theory on some parameter space. The important thing is to build the right pa-
rameter space. The one which we shall eventually use, the moduli space of stable maps, has
a lot of “recursive structure” on it that is responsible for the algebraic structure in quantum
cohomology.

The idea of the moduli space of stable maps is to view the situation not as a curve sitting
in X, but as a map f : P1 → X from an abstract P1 up to reparametrization of the domain.

Attempt 1. Let’s first try to define the moduli space to be

M0,0(X, β) =
{
(C, f ) | C smooth, connected rational curve

f : C→X, such that f∗[C]=β∈H2(X)

}
/ ∼

where ∼ means equivalence up to a reparametrization of C, i.e. two maps f1, f2 are consid-
ered equivalent if there is some ϕ such that

C1

f1   

ϕ

�
// C2

f2

~~
X

Remark 2.1. The first 0 inM0,0 refers to the fact that we are considering C with (arithmetic)
genus 0, and the second refers to the fact that we are not considering any marked points yet.
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

The problem with this definition ofM0,0(X, β) is that it is not compact. We can com-
pactify it by allowing C to be nodal.

Attempt 2. As our next attempt, we consider the space

M0,0(X, β) =
{
(C, f ) | C connected, nodal curve of genus 0

f : C→X, such that f∗[C]=β∈H2(X)

}
/ ∼ .

Unfortuantely, this is still not quite right because it won’t be finite type. This space contains
curves that become arbitrarily “complicated,” such as an arbitrarily long tail of P1 joined at
nodes.

The problem can be solved by imposing finiteness of automorphisms.

Definition 2.2. We define the moduli space of stable maps to be

M0,0(X, β) =

{
(C, f ) |

C connected, nodal curve of genus 0
f : C→X, such that f∗[C]=β∈H2(X)

# Aut(C, f )<∞

}
/ ∼ .

The condition that Aut(C, f ) be finite is called stability.

Exercise 2.3. Check that stability is equivalent to every contracted irreducible component
having at least 3 nodes.

Actually, we want a more refined variation of this where we can keep track of curves
meeting specified cycles on X. To do that, we add some decorations on the curves to track
their intersections, i.e. we allow marked points.

Definition 2.4. We define the moduli space

M0,n(X, β) =

(C, f , p1, . . . , pn) |
C connected, nodal curve of genus 0

p1,...,pn∈Csmooth

f : C→X, such that f∗[C]=β∈H2(X)
# Aut(C, f ,p1,...,pn)<∞

 / ∼ .
The data (C, f , p1, . . . , pn) is called stable if Aut(C, f , p1, . . . , pn) is finite.
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

Exercise 2.5. Check that stability is equivalent to every contracted irreducible component
having at least 3 nodes or marked points.

Theorem 2.6. M0,n(X, β) is a proper Deligne-Mumford stack of finite type.

We needed to include the nodal curves in order to achieve properness.

Remark 2.7. We started off thinking about embedded rational curves in X, but we ended up
with a definition that doesn’t have any embedding condition. If we want to keep C nodal,
then we need to allow f not to be an immersion.

Example 2.8. A stable map:

The red curve is contracted. The marked points on the blue components ensure stability.
The map f need not be injective: it contracts the red component, and identifies some pairs
of points on a blue component.

2.2 Properties of the moduli spaces

Forgetful maps. There are various “forgetful maps” obtained by forgetting part of the data
of a stable map.

• A point ofM0,n(X, β) consists of (C, f , p1, . . . , pn). Forgetting everything except pi

induces a map
M0,n(X, β)

evi
−−→ X

sending (C, f , p1, . . . , pn) 7→ f (pi). Notice that if we want to encode the condition
of the ith point passing through a cycle β, then we can take the pre-image of β under
evi. The subspace ev−1

i (β) parametrizes precisely those stable maps (C, f , p1, . . . , pn)
in which pi is sent to β.
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

• Forgetting f induces a map

M0,n(X, β)→M0,n =M0,n(pt)

sending (C, f , p1, . . . , pn) 7→ (C, p1, . . . , pn). However, forgetting the map might
cause some (uncontracted) components to become unstable, so we also need to con-
tract those components.

• Forgetting the marked point pn+1 induces a map

M0,n+1(X, β)→M0,n(X, β)

(C, f , p1, . . . , pn+1) 7→ (C, f , p1, . . . , pn). Again, we have to contract any unstable
irreducible components.

Gluing maps. We can take two stable maps and glue them together at points have a coming
image.
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

More precisely, if we have two maps f1 : C1 → X and f2 : C2 → X such that f1(p) = f2(q),
then we can glue C1 and C2 by identifying p and q, and take the union

f1 ∪p∼q f1 : C1 ∪p∼q C2 → X.

If ( f1)∗[C] = β1 and ( f2)∗[C] = β2, then f1 ∪ f2[C] = β1 + β2.
Therefore, if we partition {1, . . . , n} = A t B then this construction induces a map

M0,{p}∪A(X, β1) ×X M0,{q}∪B(X, β2)

glue
��

M0,n(X, β1 + β2)

(The fibered product over X is via the evp and evq, ensuring that f1(p) = f2(q).) The image
of glue lies entirely in the nodal part, so you can view this as giving a boundary divisor.

2.3 The virtual fundamental class

A natural question to ask is: what’s the dimension of the spaceM0,n(X, β)?
We can try to estimate the dimension as follows.

