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What if we have sequential or 
history-dependent 

information?



Motivation

• Sequential data examples:
• Text, speech, time-series data

• Standard neural networks pass information forward in time
• Vanishing gradient problem
• Unable to process sequential data

• We need to introduce a structure to move history or past 
information into the future



Main Idea: include history/past 
information
• Recurrent neurons – hidden 
state with past information

• Feed the hidden state into the 
next step of the NN

• Shared weights used across 
time

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.



Unrolling & Back Propagation through Time

 

 

W

• Recursion → Can unroll and compute iteratively
• Loss function depends on hidden states
• BPTT: gradients propagated backward through time steps

• Iterative chain rule

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.



“Vanilla” RNN 

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.

 



Issue: Vanishing Gradient
 

Madsen, Andreas. 2019. “Visualizing Memorization in RNNs.” Distill 4 (3): e16



Long Short-Term Memory (LSTM)

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.

• Each cell has 3 gates:
• Forget gate: What past information should be removed?
• Input gate: How much new information should be added?
• Output gate: What information should be output at the current step?



Long Short-Term Memory (LSTM)

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.

Forget gate:
• Sigmoid computes “keep 
score” value for ht-1 and xt

• Multiply into cell state



Long Short-Term Memory (LSTM)

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.

Input gate:
• Sigmoid decides values to 
update

• Tanh creates new candidates
• Add into cell state



Long Short-Term Memory (LSTM)

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.

Output gate:
• Sigmoid computes state to 
output

• Apply tanh to cell state
• Multiply by sigmoid



Gated Recurrent Unit (GRU)

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.

• Merges cell state and hidden 
state

• Update gate: Input gate+ 
forget gate

• Simpler than standard LSTM
• Very popular



Architectures

Binary 
classification

Caption 
generation

Sentiment 
analysis Language translation

Outputs

Inputs

Example:

“Introduction to Recurrent Neural Networks - GeeksforGeeks.” 2025. 



Example:

Application: Machine Translation

she → èl she → ella 

 

Thought question: How much history do we need to translate 
text?  

Example:
I eat sweet bread

Yo como pan dulce
난 달달한 빵 먹어



BLEU Scores

• BiLingual Evaluation Understudy - score for translation quality
• Varies based on languages, domain, complexity, etc.

General Interpretation:
• 0-30: Poor to understandable translation
• 30-40: Understandable to good translation
• 40-50: High-quality translation
• 50-60: Very high quality, adequate, fluent translation
• >60: Better than human



Learning Phrase 
Representations using RNN 
Encoder-Decoder for 
Statistical Machine 
Translation
Cho et. al (2014)



Main Points
 

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, et al. 2014. “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical 
Machine Translation.” arXiv:1406.1078.



LSTM

Olah, Christopher. 2015. “Understanding LSTM Networks.” Colah’s Blog.

GRU



Technical Details

• Compared RNN Encoder-Decoder with traditional collaborative small 
language model (CSLM)

Training data:
• 418M words for CSLM
• 348M words for encoder-decoder
• Limited to 15,000 most common words in each language (~93% data)

Structure of Encoder-Decoder:
• 1000 hidden units
• Adadelta and stochastic gradient descent



Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, et al. 2014. “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical 
Machine Translation.” arXiv:1406.1078.



Findings
• Encoder-Decoder:

• Translations close to 
literal/actual translations

• Prefers shorter phrases
• “preserves both the 

semantic and syntactic 
structure of the phrase”

• Best results with both:
• Two models not too 

correlated

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, et al. 2014. “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical 
Machine Translation.” arXiv:1406.1078.



Word Embeddings

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, et al. 2014. “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical 
Machine Translation.” arXiv:1406.1078.



Sequence to Sequence 
Learning with Neural 
Networks
Sutskever, Vinyals, Le (2014)



Main Ideas
• Encoder-Decoder architecture: 2 LSTM in sequence
• Deep LSTMs outperform shallow LSTM
• Reversed source sentence order → performs better on long 
sentences

• Introduce short-term dependencies
• Minimal lag time reduced, but average lag same (BPTT easier)



Technical Details

Training data:
• 348M French words and 304M English words
• Input vocab: 160K words → Output vocab: 80,000 words

Structure:
• LSTM with 4 layers, 1000 cells/layer

• “each additional layer reduced perplexity by nearly 10%”

• 1000 dimensional word embeddings



Results

• Reversing sentences: 
• Test perplexity: 5.8 to 4.7 (good)
• Test BLEU: 25.9 to 30.96 (good)

• Increasing depth increased score

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014. “Sequence to Sequence Learning with Neural Networks.” arXiv:1409.3215. 



Results

Comparison to other models:

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014. “Sequence to Sequence Learning with Neural Networks.” arXiv:1409.3215. 



Performance on Long Sentences
RNN:

Actual:

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014. “Sequence to Sequence Learning with Neural Networks.” arXiv:1409.3215. 



Neural Machine Translation 
by Jointly Learning to Align 
and Translate
Bahdanau, Cho, Bengio (2016)



Main Ideas

• Issue with encoder-decoder: encoder must output fixed-length 
vector

• Difficult to capture meaning of long sentences
• Instead: maps input to vector sequence and selects subsets for 
decoding

• Uses a bidirectional RNN
•  “emulates searching through a source sentence during decoding a 

translation”
• Probability explicitly conditioned on context vector and 
alignment

• Usually considered latent variables in an RNN



Forward 
hidden states

Backward 
hidden states

“Annotations”

ci = context vector

Hidden states

Outputs

Source 
sentence

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2016. “Neural Machine Translation by Jointly Learning to Align and Translate.” 
arXiv:1409.0473. 



Technical Details
• Same training data as first paper!

Training data:
• 418M words for CSLM
• 348M words for encoder-decoder
• Limited to 15,000 most common words in each language (~93% data)

Structure:
• RNN forward and backward direction, 1000 hidden states each
• Adadelta and minibatch SGD



Performance vs. Plain Encoder-Decoder

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2016. “Neural Machine Translation by Jointly Learning to 
Align and Translate.” arXiv:1409.0473. 

Their model 
performed as well as 
conventional 
translation system!



Shortcomings of RNNs

• BPTT can be computationally expensive and time-consuming 
to train

• Sensitive to hyperparameter choice
• Struggle with long-term dependencies
• Biased toward recent data
• No global context
• Hard to parallelize



Examples!



Toy Examples: Shakespeare



Toy Examples: Wikipedia



Toy Examples: Latex



Evolution Over Iterations: War and Peace
100:

300:

700:

1200:

2000:

Karpathy, Andrej. 2015. “The Unreasonable Effectiveness of Recurrent Neural Networks.” Accessed October 6, 2025.



• First row: green = very excited and blue = very unexcited
• Below: 5 most likely next characters (red more probability)

Neuron Firings

Karpathy, Andrej. 2015. “The Unreasonable Effectiveness of Recurrent Neural Networks.” Accessed October 6, 2025.

Neuron excited about hyperlinks

Neuron excited about [[ ]] environment
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Colab

Simple single layer RNN to predict temperature:

https://colab.research.google.com/drive/15NWGJ8gSKSVJ4TNh8
7sQMU1hBNQ8CkbT?usp=sharing

https://colab.research.google.com/drive/15NWGJ8gSKSVJ4TNh87sQMU1hBNQ8CkbT?usp=sharing
https://colab.research.google.com/drive/15NWGJ8gSKSVJ4TNh87sQMU1hBNQ8CkbT?usp=sharing