Domain Map
Expected Dimension n − 3 h0(C, f ∗TX) − h1(C, f ∗TX)

We expect n − 3 = dimM0,n = {C} dimensions coming from varying the domain C.
How many degrees of freedom do we have in varying the map f : C → X? By defor-

mation theory,the space of first-order deformations is parametrized by H0(C, f ∗TX). Why?
You can think of this as giving a tangent vector on X for every point of C, which tells you to
first order how to deform the map. Of course, not all the tangent directions will be realized
by an honest deformation: some will be obstructed. The obstruction group is parametrized
by h1(C, f ∗TX). (There are no higher obstruction groups on a curve, since they would be
described by higher cohomology groups.)

The heuristic calculation gives

expected dimension = n − 3 + h0(C, f ∗TX) − h1(C, F∗TX)

= χ(C, f ∗TX) + n − 3

= −KX · β + dim X + n − 3.

This doesn’t give the dimension, but it turns out that it does give a correct lower bound:

Theorem 2.9. We have dim[C, f ]M ≥ expected dimension.

Ideally,M0,n(X, β) is smooth and has dimension equal to the expected dimension (but
this doesn’t happen for any of the examples that will occur in these lectures). Then if we
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

want to count curves passing through cycles Z1, . . . ,Zn on X, we could try to model this via
intersection theory.

Namely, the cycles Z1, . . . ,Zn give (by Poincaré duality on their fundamental classes)
cohomology classes γ1, . . . , γn ∈ H•(X), so we can pull these back to M0,n(X, β) via the
evaluation maps and consider

ev∗1 γ1 ^ . . . ^ ev∗n γn ∈ H•M0,n(X, β)

If we then cap this with the fundamental class [M], then we should get the desired count.
(In terms of homology, think of this as the cap product of the fundamental classes, which
should correspond to their intersection.) This can be interpreted as a count of the stable
maps where f (p1) ∈ Z1, . . . , f (pn) ∈ Zn.

In order to obtain a finite answer, we need to demand that∑
codim Zi = 2(expected dimension)

since [M] ∈ H2(expected dimension)(M0,n(X, β)).

That was an idealized discussion. In the real world, the moduli space M0,n(X, β) will
not be ideal. So instead we’ll work with a replacement. We’ll define a virtual class
[M0,n(X, β)]vir ∈ H2(expected dimension)(M0,n(X, β),Q) which always lives in this dimension,
even ifM0,n(X, β) doesn’t have the expected dimension. We’ll use this as a replacement for
the fundamental class in usual intersection theory. The point is that this virtual class will
have good formal properties.

Definition 2.10. The n-pointed, genus 0 Gromov-Witten invariant for of γ1, . . . , γn ∈ H•(X)
is defined to be

〈γ1, . . . , γn〉 :=
∫

[M0,n(X,β)]vir
ev∗1 γ1 ^ . . . ^ ev∗n γn

:= [M0,n(X, β)]vir _
(
ev∗1 γ1 ^ . . . ^ ev∗n γn

)
if

∑
i deg γi = 2 · expected dimension, and 0 otherwise.

This is the replacement of the original curve-counting problem.

Properties of the virtual fundamental class. Let’s elaborate on the “good formal proper-
ties” of [M0,n(X, β)]vir.

1. It is deformation invariant. If we have a smooth proper family of target varieties

X

��
T
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

instead of a single variety X, and we want to see how the count changes as we move
in this family, then we get a family of moduli spaces

M0,n(X/T, β)

��
T

The family could be very badly behaved (e.g. it could acquire extra components over
certain points), but the virtual fundamental class extends to this family, which means
in particular that 〈γ1, . . . , γn〉 is independent of Xt.
Remark 2.11. This is a shadow of the fact that there is an alternative definition of
everything using symplectic geometry, so the complex structure is actually irrelevant.

2. Functoriality. We have the forgetful map

forg : M0,n+1(X, β)→M0,n(X, β)

and it turns out that

forg∗([M0,n(X, β)]vir) = [M0,n+1(X, β)]vir.

As a sanity check, we note that forg∗ above is pulling back a homology class, hence
increasing the degree by 1 (think of it as the set-theoretic pre-image), which is right
because the expected dimension also goes up by 1 when adding in a marked point.

3. IfM0,n(X, β) is smooth of the expected dimension, then the virtual fundamental class
coincides with the actual fundamental class:

[M0,n(X, β)]vir = [M0,n(X, β)].

Finally, let me commently briefly on what this virtual fundamental class actually is.
Supopse we have a rank r vector bundle V → Y , and a smooth section σ : Y → V

V

π
��

Y

σ

hh

Then we can form the zero-set of σ, Z(σ) = Γσ ∩ Y . Let i : Z(σ) ↪→ Y be the inclusion
map. If σ were transverse to the zero section, then we would have

i∗[Z(σ)] = ctop(V) _ [Y].

The point of virtual fundamental class is to restore this identification if the section is not
transverse.

In the smooth world, we would just perturb the section σ until it were smooth. We
can’t do that in the world of algebraic geometry, so instead we construct the “refined inter-
section product” [Z(r)] = [Γσ] ∩ [Y] ∈ H2d−2r(Z(r)). This is a local model for the virtual
fundamental class.
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

2.4 Quantum cohomology

One way to think about the cup product is that if we have three cycles Z1,Z2,Z3 then

#(Z1 ∩ Z2 ∩ Z3) = (γ1 ^ γ2 ^ γ3)

where γi is Poincaré dual to Zi.
The idea of quantum cohomology is that perhaps the cycles don’t meet, so instead of

studying the number of points commong to all the Zi, we will study the number of rational
curves through them.

Definition 2.12. Denote by Q[[qβ | β ∈ Eff(X)]] the ring of formal power series, where
Eff(X) is generated by classes in H2(X,Z) represented by algebraic curves. The quantum
cohomology ring is Q[[qβ | β ∈ Eff(X)]] ⊗ H•(X,Q), with the usual addition.

If γ1, γ2 ∈ H•(X), then we define the quantum product γ1 •γ2 by specifying its Poincaré
pairing with any γ3:

(γ1 • γ2, γ3) =
∑

β∈H2(X,Z)

〈γ1, γ2, γ3〉
X
0,β · q

β

where qβ is a formal parameter that records the degree.
To make this more concrete, choose a basis D1, . . . ,Dr for H2(X,Z) as D1, . . . ,Dr. Then

the power series ring in question is Q[[q1, . . . , qr]] and we have

(γ1 • γ2, γ3) =
∑

β∈H2(X,Z)

〈γ1, γ2, γ3〉
X
0,β · q

D1·β
1 · . . . · qDr ·β

r .

Remark 2.13. This is only the special case of “3-pointed moduli spaces.” There is a more
general theory of “n-pointed moduli spaces” for which the formulas are considerably more
complicated.

Theorem 2.14. We have the following properties of the quantum product:

1. • is associative and graded-commutative on H•(X) ⊗ Q[[q1, . . . qr], and

2. • deforms the usual cup product on H•(X), and

3. 1 • γ = γ.

Proof. The graded-commutativity is clear from the definition, and for associativity we want
to show that

(γ1 • γ2) • γ3 = (γ2 • γ3) • γ1.

We can check this by pairing with some other class γ4:

((γ1 • γ2) • γ3, γ4) = ((γ2 • γ3) • γ1, γ4). (1)

10



2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

Going back to the definition of the quantum product, the right hand side of (1) is

((γ2 • γ3) • γ1, γ4 =
∑
β

qβ〈γ2 • γ3, γ1, γ4〉

=
∑
β

qβ
〈∑

γ

(γ2, γ3, γ)γ∨, γ1, γ4, γ

〉

=
∑
β

qβ
〈∑

γ

∑
β′

qβ
′

(γ2, γ3, γ)γ∨, γ1, γ4, γ

〉
=

∑
β

qβ
∑
γ

〈γ2, γ3, γ〉〈γ
∨, γ1, γ4〉

and the left hand side of (1) is the same with γ1 and γ3 switched:∑
β

∑
γ

qβ〈γ1, γ2, γ〉〈γ
∨, γ3, γ4〉 (2)

(We have suppressed β in the notation above.) Now we interpret each of these expressions
as curve counts. Recall that 〈γ1, . . . , γn〉β can be interpreted as the number of stable curves
with n marked points passing through the cycles γ1, . . . , γn respectively.

The expression (2) is counting pairs of maps of rational curves (C1, p1, p2, p3) and
(C2, q1, q2, q3) into X such that p1 ∈ γ1, p2 ∈ γ2, p3 ∈ γ, q1 ∈ γ, q2 ∈ γ2, q3 ∈ γ4. Formally,
that means that we are capping a cohomology and a homology class, described below.

The cohomology class. Let π denote the forgetful map

M0,4(X, β)

π
��

M0,4 � P
1

The moduli spaceM0,4 has a boundary divisor represented by the stable nodal curve on the
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2 QUANTUM COHOMOLOGY AND QUANTUM CONNECTIONS

left in the diagram, with point labeled 1, 2 on one side and 3, 4 on the other.

The cohomology class we want to consider is the pullback of the class corresponding to
this divisor. For the right hand side of (1), the count will use the pullback of the curve on
the right instead. The key pont is that sinceM0,4 � P

1, any two divisor classes are linearly
equivalent.

The homology class. We have the gluing map

⋃
β1+β2=βM0,{p,1,2}(X, β1) ×X M0,{q,3,4}(X, β2)

glue
��

M0,4(X, β)

Then we get a pushforward of the virtual fundamental classes:∑
β1+β2=β

glue∗
(
[M0,3(X, β1)]vir ×X [M0,3(X, β2)]vir

)
.

Thus we see that the expressions on the two sides of (1) corresponding to capping a virtual
fundamental class with two cohomology classes, which are equivalent.
♠♠♠ TONY: [I don’t actually see why the “curve count” forces any gluing of two

marked points - why couldn’t the marked points get sent to different images in γ and
γ∨?]

Remark 2.15. X doesn’t have to be projective. We just need the evaluation maps to be
proper (e.g. it suffices for X to be projective over an affine).

�
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2.5 Quantum connections

Recall that we introduced the quantum cohomology ring H•(X)[[qβ | β ∈ Eff(X)]]. You can
think of qβ as a function on H2(X,C×/2πiZ) = T∨ of H•(X), taking u 7→ q(β,u).

Definition 2.16. For λ ∈ H2(X,C), let

∂λqβ = (β · λ)qβ.

We define a formal, flat (small) connection on T∨ by

∇λ = ∂λ − λ • .

Exercise 2.17. Show that ∇λ is flat. (Essentially the same argument as for associativity.)

Example 2.18. On the problem sheet, you work out the quantum multiplication on Pn. In
terms of the standard basis, this was 

0 q

1
. . .
. . .

. . .

1 0


So flatness boiled down to

q
∂

∂q
Ψ =


0 q

1
. . .
. . .

. . .

1 0

 Ψ.

Goal: what can we say about QH•(X)? What can we say about ∇ (e.g. about its
monodromy)?

Whenever we have a group action of G on X, we get an action of the equivariant coho-
mology ring H•G(pt) on H•G(X).

Example 2.19. If G = T , then H•G(pt) = C[t1, . . . , tr]. Then G acts onM(x, β), and there is
an equivariant virtual fundamental class [M(x, β)]vir ∈ HG

BM(M(x, β)).
By the definition of equivariant cohomology, we can recover the ordinary cohomology

essentially just by specializing the variables t1, . . . , tr to 0. (Strictly speaking, there are some
technical complications: perhaps we need H•G(X) to be free over H•G(pt).
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3 Equivariant Symplectic Resolutions

3.1 Symplectic resolutions

Let X be a smooth variety andω an algebraic symplectic form on X, i.e. ω ∈ H0(X,Ω2
X). Let

X0 be an affine (singular) variety. A symplectic resolution is a proper, birational morphism

(X, ω)

��
X0

Often we will consider the equivariant case, where we have a G = G × C× action on the
source and target.

Example 3.1. The cotangent bundle T ∗P1 (with the standard symplectic structure) is a sym-
plectic resolution of a quadric cone in C3 by contracting the 0 section. Here we have an
action of C× × C×. The first C× acts on P1, preserving ω, and the second C× scales the
fibers.

Example 3.2. More generally, if G is semisimple and simply-connected and B ⊂ G is the
Borel, then the Springer resolution

Ñ = T ∗(G/B)→ N

is a symplectic resolution.

Example 3.3. Other examples include Hilbert schemes HilbnC
2 → Symn C2, Nakajima

quiver varieties, hypertoric varieties, etc.

3.2 The Springer resolution

What can we say about the equivariant quantum cohomology ring of the Springer resolu-
tion, QHG×C×(T ∗(G/B))? For notational convenience, we set X = Ñ in this section.

Principle: Classical geometry determines the quantum predictions.

Preliminary facts.

1. We have a natural identification H2(X,Z) = Hom(C×,T ) = Λ∨ (the coweight lattice)
and H2(X,Z) = Λ (the weight lattice). Then it turns out that the classes of effective
curves are generated by the positive coroots α∨.

14



3 EQUIVARIANT SYMPLECTIC RESOLUTIONS

2. If X → N is the springer resolution, then the Steinberg variety

Z := X ×N X

is a union of Lagrangians in X × X. Then Htop
BM(Z) � Q[W] is an algebra under

convolution. The equivariant homology HG×C×
BM (Z) is a graded affine Hecke algebra.

Geometrically, these correspondences are defined by an action of W on H•G×C×(X).

3. The last piece of structure has to do with deforming the Springer resolution. X sits
in a family Y → t∗ of symplectic varieties, called the Grothendieck simultaneous
resolution, where Y0 = X and Ygen = G/T (which in particular is affine).

For every α, we get the hyperplane

Hα = {z ∈ t∗ | 〈α, z〉 = 0}.

Away from the union of these hyperplanes, the fiber Yt is affine. The fiber over the
intersection of more and more hyperplanes gets bigger and bigger. In particular, the
fiber over a point on a single coroot hyperplane has a single effective curve class.

There is an action of G × C× on Y, and of C× on t∗ (by scaling).

These are basically the only ingredients that we needed to establish the answer to our orig-
inal question.

Theorem 3.4 (Braverman, Maulik, Okounkov). Let ~ be the weight of ω with respect to the
C×-action. For λ ∈ Λ, let Dλ ∈ H2

G×C×(X,Z) be the associated divisor class. Then we have
an equality of operators

Dλ• = Dλ ^ +~
∑
α∨>0

qα
∨

1 − qα∨
(λ, α∨)(sα − 1).
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3 EQUIVARIANT SYMPLECTIC RESOLUTIONS

Remark 3.5. We highlight some interesting consequences of the theorem, and comment on
their generality:

1. The “quantum corrections” are divisible by ~. In particular, if we work non-equivariantly,
or even if we merely ignore the C×-action, then Dλ• = D ^.

This is true very generally. The reason is something we said last time: quantum
cohomology is deformation invariant. If we ignore the C× equivariance, then we
can always deform X to a generic fiber of the universal deformation (Grothendieck’s
simultaneous resolution), which is affine.

2. Notice that the quantum correction terms live in the group algebra of the Weyl group,
which corresponds to Lagrangian correspondences in the Steinberg variety. It is a
general phenomenon that the quantum correction terms look like

~ · [Steinberg correspondence].

3. The answer has a “root-theoretic” flavor, with the quantum correction term being a
sum over roots of some universal expression in the root.

4. The contribution of a given root is by a rational function. For a typical variety, you
have a formal power series and you have to think about analytic continuation prob-
lems, but here everything extends automatically.

Unlike the previous three observations, which were quite general, this is something
that we only know how to prove in an ad hoc manner by analysis of the particular
symplectic singularities.

Quantum connection. Now go back to our quantum connection

∇λ = ∂λ − Dλ.

This is a connection with “regular singularities”. We can even think of it as a family of
connections depending on the equivariant parameters. Namely, we get an action of π1(T∨reg)
on H•(X), and it was shown by Heckman-Opdam that this representation is “periodic,” i.e.
there exist “intertwiner operators” relating the connection at different equivariant parame-
ters.

So the total package that we expect to get for any quantum resolution is: a connection
with regular singularities on T∨, plus “shift operators” intertwining equivariant parameters.

Remark 3.6. The only cases where we can actually produce this package are cases where
we can “dominate the whole problem” by computing everything explicitly. There is no
middle ground where we can say some qualitative things without having explicit control of
everything.

Sketch of Proof of Theorem 3.4. (1) We already mentioned that you do this by deforming X
to the generic fiber.
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3 EQUIVARIANT SYMPLECTIC RESOLUTIONS

(2) Take a generic line throught the origin in t∗, and study the restriction of the family
over this line:

Y`

��

X? _oo

��
` 0? _oo

Because we chose a generic line, it will be the case that

M0,n(X, β) =M0,n(Y`, β).

♠♠♠ TONY: [why??] In fact, this is not only an equality of sets but an equality of schemes.
However, their expected dimensions differ. Since we’ve gotten the same moduli prob-

lem in two different ways, we will get two different obstruction theories. This is reflected
in the disparity between the two expected dimensions. Recall that the expected dimension
of X is

dim X + n − 3 + KX · β

and the expected dimension of Y` is one more.
Under the induced diagram

M(X, β) //

��

M(y`, β)

��
0 // `

we have
~[M(Y0, β)]vir = [M(X, β)]vir.

The reason is that the canonical bundle on X is trivial, and has weight ~ by definition.
This explains the divisibility by ~, but not why we get Steinberg operators. That comes

from dimension reasons. Note that for n = 2, the expected dimension of M0,2(Y`, β)]vir

17
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is (dim X + 1) + 2 − 3 = dim X. Therefore, [M(X, β)0,2]vir ∈ H2 dim X[M(X, β)0,2]vir. Now,
consider the product of the evaluation maps

M0,2(X, β)
ev1 × ev2
−−−−−−→ X × X.

Since N is affine, any map from a connected proper curve mapping to X is contracted to a
point after composing with the projection from X to N . Therefore, the map above factors
through the Steinberg variety:

M0,2(X, β)
ev1 × ev2
−−−−−−→ X ×N X ↪→ X × X.

Since dim(Z = X×N X) = dim X (by the semi-smallness of the Springer resolution). There-
fore, ev∗[M(X, β)0,2]vir lies in the top homology class of Z, hence must be a linear com-
bination

∑
ai[Zi] where [Zi] are fundamental classes of irreducible components, and thus

correspond to an element of Q[W].

(3) We’re going to use the same picture and deformation invariance again. Since we
know that we only need to calculate some rational numbers ai, we can use specialization. In
particular, we can study Y` non-equivariantly ♠♠♠ TONY: [I don’t think I really appreciate
this point]. Now that we can forget about theC×-action, we can deform ` to not pass through
the origin. Deformation invariance says that the Gromov-Witten theory of the fibers will be
invariant: GW(Y`) is the same as GW(Y`′).

Now the Y`′ have many curve classes. Indeed, `′ intersects each root hyperplane exactly
once, and thus picks up one (primitive) effective curve class from each root. The fiber over
a general point in Hα is a T ∗P1-bundle over something affine:

Yt

��

T ∗P1oo

affine

18



3 EQUIVARIANT SYMPLECTIC RESOLUTIONS

So each coroot contributes a term to Dλ. What is the contribution of α∨? It is the same as
the contribution of T ∗P1. That explains why every term in the sum looks basically the same:
the universal expression is coming from some calculation on T ∗P1, which is then done by
bare hands.

�
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4 THE HILBERT SCHEME HilbN C
2

4 The Hilbert Scheme Hilbn C
2

4.1 Overview

Summary: For X → X0 an equivariant symplectic resolution, we are interested in the
equivariant quantum cohomology ring QH•G×C×(X). In the previous section we talked about
quantum multiplication by divisor classes. Then we explained, using the Springer resolu-
tion, a “reduction principle” to the case where X has one algebraic curve class. This was
via a deformation argument, in which we deformed the resolution T ∗(G/B) T ∗P1.

We can use this method to analyze a slightly more general class of spaces, including
T ∗P1,T ∗Gr, and Hilbn(C2). For the rest of the lectures we’re going to study this last space,
the Hilbert scheme of points Hilbn(C2).

This was originally proved by Okounkov-Pandariphande, but we will present a more
recent argument of Maulik-Okounkov.

Definition 4.1. We define Hilbn(C2) to be the Hilbert scheme of length n subschemes of C2.

The torus action of T = (C×)2 on C2 induces an action of T on Hilbn(C2), with the
weight of ω being t1 + t2. We have a natural map

Hilbn C
2 → Symn C2 = C2n/S n.

It turns out (though it is highly non-obvious) that Hilbn(C2) is smooth of dimension 2n.
One of the first insights is to consider not just Hilbn for a single n, but the family of all

of them at once:
Hilb =

⊔
n

Hilbn C
2.

Once we do this, we have an action of the Heisenberg algebra
⊕

n≥0 H•T (Hilbn C
2), which

was defined by Nakajima, Grojnowski, and Vasserot. The Heisenberg algebra is generated
by elements {αk, α−k}k satisfying the relation [αi, α j] = iδi, j. It mixes the grading: αk takes
Hilbn(C2)→ Hilbn−k(C2) and α−k takes Hilbn(C2)→ Hilbn+k(C2).

Let me say briefly describe the idea underlying the analysis of Hilbn(C2). There are two
principles at play which allow us to understand the Hilbert scheme.

1. LetM(r, n) be the moduli space of higher rank sheaves, parametrizing{
E= torsion-free coh. sheaf on P2

ϕ : E|`∞�O|
⊕r
`∞

(“framing”)
rank E=r, c2(E)=n

}
If r = 1, then this is the Hilbert scheme. Indeed, E describes an ideal sheaf of
Z ⊂ C2 ⊂ P2, such that IZ is “framed” of rank 1.

This is a symplectic resolution (of its “affinization”), and in particular M(r, n) is
smooth of dimension 2rn. We have an action of a torus A = (C×)r acting onM(r, n)
by reparametrizing the framing. This A preserves the symplectic form.
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Why would we introduce this seemingly much more complicated space in order to
analyze the Hilbert scheme? Analogously, to how it was advantageous to vary n in
order to obtain an action of the Heisenberg algebra, varying r introduces extra struc-
ture. The idea is to embed the Hilbert schemes in this bigger symplectic resolution,
and then study its quantum cohomology. The point is that M(r, n) turns out to be
easier to study than the Hilbert scheme alone. (Actually, in the proof allowing r = 2
is enough.)
Example 4.2. If r = 2, then we have a stratification of the fixed locus of A as

M(2, n)A =
∐

a+b=n

Hilba ×Hilbn

where the map from the right to the left takes (I, J) 7→ I ⊕ J.

2. Study “geometric shift operators” which we alluded to last time. This will be done in
the next section.

4.2 Equivariant cohomology

There is no time to give a full treatment of equivariant cohomology, but we say at least a few
words (describing only what is relevant to the situation at hand). Suppose we have a torus
A acting on a scheme Y . Then the A-equivariant cohomology ring H•A(Y) of Y becomes an
algebra over the A-equivariant cohomology ring of pt, which is H•A(pt) � Q[a1, . . . , ar] =: R.
From now on we assume that H•A(Y) is free as an R-module.

Now we have an inclusion of the fixed locus

i : YA ↪→ Y.

Since A acts trivially on YA by definition, its equivariant cohomology structure is the trivial
one:

H•A(Y) = H•(YA) ⊗ R.

Now we have maps in both directions between H•A(Y) and H•A(YA):

• a pullback map i∗ : H•A(Y)→ H•A(YA),

• a pushforward map i∗ : H•A(YA)→ H•−?
A (Y) which changes degrees.

Theorem 4.3 (Atiyah-Bott localization). Both of theses maps induce isomorphisms after
tensoring with Frac(R):

H•A(Y) ⊗ Frac(R) � H•A(YA) ⊗ Frac(R).

These aren’t quite inverses, since they don’t have the same effect on the degree, but they
are almost inverse in the sense that there is a simple formula relating their composition to
the identity: for all γ ∈ H•A(Y), we have

γ =
∑

fixed components F

(iF)∗i∗Fγ
ctop(NF)

.
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Applications. This is useful for doing equivariant intersection theory on Y via YA. If YA is
proper, then we can define ∫

Y
γ =

∫
YA

“(i∗)−1γ” ∈ Frac(R).

Example 4.4. Consider A = (C×)2 acting on C2 by scaling the x and y coordinates. Identify
H•A(pt) � C[t1, t2]. Then we have the identities∫

C2
1 =

1
t1t2∫

C2
[x − axis] ^ [x − axis] =

t2
2

t1t2
=

t2
t1∫

C2
[x − axis] ^ [y − axis] = 1 (proper intersection)

♠♠♠ TONY: [but what do these calculations actually “mean?”]

If we apply this toM(2)A = Hilb×Hilb, then we get

i∗ : H•T×A(M(2)) ⊗ Frac(R) � H•T×A(Hilb)⊗2 ⊗ Frac(R).

Here T is the rank 2 torus that acts by scaling C2. However, this isn’t the isomorphism that
we really want to work with. We would like a “more convenient” form of this isomorphism,
in particular an isomorphism defined by a Lagrangian correspondence, which would take
middle-dimensional classes to middle-dimensional classes (i∗ doesn’t have this property).

The solution to this is via the “stable envelope.” This isn’t quite canonical, as it requires
a choice of a generic one-parameter subgroup in A.

4.3 The stable envelope

General Setup: we have a symplectic resolution

(X, ω)

��
X0

and a torus A acting on X, preserving ω.
Choose a one-parameter subgroup σ : C× → A such that Xγ = XA. Looking at the level

of coweights, it suffices for this subgroup to lie in the interior of a Weyl chamber, i.e. avoid
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any walls.

This puts a partial ordering on the fixed components.

Definition 4.5. Suppose XA =
⊔

Fα. Define the leaf of Fα to be

Leaf(Fα) = {x ∈ X | lim
t→0

σ(t)x ∈ Fα}.

i.e. everything that “flows to Fα” as t → 0.

We define a partial order by Fβ ≤ Fα if Fβ ∩ Leaf(Fα) , ∅.

Notice H•A(F) = H•(F) ⊗ Q[a1, . . . , ar]. Then for γ ∈ H•A(F), we can define degA γ to
be the degree in a1, . . . , ar.
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Theorem 4.6. There exists a unique Lagrangian (hence middle dimension to middle dimen-
sion) correspondence

Stabσ : H•A(XA)→ H•A(X)

such that for γ ∈ H•A(F),

1. Stab(γ) is supported on
⋃

F′≤F Leaf(F′),

2. i∗F(Stab γ) = e(N−) ^ γ, where N− is sub-bundle of the normal bundle of F in X
corresponding to the “negative/unstable” directions, and

3. if F′ < F, then degA(i∗F′ Stab γ) < 1
2 codim F′.

Example 4.7. For T ∗P1, we have A = C×. A generic character is positive or negative, and
if it is positive at∞ (so that∞ is an attractor) then the flow looks like

Let F0 be the cotangent fiber at 0. Then we have

• Leaf(0) = F0,

• Leaf(∞) = [P1].

• Leaf(∞)|0 = ~ + t,

• Stab([0]) = [F0],

• Stab([∞]) = [P1] + [F0].

♠♠♠ TONY: [explicate this]

Now applying this to Y = Hilb, we have a map

H•A(Hilb×Hilb)→ H•(M(2)).
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Remark 4.8. Let X = T ∗ Fl, and A the maximal torus of G. Then XA =
⊔

w∈W pW (a set of
points indexed by the Weyl group). If we pick σ in the interior of a Weyl chamber, then we
get Schubert cells on the flag variety. What is the stable basis in this case? (For every point
we get should get a Lagrangian submanifold of the cotangent bundle).

It turns out that Stabσ(pw) = (characteristic cycle) j!QΣ◦w , where Σ◦w is the open Schubert
cell.

Definition 4.9. We define UStabσ = Stabσ−1 . This “reverses” all of the flows.
Then H•A(XA) maps to H•A(XA) in two ways, via Stab and UStab. We set

Rσ := (UStab−1
σ ⊗ Stab)Frac(R) : H•A(XA) ⊗ Frac(R)→ H•A(X) ⊗ Frac(R).

Exercise 4.10. Calculate what this is for T ∗P1.

What’s the point of this construction? The idea is that Stab(γ) is good for translating
geometric operators on X to geometric operators on XA. For instance, we have the following
result.

Proposition 4.11. We have

(Stab(γ),UStab(γ′))|X = (γ, γ′)XA .

(You might have to use denominators in order to define the pairing, but the result has no
denominators.)

Example 4.12. In particular, if γ and γ′ come from different fixed loci then this tells us that
(Stab(γ),UStab(γ′))|X = 0.

Proof Sketch. We’ll state the idea of this is: assume XA is isolated. If p, p′ ∈ XA. We are
interested in (Stab(p),UStab(p′)).

The first step is to show that the intersection of Stab(p) and UStab(p′) is proper. This
is plausible, as the flow will escape any affine parts because all the points will be stable for
one flow and unstable for the other, since Stab and UStab are opposite. Since we are dealing
with proper intersections, so we don’t need to invert denominators. That means the pairing
will actually be a polynomial.

The second step is an expected dimension calculation. Since these are both Lagrangian
cycles, their intersection should have degree 0, so it is just a number α ∈ Q. This is
something non-equivariant, which we can try to calculate using localization (this was also
a key step to the argument from last time!)

Finally, one notes that

(Stab(p),UStab(p′))X =
∑

q fixed

i∗q Stab(p)i∗q(UStab(p))

e(Nq)

where e(Nq) has degree codim q = dim X, and Stab(p) has degree less than 1/2 dim X if
q , p, and similarly for UStab(p). By sending the equivariant parameters to ∞, you can
argue that α = 0.
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This is a common argument: use properness to get rid of denominators, and then formal
degree considerations to argue that the result must be non-equivariant, at which point you
can just specialize the equivariant variables. �

4.4 Quantum computations on Hilbn

We’re going to atttempt to describe the quantum cohomology ring of Hilbn. As we have
mentioned, the key to understanding the quantum cohomology of Hilbn is understanding
the classical geometry.

It is a fact that Pic(Hilbn) = Zc1(Taut), where the tautological bundle on Hilbn is a rank
n bundle whose fiber over Z is H0(OZ). From now on we abbreviate c1 = c1(Taut). We
would like to understand the quantum operator c1•. The language in which the answer is
described involves the Heisenberg algebra and its action on

⊕
n≥0 H•T (Hilbn). We adopt the

usual notational convention for the Heisenberg algebra

• Raising operators α−k : H•T (Hilbn) → H•T (Hilbn+k) (geometrically, this corresponds
to adding a clump of length k)

• Lowering operators αk : H•T (Hilbn)→ H•T (Hilbn−k) (essentially the adjoint of α−k)

Theorem 4.13 (Okounkov-Pandariphande). We have

c1• = c1 ^ +(t1 + t2)

∑
k≥1

k
α−kαk(−q)k

(1 − (−q)k −
−q

1 − (−q)

∑
k≥1

α−kαk


Note the similarities of the features to what we found for the Springer resolution. The

correction term is divisible by t1 + t2, which is the weight of the symplectic form. The
q-series also fi together into a very nice rational form.
Remark 4.14. This operator actually generates the ring.

The idea is to studyM(2), and relate this to Hilb, via the constructions that we discussed
in the previous section:

• Stab: H•T×A(Hilb)⊗2 → H•T×A(M(2)),

• UStab: H•T×A(Hilb)⊗2 → H•T×A(M(2)),

• R(a1 − a2) = UStab−1 ◦Stab acts on Hilb×Hilb after localizing.

General Principle. We have a diagram

Hilb×Hilb

LA=LagrangianA

��

Stab
**

UStab 44M(2)

Steinberg Lagrangian

��
Hilb×Hilb

Stab
**

UStab 44M(2)
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Then it will be the case that [LA,R] = 0 for any Steinberg class LA. (You can prove this
by the same kinds of arguments that we have been discussing.) If you have some control
over R, then you get lots of relations.

So how can we get a handle on R? On a leaf of Z,

we have RZZ =
ctop(Taut⊗~)

ctop(Taut) ^, i.e. “diagonal term” of the action of R on Z is given by the
chern classes of the tautological bundle (here ~ = t1 + t2).

Now let’s discuss some quantum computations. Denote

Q(2) = cM(2)
1 • (−)

Q(1) = cHilb
1 • (−)

We already know on general grounds that the quantum part of this is given by Steinberg
varieties.

Notation. For an operator F on H•T (M(2)), we denote by ∆F the operator on H•T (Hilbn)
defined by

∆F = Stab−1 ◦F ◦ Stab .

Proposition 4.15. We have

∆Q(2) = Q(1) ⊗ 1 + 1 ⊗ Q(1) + (off-diagonal terms) + (scalar operator).

Remark 4.16. We can always figure out scalar discrepencies at the end by examining the
effect on the virtual fundamental class, so we don’t really care about that part right now.

Idea of proof. Say we have two points on a fixed component, and we are considering curves
from one to the other. There are curves that stay on the fixed component, but also curves
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that travel to other components and come back.

It was an exercise in the second problem sheet to show that the second kind don’t contribute
to Q(2). The precise way to argue was to send a1 − a2 → ∞, and see that those curves are
killed. �

The second big idea which goes to the proof is the (twisted) Graph construction (which
were introduced in Braverman’s lectures). Say you have an action of a torus T on any X,
and a one-parameter subgroup σ : C× → T . Then we can construct the twisted X-bundle
over P1,

X(σ)

��

= (C2 \ 0) ×C× X

P1

Let β̃ ∈ H2(X(σ)) be a class that projects to [P1] ∈ H2(P1). We consider the moduli space
of stable maps with two marked points, forcing the first one to lie over 0 and the second to
lie over∞:

M0,2(X(σ), β̃) ⊃ ev−1
1 (0) ^ ev−1

2 (∞).
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Now we can study the T -equivariant Gromov-Witten theory. We have an operator S σ on
H•T (X) ⊗ Frac(R) determined by the property∑

β̃

qβ̃〈γ1, γ2〉
X(σ)
β̃

= (γ1, S (σ)γ2).

Let D be the divisor operator, defined by the property that for Dλ ∈ H2(X) corresponding
to a coweight λ, D(λ) is the operator of quantum multiplication with Dλ.

Proposition 4.17. We have [D, S (σ)] = 0.

Proof. We can consider M0,3(X(σ)). Unraveling the definitions, you see that this boils
down to an equality

ev−1
1 (0) ^ ev−1

2 (∞) ^ ev−1
3 (0) = ev−1

1 (∞) ^ ev−1
2 (0) ^ ev−1

3 (0)

i.e. an equality with intersecting a certain virtual fundamental class with the pullback of the
curve divisors

�

The point is that this introduces many more relations into the quantum cohomology
ring.

Now we study equivariance with respect to the bigger group T ×C×ε , with the C×ε acting
on the base P1 via the weight ε. Whereas [a] = ∞ ∈ H2(P1) in the previous example, we
now have [c] − [∞] = ε · 1, so D no longer commutes with S (σ). The new commutation
relation is

εq
∂

∂q
S (σ) = D0S (σ) − S (σ)D∞.
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Proof sketch. Ok now we can actually sketch the argument for Theorem 4.13. Choose a
generic one-parameter family σ : C× → A. Then it will be the case that 〈Stab, S (σ) Stab〉
is a proper intersection. Then one can make the usual argument, reducing the problem to
computing non-equivariant parameters. The result is that the only contributing curves are
ones like those in the picture below, with no “bubbling.”

We didn’t explain why this is true. It has to do with the fact that if you look at the affinization
ofM(2), then the weights are all ±1: “the σ-weights of H•(M(2),C) are small generators.”
This is the key thing that is true aboutM(2) but not Hilb, which makes it more tractable.
The upshot is that ∆S (σ) = (−q)|·|⊗1R.

Ok, let’s collect the relations:

• [∆S ,R] = 0,

• [∆Q(2)+,R] = 0 (+ means quantum part),

• [∆Q(2), (−q)|·|⊗1R] = 0,

Using an earlier formula that I didn’t write down, you can deduce that

R(∆c1)R−1 = ∆c1 + (t1 + t2)
∑

αk ⊗ α−k − α−k ⊗ αk

Putting together all of these identities determines the off-diagonal part of ∆Q2. Denote by
∆kQ(2) the off-diagonal part shifting the index by k. Then you get an identity∑

(1 − (−q)k)∆kQ(2) = left hand side of R∆c1R−1.

You can then solve for the off-diagonal terms to find the rational functions. A little further
argument involving the tautological class pins down everything.

Of course, this was all quite vague. You should think of the point as being that the three
relations are very contraining.

In general we expect the intertwining relations for S (σ) to determine the quantum op-
erators.
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5 Further Directions

The proof we just gave was sort of “soft” in the sense that we didn’t use anything deep
about curves. In this last section we highlight some further directions to pursue, which are
harder.

1. Quiver varieties for general quivers Q. Study the matrix elements of the “1/u term”
of R.

2. What are other quantum operators, e.g. those obtained from higher degree tauto-
logical Chern classes? There is a nice conjectural answer, again in terms of the R-
matrices.

3. What is the monodromy of the quantum connections? There is an expectation of
Bezrukavnikov-Okounkov for the categorification of this action. The easy case is the
Springer resolution, which was done a long time ago. The case of the Hilbert scheme
is hard.

4. Quantum K-theory (to be discussed next week by Okounkov). Basically none of our
methods here work in that setting.

5. The relation to Donaldson-Thomas theory (curve-counting in 3-folds). If dim X = 3,
you can try to do virtual enumerative geometry on the Hilbert scheme of curves in X.

If you fix a curve class β and constant term n, then there is a conjecture that 1
2
∑

qn[Hilbβ,n(X)]
is a rational function. This is known in many cases, most generally by work of
Pandariphande-Pixton. Their argument is essentially by degeneration of hypersur-
faces to a toric variety, e.g. P3. The toric case then degenerates to C2×P1 or T ∗P1×P1,
etc. For examples like HilbC2 or Hilb T ∗P1, you can trace their arguments to the cal-
culations we described.
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